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Abstract Let G = (V,E) be a simple connected graph with vertex set V and edge set E.
The vertex induced 2-edge coloring number ψ′vi2(G) is the maximum number of colors used
in coloring the edges of a graph G such that for each vertex v ∈ V , at most two edges in the
induced subgraph 〈N [v]〉, generated by the closed neighborhood N [v], receive different colors.
The vertex incident 2-edge coloring number ψ′vin2(G) of graph G is the maximum number of
colors required to color the edges of G such that at most two edges incident to a vertex v in G
receive different colors. In this paper, the vertex induced 2-edge coloring number and vertex
incident 2-edge coloring number of some graph products such as Cartesian product and strong
product are discussed. The ψ′vi2(G) and ψ′vin2(G) number in the rooted product of a general
connected graphs with some graph classes are also discussed in this paper.

1 Introduction

Graph coloring problems usually aim at minimizing the number of colors. But there is another
fast-growing area of the literature where the number of colors used in a graph coloring problem
can be maximized under certain conditions as seen in the articles such as the 3-consecutive ver-
tex coloring number [9], 3-consecutive edge coloring number [2], 3-successive c-edge coloring
number[1] and worm coloring [3]. This article focuses on two types of edge coloring problems
where the number of colors used is maximized under certain conditions.

Let G = (V,E) be a simple connected graph with V (G) and E(G) as its vertex set and
edge set respectively. For each vertex v ∈ V (G), the closed neighborhood of v is given as
N [v] = {v} ∪ {u : uv ∈ E(G)} and 〈N [v]〉 represents the induced subgraph generated by N [v].
A vertex induced 2-edge coloring of a graph G is an edge coloring of a graph G such that for
each vertex v ∈ V (G), at most two edges in 〈N [v]〉 are differently colored. The vertex induced
2-edge coloring number, denoted as ψ′vi2(G), is the maximum number of colors required to color
the edges of a given graph. Similarly, the edges incident at a vertex v ∈ V (G) or in other words
a star at vertex v is a subgraph of graph G containing all edges incident at vertex v. Thus vertex
incident 2-edge coloring of a graph G is a coloring of the edges of G such that at most two dif-
ferent colors are used to color the edges incident to a vertex v in G. The vertex incident 2-edge
coloring number, denoted as ψ′vin2(G) gives the maximum number of colors required to color
the edges of a given graph. This concept is the same as the edge coloring condition discussed in
[8].

The above-mentioned parameters are likely to be anticipated in warfare where the number of
soldiers has to be deployed. Consider G = (V,E) to be a network of lanes in an affected area
where the security personnel has to be deputed. |V (G)| gives the total number of junctions in
the area whereas |E(G)| gives the total number of lanes. Assume that for some reasons at most
two guards are allowed to secure the houses or civilians on the lanes at the subgraph induced
by each junction v ∈ V . Under such conditions, one may be interested to know the maximum
number of security personnel that can be deputed in the network G. This is ψ′vi2(G). Similarly,
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the maximum number of guards required to secure the civilians in at most two lanes at each
junction is ψ′vin2(G) [8].

We use the following definitions and notations for the further development of this article. For
more definitions of graph theory, we refer book [6].

• The Cartesian product of graphs G1 and G2, denoted as G12G2, is the graph with vertex set
V (G12G2) = V (G1)× V (G2) and two vertices u = (u1, u2) and v = (v1, v2) are adjacent
in G12G2 if u1 = v1 and u2 adjacent to v2 in G2 or u1 adjacent to v1 in G1 and u2 = v2 (see
[7]).

• The strong product of graphs G1 = (V1, E1) and G2 = (V2, E2), denoted as G1 �G2, is the
graph with vertex set V1 × V2 in which vertices (u1, u2) and (v1, v2) are adjacent whenever
u1 = u2 and v1v2 ∈ E2, or v1 = v2 and u1u2 ∈ E1, or u1u2 ∈ E1 and v1v2 ∈ E2 (see [5]).

• Graph G
⊙
H is called the rooted product of G by H if G is a labelled graph on n vertices

and H is a sequence of n rooted graphs, say H1, H2, . . . ,Hn, such that the graph G
⊙
H is

obtained by identifying the root vertex ofHi with the ith vertex ofG for all i ∈ {1, 2, . . . , n}
(see [4]).

Theorem 1.1 ([8]). Let G be a connected graph, then ψ
′

vi2(G) ≤ ψ
′

vin2(G). The equality holds
for triangle free graphs.

Theorem 1.2 ([8]). For a graph G = (p, q) with q ≥ 2, 2 ≤ ψ′vi2(G), ψ
′

vin2(G) ≤ q.

Remark 1.3. For a triangle-free graph G, ψ
′

vi2(G) = ψ
′

vin2(G). Therefore, in most of the theo-
rems, we find the vertex induced 2-edge coloring number unless otherwise mentioned.

In this paper, we study the vertex induced 2-edge coloring number and vertex incident 2-edge
coloring number of some graph products such as Cartesian product, strong product, and rooted
product.

