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Abstract We present a higher-order robust numerical method for 2D singularly perturbed
delay parabolic differential equation of convection-diffusion type. For the family of such type of
differential equations, till now a first-order (reduced by a logarithmic term) numerical scheme is
proposed. To develop a more efficient numerical scheme, first, we time-discretize the problem in
such a way so that it yields a pair of 1D problems. Then we propose a numerical scheme which
consists of upwind scheme along with a post processing technique. We prove analytically that
the proposed algorithm provides almost second-order convergent solution. To corroborate the
theoretical result, we provide numerical examples.

1 Introduction

Parabolic partial differential equations (PDEs) arise in many areas of applied mathematics. These
equations model a large class of physical phenomena involving diffusion processes, where a gra-
dient of temperature, pressure, or concentration cause a transport of matter or energy. In addition
reaction-diffusion is simplest example of parabolic PDEs use to model chemical mass transport
in porous media, thermal oxidation of silicon, and the motion of a plate through a viscous fluid
(refer [1]). If small parameter ε (0 < ε � 1) multiplying the highest-order derivative of these
PDEs, generally they are known as singularly perturbed PDEs (SPPDEs). Solutions of SPPDEs
exhibit layers as ε tends to zero. These in general appears in modeling of semiconductor devices,
financial modeling and fluid dynamics. More details of these applications are given in [2].

Here, we deal with a class of 2D SPPDE of convection-diffusion type with delay in time
variable. We define the domain G = D×Ωt, D = Ix × Iy = (0, 1)2, Ωt = [0, T ].

zt + Lεz(x, y, t) = −c(x, y)z(x, y, t− τ) + g(x, y, t), (x, y, t) ∈ G,

z(x, y, t) = φb(x, y, t), (x, y, t) ∈ Γb = D× [−τ, 0],
z(x, y, t) = 0, (x, y, t) ∈ ∂D×Ωt,

(1.1)

where
Lεz = −ε∆z + a(x, y).∇z + b(x, y)z,

0 < ε � 1 and τ > 0. We assume the terminal time satisfies the condition T = kτ , for some
positive integer k. The coefficients a = (a1, a2), b, and c are sufficiently smooth and bounded
functions that satisfy

ai(x, y) ≥ 2αi > 0, i = 1, 2, b(x, y) ≥ 0, onD.

The solution of (1.1) exhibits regular boundary layers near the boundaries x = 1 and y = 1 and
corner layer in the neighborhood of the corner (1, 1). The solution differs very rapidly within the
layer regions and for such behaviour, this will