2 Results on Cartesian and Strong Graph Products

In this section, we determine the exact values of ψ
′

vi2 and ψ
′

vin2 of some Cartesian products such
as Pn2P2, Pm2Pn, Cm2Cn, Pn2K1,n. Also we find the exact values of ψ

′

vi2 and ψ
′

vin2 of the
Hypercube, the strong product Pn � Pm, m,n ≥ 3 and Pn � P2.

Theorem 2.1. If G is the Cartesian product of Pn2P2, then

ψ′vi2(G) = ψ′vin2(G) =

{
n+ 2, 2 ≤ n ≤ 3
n+ 3, n > 3

Proof. Let G ≡ Pn2P2. Since the Cartesian product Pn2P2 is obtained by taking two copies of
Pn, therefore we denote the vertex set corresponding to the first copy of Pn inG by {v1, v2, . . . , vn}
and the vertex set of the second copy by {v′1, v′2, . . . , v′n} and {vivi+1} ∪ {v′iv′i+1} ∪ {viv′i} where
1 ≤ i ≤ n− 1, be the edge set of the graph G.
Case-1: Assume that n = 2. In this case G ≡ P22P2 is a cycle graph on 4 vertices and hence
ψ
′

vi2(G) = 4 = 2 + 2.
Case-2: Assume that n = 3, that is, G ≡ P32P2. Consider the edges incident at the vertices
v2 ∪ v′2. It can be noted that these five edges can be given a maximum of three colors. If we use
four colors to color the edges incident at v2 ∪ v′2, then we get a contradiction to the definition of
vertex induced 2-edge coloring. Now color the remaining edges v1v

′
1 and v3v

′
3 with two different

colors. Thus ψ′vi2(G) = 3 + 2 = 5.

Case-3: LetG ≡ Pn2P2 where n > 3. We define the α0− sets as the set of non-adjacent vertices
in the vertex set V (G).
Sub-case 3.1: Assume that n is odd. In this case, we consider {v1, v

′
2, . . . , v

′
n−1, vn} as the α0−

set. The edges of the subgraph 〈N [v1] ∪ N [v′2]〉 can be colored by four different colors. It is
to be noted that, at most one new color can be given to the edges of the subgraph obtained by
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the addition of the new vertex v3 from the α0−set, where | N(v′2) ∩ N(v3) |6= φ. Continuing
in this manner one can see that the edges of subgraph 〈N [v1] ∪N [v′2] ∪N [v3] ∪ . . . ∪N [v′n−1]〉
cab be assigned with n + 1 distinct colors such that the edge vn−1v

′
n−1 is given the same color

as that of edge vn−2v
′
n−2 while the edge v′n−1v

′
n is colored by (n + 1)th color. The remaining

two uncolored edges can be assigned with two new colors. Noted that the above coloring pattern
gives the maximum vertex induced 2-edge coloring number of G. Hence the vertex induced
2-edge coloring number of G is n+ 3.
Sub-case 3.2: Assume that n is even. In this case, we consider {v1, v

′
2, . . . , vn−1, v

′
n} as the

α0− set. Then one can use at most four colors to color the edges in subgraph 〈N [v1] ∪ N [v′2]〉.
Continuing in this manner, one requires n + 1 colors to color the edges in subgraph 〈N [v1] ∪
N [v′2] . . .∪N [vn−1]〉 such that the edge vn−1v

′
n−1 is given the same color as that of edge vn−2v

′
n−2

whereas the edge vn−1vn is assigned with (n+ 1)th color. The remaining two uncolored edges
are given two new colors. Thus the maximum vertex induced 2-edge coloring number of G is
n+ 3.

Therefore, from above two sub-cases we can conclude that ψ′vi2(G) = n+ 1+ 2 = n+ 3 for
n > 3.

Next, we consider the more general case. That is, we study the vertex induced 2-edge coloring
number of the rectangular grid graph (Gm,n ≡ Pm2Pn). The graph Gm,n is also known as the
grid graph is a graph of order mn and size (2mn−m−n). We use the following lemma to prove
the next proposition.

Lemma 2.2. Consider the graph Gm,n ≡ Pm2Pn as the rectangular grid graph such that
m,n ≥ 4 and m ≤ n. Let G∗m,n be the graph obtained by removing (2n + 2m − 4) outer
edges from the graph Gm,n and removing the isolated vertices after the removal of the outer
edges. Then

ψ′vi2(G
∗
m,n) = ψ′vin2(G

∗
m,n) =


2n+ (m− 4)

⌊
n
2

⌋
− 3, when n is even

2n+ (m− 4)
⌊
n
2

⌋
+ m−11

2 , when m & n are odd
2n+ (m− 4)

⌊
n
2

⌋
+ m−10

2 , m is even & n is odd

Proof. Consider the graph Gm,n ≡ Pm2Pn such that m,n ≥ 4 and m ≤ n. Let G∗m,n be a graph
obtained from graph Gm,n after removing (2n+ 2m− 4) edges from its boundary.

Figure 1. Vertex labeling of Graph G∗m,n

Thus G∗m,n is a graph of order (mn − 4) and size (2mn − 3m − 3n + 4). Let V (Gm,n) =

{vj1 , v
j
2 , . . . , v

j
n, }, where 1 ≤ j ≤ m, be the vertex set of graph Gm,n. Then V ∗(G∗m,n) =

V (Gm,n) \ {v1
1 , v

1
n, v

m
1 , v

m
n } is the vertex set of graph G∗m,n, refer figure 1.

To maximize the number of colors we initiate the coloring procedure by giving distinct colors
to the pendant edges of the graph G∗m,n. Case-1 explains the reason for assigning 2m+ 2n− 11
distinct colors to the 2m+ 2n− 8 pendant edges of the graph G∗m,n.
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Case 1: Assume the case when m = 4 and n ≥ 4. In order to maximize the number of colors
in the given coloring procedure, the pendant edges of the graph G∗4,n can be given 2n distinct
colors, say {c1, c2, . . . , c2n}, refer figure 2. The remaining uncolored edges of the graph G∗4,n are
incident at the vertex vij with degree 4, where 2 ≤ j ≤ n− 1 and 2 ≤ i ≤ m− 1.

Consider the edges incident to the vertex v2
2 . Since there are exactly two uncolored edges

v2
2v

3
2 and v2

2v
2
3 incident at v2

2 , so these edges can be given either the color c1 or the color c2n.
Here it can be noticed that, by coloring the edge v2

2v
3
2 with one of the above two mentioned

colors, the vertex induced 2-edge coloring conditions fails at the vertex v3
2 . So the edge v3

1v
3
2 is

given same color as that of edge v3
2v

4
2 . Similarly, at the vertex v3

n−1 the vertex induced 2−edge
coloring condition fails if the edge v2

n−1v
3
n−1 is colored by c1, cn−2, cn−1 or c2n. Hence the

edges v2
n−1v

2
n and v3

n−1v
4
n−1 are given cn−2 and cn colors respectively. Therefore, the maximum

number of colors needed to color the pendant edges of the graphG∗4,n can be given 2n−3 colors.

Figure 2. Coloring of Pendant edges of Graph G∗4,n

Assume that the pendant edges of the graph G∗4,n are assigned 2n−3 colors. Again, consider the
edges incident at the vertices v2

2 ∪ v2
3 . Since there are exactly two edges that are incident at the

vertex v2
2 receives two different colors thus, the other four uncolored edges which are incident

at vertices v2
2 ∪ v2

3 has to be either colored by c2n−3 or c1. Let the remaining edges incident
at the vertices v2

2 ∪ v2
3 be colored by c2n−3. It can be seen that by the addition of any number

of adjacent vertices of degree 4 to the vertices v2
2 ∪ v2

3 there is no further increase in the vertex
induced 2-edge coloring number of the graph G∗4,n. Therefore, ψ′vi2(G

∗
4,n) = 2n− 3.

In the cases discussed below we consider n,m ≥ 5 and m ≤ n.
Case-2: Assume when n is even and m is either odd or even. As discussed in Case-1, the
pendant edges of graph the G∗m,n can be given 2(m − 4) + 2(n − 2) + 1 colors such that the
edges v2

n−1v
2
n, v

m−1
n−1 v

m
n−1 and vm−1

1 vm−1
2 receives the same color as that of edges v1

n−1v
2
n−1,

vm−1
n−1 v

m−1
n and vm−1

2 vm2 respectively. Let C = {c1, c2, . . . , c2m+2n−11} be the set of colors re-
quired to color the pendant edges of the graph G∗m,n. Consider the subgraph H with the ver-
tex set V (H) = {v2

2 , v
2
3 , . . . , v

2
n−1, v

3
n−1, . . . , v

m−1
n−1 , v

m−1
n−2 , . . . , v

m−1
2 , vm−2

2 , . . . , v3
2} and the edge

set E(H) = {v2
i v

2
i+1, v

j
n−1v

j+1
n−1, v

m−1
i vm−1

i+1 , vj2v
j+1
2 , v2

kv
3
k, v

l
n−2v

l
n−1, v

m−2
k vm−1

k , vl2v
l
3}, where

2 ≤ i ≤ n−2; 2 ≤ j ≤ m−2; 3 ≤ k ≤ n−2; 3 ≤ l ≤ m−2, of the graphG∗m,n. It can be verified
that these colorless edges of the subgraph H have to be either colored by c1 or c2m+2n−11. For
if one of the edge of the subgraph H , say edge v2

3v
3
3 , receives a different color c

′

n /∈ C, then the
vertex induced 2-edge condition fails at the vertex v2

3 as the edges incident at vertex v2
3 receives

three different colors. Let Hk be the caterpillar subgraphs of the graph G∗m,n with V (Hk) =

{vk3 , vk4 , . . . , vkn−2} as the vertex set and E(Hk) = {vk2 vk3 , v
k−1
3 vk3 , v

k
3 v

k+1
3 , vk3 v

k
4 , . . . , v

k
n−3v

k
n−2,

vk−1
n−2v

k
n−2, v

k
n−2v

k+1
n−2, v

k
n−2v

k
n−1} as the edge set such that 3 ≤ k ≤ m − 2. Consider the un-

colored edges of the caterpillar subgraph H3. The uncolored edges of the subgraph H3 can be
given

⌊
n−4

2

⌋
new colors such that each alternative horizontal edges are assigned with a new edge

color while the other edges of H3 are assigned with either color c1 or c2m+2n−11. Similarly,
the uncolored edges of each caterpillar subgraph Hk of the graph G∗m,n where 3 ≤ k ≤ m − 2
can be assigned with

⌊
n−4

2

⌋
distinct colors. Thus, (m − 4) ×

⌊
n−4

2

⌋
new colors are required

to color all the uncolored edges of the subgraph Gm−2,n−2 of the graph G∗m,n. Therefore,
ψ′vi2(G

∗
m,n) = 2(n− 2) + 2(m− 4) +

⌊
n−4

2

⌋
(m− 4) + 1 = 2n+ (m− 4)

⌊
n
2

⌋
− 3.
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Case-3: Assume when m and n are odd. As discussed in Case-1 and Case-2, the pendant edges
and the colorless edges of the subgraph H of the graph G∗m,n can be colored with 2m+ 2n− 11
colors. Let G1 ≡ v3

n−2v
4
n−2 . . . v

m−2
n−2 be the path subgraph and Hk, for 3 ≤ k ≤ m − 2 be

the caterpillar subgraphs of the graph G∗m,n. Let V (G1) = {v3
n−2, v

4
n−2, . . . , v

m−2
n−2 } be the ver-

tex set and E(G1) = {v3
n−2v

4
n−2, v

4
n−2v

5
n−2, . . . , v

m−3
n−2 v

m−2
n−2 } be the edge set of the subgraph

G1. Refer Case-2 for the vertex set and the edges set of the caterpillar subgraphs Hk where
3 ≤ k ≤ m − 2. The edges of the subgraph G1 can be given m−5

2 distinct colors in such a way
that each alternative vertical edges are assigned with a new edge color while the other edges are
colored with either c1 or c2m+2n−11. Since n is odd so the uncolored edges of the caterpillar
subgraph H3 can be given

⌊
n−5

2

⌋
more new colors such that each alternative horizontal edges

are assigned with a new edge color while the other edges of H3 are assigned with either color
c1 or c2m+2n−11. Similarly, the uncolored edges of each subgraph Hk, where 3 ≤ k ≤ m − 2,
can be assigned with

⌊
n−5

2

⌋
new colors. Therefore, (m − 4) ×

⌊
n−5

2

⌋
+ m−5

2 new colors are
required to color the uncolored edges of the subgraph Gm−2,n−2 of the graph G∗m,n. Hence
ψ′vi2(G

∗
m,n) = 2(n− 2) + 2(m− 4) +

⌊
n−5

2

⌋
(m− 4) + m−5

2 + 1 = 2n+ (m− 4)
⌊
n
2

⌋
+ m−11

2 .
Case-4: Assume when n is odd and m is even. The pendant edges and the colorless edges of the
subgraph H of the graph G∗m,n can be given 2m+2n−11 distinct colors, refer Case-1 and Case-
2. As discussed in Case-3, the edges of each caterpillar subgraph Hk, where 3 ≤ k ≤ m− 2, are
assigned with

⌊
n−5

2

⌋
new colors whereas the edges of the path subgraph G1 of the graph G∗m,n

can be given m−4
2 different colors. Hence ψ′vi2(G

∗
m,n) = 2(n − 2) + 2(m − 4) +

⌊
n−5

2

⌋
(m −

4) + m−4
2 + 1 = 2n+ (m− 4)

⌊
n
2

⌋
+ m−10

2 .

Theorem 2.3. Let Gm,n be the Cartesian product Pm2Pn such that m,n ≥ 3 and m ≤ n. Then

ψ′vi2(Gm,n) = ψ′vin2(Gm,n) =


6, when m = n = 3
2n+ (m− 4)

⌊
n
2

⌋
+ 3, when n is even

2n+ (m− 4)
⌊
n
2

⌋
+ m+1

2 , when m & n are odd
2n+ (m− 4)

⌊
n
2

⌋
+ m+2

2 , m is even & n is odd

Proof. Let Gm,n ≡ Pm2Pn where m,n ≥ 3. Without the loss of generality we assume that
m ≤ n. Let V (Gm,n) = {vj1 , v

j
2 , . . . , v

j
n, }, where 1 ≤ j ≤ m, be the vertex set of graph Gm,n

(refer figure 3). In order to color all the edges which are incident to vertex with degree four we
require 2(n− 2) + (m− 4)×

⌊
n
2

⌋
+ 1 colors as proved in lemma 2.2. It is to be noted that this

gives the maximum number of colors required to color the (2mn − 3m − 3n + 4) edges of the
graph Gm,n. The coloring of the remaining edges are discussed in the cases mentioned below.

Figure 3. Vertex labeling of graph Gm,n

Case-1: Assume when n = m = 3. In this case there is exactly one vertex with degree four and
the edges incident to this vertex can be colored by at most 2 colors. The remaining eight edges
which lie on the outer edge of the grid graph G3,3 can be given a maximum of 4 more colors.
Thus, ψ′vi2(G3,3) = 2 + 4 = 6.
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Case-2: Assume when n is even and m is either odd or even. As proved in lemma 2.2,
ψ′vi2(G

∗
m,n) = 2n + (m − 4)

⌊
n
2

⌋
− 3. In order to assign maximum color to the outer edges

of the graph Gm,n, the edges v2
n−1v

2
n, vm−1

n−1 v
m−1
n and vm−1

1 vm−1
2 are colored by c2m+2n−11.

Consider the path subgraphs P1 := v1
2v

1
1v

2
1v

3
1 . . . v

m
1 v

m
2 , P2 := v1

n−1v
1
nv

2
nv

3
n . . . v

m
n v

m
n−1, P3 :=

v1
2v

1
3 . . . v

1
n−2v

1
n−1 and P4 := vm2 v

m
3 . . . vmn−2v

m
n−1 of the graph Gm,n. The edges incident to the

vertex with degree 2 in the path subgraph P1 can be given 4 distinct colors, say {k1, k2, k3, k4}.
Whereas the other uncolored outer edges of the path subgraph P1 can be given color c2m+2n−11,
refer lemma 2.2. Suppose one of the edge, say edge v2

1v
3
1 , in the subgraph P1 is colored with

color k5. Then vertex induced 2-edge coloring condition fails at vertices v2
1 and v3

1 as three
edges incident at them receives three different colors. Hence at most 4 new colors can be used
to color the outer edges in the subgraph P1. By assigning color k1 and color k4 respectively to
all the colorless edges of the subgraph P3 and subgraph P4, the edges of subgraph P2 can be
assigned with at most two new different colors. Therefore in this case the outer edges of graph
Gm,n can be given at most 6 new colors. Thus, ψ′vi2(Gm,n) = 2n+ (m − 4) ×

⌊
n
2

⌋
− 3 + 6 =

2n+ (m− 4)
⌊
n
2

⌋
+ 3.

Case-3: Assume when both m and n are odd. As discussed in Case-3 of lemma 2.2, vertex
induced 2-edge coloring number of graphG∗m,n in this case is 2n+(m−4)

⌊
n
2

⌋
+m−11

2 . The outer
edges of Gm,n can be assigned with at most 6 new colors, refer Case-2. Therefore, ψ′vi2(G) =
2n+ (m− 4)×

⌊
n
2

⌋
+ (m−11)

2 + 6 = 2n+ (m− 4)
⌊
n
2

⌋
+ (m+1)

2 .
Case-4: Assume when m is even and n is odd. As discussed in Case-4 of lemma 2.2, vertex
induced 2-edge coloring number of graph G∗m,n in this case is 2n+ (m− 4)

⌊
n
2

⌋
+ m−10

2 . Thus
outer edges of Gm,n can be assigned with at most 6 new colors, refer Case-2. Hence ψ′vi2(G) =
2n+ (m− 4)×

⌊
n
2

⌋
+ m−10

2 + 6 = 2n+ (m− 4)
⌊
n
2

⌋
+ m+2

2 .

Next, we prove the result for the Torus grid graph Tm,n which is also the supergraph of the
rectangular grid graph Gm,n.

Theorem 2.4. The torus grid graph Tm,n ≡ Cm2Cn is obtained by the Cartesian product of the
cycle graphs, where m,n ≥ 3 and m ≤ n. Then ψ′vi2(Tm,n) = ψ′vin2(Tm,n) = m+ n.

Proof. Let Tm,n ≡ Cm2Cn be the torus grid graph such that m,n ≥ 3 and m ≤ n. The torus
grid graph Tm,n is a 4− regular graph of order mn and size 2mn. Consider the graph Tm,n that
consists of m−copies of cycle Cn as well as n− copies of cycle Cm which can be assigned with
m and n distinct colors respectively. Thus the minimum number of colors required to color the
edges of the torus grid graph Tm,n is m+ n, i.e.,

ψ′vi2(Tm,n) ≥ m+ n (2.1)

Let V (Tm,n) = {vi1, vi2, . . . , vin} be the vertex set of graph Tm,n, where 1 ≤ i ≤ m. Consider
the subgraphsHk, where 1 ≤ k ≤ m, with the vertex set V (Hk) = {vk1 , vk2 , . . . , vkn} and the edge
set E(Hk) = {vki vki+1, v

k
j v

k+1
j , vk1 v

k
n} for 1 ≤ i ≤ n − 1; 1 ≤ j ≤ n of the graph Tm,n. Since

there are four edges incident at each vertex of subgraph H1 which can be assigned with at most
two different colors. So the edges of the subgraph H1 can be given at most n+ 1 distinct colors
(where the edges v1

jv
2
j , 1 ≤ j ≤ n are assigned with n distinct colors and the other uncolored

edges of subgraphH1 are assigned with (n+1)th color). Now consider the edges of the subgraph
H1 ∪H2. These edges can be given at most one more color. Suppose one of the edge, say edge
v2

2v
3
2 , is given (n+3)th color then the vertex induced 2-edge coloring condition fails at the vertex

v2
2 . Thus at most n+ 2 colors can be assigned to the edges of the subgraph H1 ∪H2. Continuing

in this manner, we can see that the edges of the graph Tm,n ≡
n⋃

k=1
Hk can be colored with at

most n+m colors, that is,
ψ′vi2(Tm,n) ≤ m+ n (2.2)

Thus from equation (2.1) and (2.2) the result follows. This implies, ψ′vi2(Tm,n) = m+n.

Corollary 2.5. Let G be the Cartesian product of the following graphs:

(i) Cm 2 Pn where m ≥ 3 and n ≥ 2

(ii) Km 2 Pn where m,n ≥ 2
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(iii) Km 2 Kn where m,n ≥ 3

(iv) Km 2 Cn where m,n ≥ 3

then ψ′vi2(G) = ψ′vin2(G) = m+ n.

Theorem 2.6. If G is the Cartesian product of the path Pm with the star graph K1,n, then
ψ′vi2(G) = ψ′vin2(G) = m+ n+ 1.

Proof. Let graph G ≡ Pm2K1,n where m,n ≥ 2 and n ≥ m. The graph G contains m−copies
of the star graph K1,n such that each vertex in the first copy of the star graph has an edge joining
the corresponding vertex in the second copy and so on. Since there are n+ 1 edges joining any
two consecutive copies of the star graph K1,n and these distinct edges can be given n+1 distinct
colors. Since the vertex induced 2-edge coloring number of the star graphK1,n is 2 (see [8]) thus
the all remaining uncolored edges in each copy of the star graph can be given at most one new
color. As there are m−copies of the star graph so m more distinct colors are required to color
the uncolored edges of the graph G. Thus ψ′vi2(G) = m+ n+ 1.

Theorem 2.7. For a hypercube Qn, ψ′vi2(Qn) = ψ′vin2(Qn) = 2n−1 + 2.

Proof. The graph Qn ≡ Qn−12K2. Since the number of edges joining two copies of graph
Qn−1 is equal to the order of Qn−1. So these 2n−1 edges can be assigned with 2n−1 distinct
colors. The remaining uncolored edges in the two copies of graph Qn−1 can be colored using at
most 2 colors. Thus the maximum vertex induced 2-edge coloring number is obtained by adding
two more colors to the previous color set. This implies, ψ′vi2(Qn) = 2n−1 + 2.

Theorem 2.8. Let G be the strong products Pn � Pm with m,n ≥ 2 and m ≤ n. Then
(i) ψ′vi2(G) = b

m
2 cb

n
2 c+ 1

(ii) ψ′vin2(G) =

{
n+m− 1 + bm−2

2 c(n− 2) +
⌊
n−2

2

⌋
, when m is odd

n+m− 1 + bm−2
2 c(n− 2), when m is even

Proof. Let G ≡ Pn � Pm such that m,n ≥ 3 and m ≤ n. Let {vj1 , v
j
2 , . . . , v

j
n} be the vertex set

of graph G, where 1 ≤ j ≤ m.

(i) Let G1
1 ≡ 〈v1

1 ∪ v1
3〉 be the induced subgraph generated by v1

1 and v1
3 . In any vertex induced

2-edge coloring, the maximum number of colors required to color the edges of the subgraph G1
1

is 3. Consider the induced subgraph G1
n ≡

〈b 2n−1
2 c⋃

i=1
v1
i

〉
generated by vertices v1

1 , v
1
3 , . . . and

v1
n−1. In order to assign vertex induced 2-edge coloring to the edges of the subgraph G1

n at most⌊
n
2

⌋
+ 1 colors are required. Similarly, each time

⌊
n
2

⌋
+ 1 colors are required to color the edges

of the induced subgraph Gj
n ≡

〈b 2n−1
2 c⋃

i=1
vji

〉
, where 1 ≤ j ≤ m. Thus

⌊
m
2

⌋
×
⌊
n
2

⌋
+ 1 colors are

required to assign vertex induced 2-edge coloring to the edges of graph G ≡
m⋃
j=1

Gj
n. Therefore,

ψ′vi2(G) =
⌊
m
2

⌋ ⌊
n
2

⌋
+ 1.

(ii) The number of outer edges of the graph G ≡ Pm � Pn is equal to 2(m − 1) + 2(n − 1),
which always a positive even integer. So these edges are alternatively colored in such a way that
the first edge is colored by the color c1 and the second outer edge of the graph G is given the
color c2 and the third edge is colored by the color c1 and so on. Thus the maximum number of
colors required to color the outer edges of the graph G is (n +m − 1). The edges incident to
the vertices with degree three and degree five can be assigned with the color c1 else the vertex
incident 2-edge coloring condition fails. The vertex incident 2-edge coloring of the remaining
edges of graph G is discussed in the cases mentioned below.
Case-1: Assume that m is an odd integer. Then clearly m − 1 is an even integer. Let H2 ≡
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〈
n−1⋃
i=1

v2
i

〉
, H4 ≡

〈
n−1⋃
i=1

v4
i

〉
, . . . ,Hm−1 ≡

〈
n−1⋃
i=1

vm−1
i

〉
be the induced subgraphs of the graph

G. It can be noted that (n− 2) new colors are required to color the uncolored edges of the sub-
graph H2. Similarly, at each time (n−2) new colors are required to color the uncolored edges of
the subgraphHj , where 2 ≤ j < n−1. Thus the edges of subgraphH2∪H4∪. . .∪Hm−3 requires
at most

⌊
m−2

2

⌋
× (n−2) colors. Since m is an odd integer thus the edges of subgraph Hm−1 can

be assigned with
⌊
n−2

2

⌋
distinct colors in such a way that each alternate horizontal edge of the

subgraph Hm−1 gets a new color. Therefore, in this case
⌊
m−2

2

⌋
(n − 2) +

⌊
n−2

2

⌋
more colors

are required to get the maximum vertex incident 2-edge coloring number of the edges incident
to the vertex with degree eight. Hence ψ′vin2(G) = n+m− 1 + bm−2

2 c(n− 2) + bn−2
2 c.

Case-2: Assume that m is an even integer. Let H2 ≡
〈

n−1⋃
i=1

v2
i

〉
, H4 ≡

〈
n−1⋃
i=1

v4
i

〉
,

. . . , Hm−2 ≡
〈

n−1⋃
i=1

vm−2
i

〉
be the induced subgraphs of the graph G. As mentioned in case-1,

each time (n−2) new colors are required to color the edges of subgraphHj where 2 ≤ j ≤ n−2.
Thus in this case,

⌊
m−2

2

⌋
× (n − 2) colors are used to assign the vertex incident 2-edge color-

ing to the edges which are incident to the vertex with degree eight. Therefore ψ′vin2(G) =
n+m− 1 +

⌊
m−2

2

⌋
(n− 2).

Corollary 2.9. Let G be the strong product of Pn �K2, where n ≥ 2. Then
(i) ψ′vi2(G) = b

n
2 c+ 1

(ii) ψ′vin2(G) = n+ 1.

3 Results on Rooted Product of Some Graphs

In this section, we find the vertex induced 2-edge coloring number and vertex incident 2-edge
coloring number of the rooted product of some graphs.

Theorem 3.1. Let Gn be a simple connected graph of order n ≥ 2. Then for the rooted prod-
uct graph Gn

⊙
Cm, where any vertex of the cycle graph Cm is a root, ψ′vi2(Gn

⊙
Cm) =

ψ′vin2(Gn

⊙
Cm) = mn− n+ 1 for all n ≥ 2 and m ≥ 4.

Proof. The vertex induced 2-edge coloring number of the cycle Cm is m (see [8]). Since the ith
copy of the subgraph Cm of the graph Gn

⊙
Cm is identified as the ith vertex of the subgraph

Gn thus all the edges of the subgraph Cm can be given (m− 1)n distinct colors. The remaining
uncolored edges of the graph Gn

⊙
Cm can be assigned with at most one more color. Suppose,

if we start by giving vertex induced 2-edge coloring to the edges of the subgraph Gn of the graph
Gn

⊙
Cm, then there exists at least one vertex v ∈ V (Gn) such that the two colorless edges of

the cycle subgraph Cm incident to the vertex v ∈ V (Gn) receives one of the color given to the
edges of the subgraph Gn incident to vertex v. So the vertex induced 2-edge coloring number
obtained in this manner will be always less than or equal to the above-mentioned coloring pattern
since, |E(Gn)| < n|E(Cm)| = nm. Hence the only way to obtain the maximum vertex induced
2-edge coloring number for the graph Gn

⊙
Cm is by giving distinct colors to the edges of the

cycle subgraph Cm except the edges incident to each vertex rooted at Gn and then by assigning
one new color to all the remaining edges of the graph Gn

⊙
Cm. Therefore, ψ′vi2(Gn

⊙
Cm) =

(m− 1)n+ 1 = mn− n+ 1.

Corollary 3.2. Let Gn be a simple connected graph of order n and C3 be the cycle graph of
order 3. If G is the rooted product of the graph Gn with C3, where any vertex of the graph C3 is
a root, then ψ′vi2(G) = n+ 1 and ψ′vin2(G) = 2n+ 1.

Theorem 3.3. LetGn be a simple connected graph of order n ≥ 2 and let Pm be the path of order
m ≥ 2 with vertices denoted by v1, v2, . . . , vm. For the rooted product graph G ≡ Gn

⊙
Pm

where any vertex of the Path Pm is a root,

ψ′vi2(G) = ψ′vin2(G) =

{
(m− 1)n+ 1, when the pendant vertex of Pm is a root
(m− 2)n+ 1, otherwise.
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Proof. Let G ≡ Gn

⊙
Pm where n,m ≥ 2. Path Pm is a graph on m vertices. The vertex

induced 2-edge coloring number of Path graph Pm is m − 1 (see [8]). As mentioned in propo-
sition 3.1 as |E(Gn)| < n|E(Pm)|, we start the coloring procedure of the graph G by giving
vertex induced 2-edge coloring numbers to the edges of the path subgraph Pm. Thus the number
of colors required to color the edges of graph G are discussed in the cases mentioned below.
Case-1: Assume that the pendant vertex of Pm is a root ie. either v1 or vm. Since there are
n copies of Pm thus the edges in these n copies of the path subgraph Pm of the graph G can
be assigned (m − 1)n distinct colors. The remaining colorless edges of the graph G can be
given at most one new color else the vertex induced 2-edge coloring condition fails. Therefore,
ψ′vi2(G) = n(m− 1) + 1.
Case-2: Assume when the vertex with degree 2 of Pm is a root. Thus, in this case the edges in
the n copies of the subgraph Pm of the graphG can be given (m−2)n distinct colors. Suppose if
assign (m− 1)n distinct colors to all the edges of the path subgraph Pm then the vertex induced
2-edge coloring condition fails if we assign any color to the subgraph Gn in G. Thus to maxi-
mize the number of colors we need to assign (m− 2)n colors to the edges of the path subgraph
Pm and the remaining uncolored edges of graphG can be assigned with most one different color.
Therefore, the vertex induced 2-edge coloring number of the graph G is (m− 2)n+ 1.

Next, we consider the rooted product of the Ladder graph with the star graph and determine
its vertex induced 2-edge coloring number and vertex incident 2-coloring number. We consider
the vertex with a maximum degree in the star graph as the apex vertex.

Theorem 3.4. Let graph G be the rooted product of the graph (Pn2P2)
⊙
K1,m, where n,m ≥

2. Then

ψ′vi2(G) = ψ′vin2(G) =

{
4n+ 1, when pendant vertex of K1,m is a root
2n+ 1, when apex vertex of K1,m is a root

Proof. The Cartesian product of Ln ≡ Pn2P2 is also known as the ladder graph. Let G ≡
Ln

⊙
K1,m where n,m ≥ 2. The vertex induced 2-edge coloring number of the star graph K1,m

is 2 (see [8]). Since |E(Ln)| < n|E(K1,m)| so we begin the coloring procedure by assigning the
colors to the edges of the subgraph K1,m of graph G (refer proposition 3.1).
Case-1: Assume the case when any one of the pendant vertex of the subgraph K1,n is a root in
G. Since there are 2n copies of the star graph so the edges of the 2n-copies of the star graph
K1,m can be assigned with 2 × 2n = 4n colors. The remaining uncolored edges of the graph
Pn2P2 can be given at most one new color. Thus ψ′vi2(G) = 4n+ 1.
Case-2: Assume when the apex vertex of K1,m is a root. In this case, 2n-copies of the star graph
can be given 2n distinct colors and all the remaining uncolored edges of the graph G are given a
new color. Thus the maximum vertex induced 2-edge coloring number of G is 2n+ 1.

Theorem 3.5. Let Gn be a simple connected graph of order n ≥ 2 and Km be the complete
graph on m ≥ 4 vertices. If G ≡ Gn

⊙
Km, where any vertex of the subgraph Km is a root,

then

ψ′vin2(G) =

{(⌊
m
2

⌋
+ 1
)
n+ 1, when m is odd⌊

m
2

⌋
n+ 1, when m is even

Proof. Let G ≡ Gn

⊙
Km, where any vertex of the subgraph Km is a root and n ≥ 2;m ≥ 4.

The vertex incident 2-edge coloring number of the complete graph Km is
⌊
m
2

⌋
+ 1 (see [8]).

We start the coloring procedure by assigning colors to the edges of the subgraph Km (refer
proposition 3.1). The number of colors required to color the edges of the graph G is discussed
in the two cases mentioned below.
Case-1: Assume the case when m is odd. Since there are n copies of the complete subgraph
Km so these edges of Km can be assigned with

(⌊
m
2

⌋
+ 1
)
n distinct colors. The remaining

uncolored edges of the graph Gn

⊙
Km can be given at most one new color. Thus ψ′vin2(G) =(⌊

m
2

⌋
+ 1
)
n+ 1.

Case-2: Assume the case when m is even. In this case since m is an even integer so the edges
of the n−copies of complete subgraph can be only given

⌊
m
2

⌋
n distinct colors. The remaining

uncolored edges of the graph G can be given at most one new color. Thus the maximum vertex
incident 2-edge coloring number of G is

⌊
m
2

⌋
n+ 1.
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Theorem 3.6. Consider Gn as a simple connected graph of order n and Km be the complete
graph on m vertices. Let G be the rooted product Gn

⊙
Km, where Km is a root and for

n ≥ 2;m ≥ 4. Then ψ′vi2(G) = n+ 1.

Proof. The vertex induced 2-edge coloring number of complete graph Km with m vertices is 2
(see [8]). The graph G ≡ Gn

⊙
Km has n-copies of complete graph Km. If all the edges in one

copy of complete subgraph Km of graph G is assigned with one color then n-copies of complete
subgraph Km of graph G can be assigned with n distinct colors. The remaining uncolored edges
of subgraphGn can be given at most one more new color else the vertex induced 2-edge coloring
condition fails. Thus the result holds.

4 Future Scope

In section 2, we gave the exact value of vertex induced 2-edge coloring number of the strong
product of path graphs only. It may be interesting to get this value for other strong product
graphs as well.

5 Conclusion

In this paper, we have found the exact values of vertex induced 2-edge coloring number and
vertex incident 2-edge coloring number of some graph products such as Cartesian product, strong
product, and rooted product graphs. Section 3 gives the vertex induced (incident) 2-edge coloring
number of some rooted product graphs.
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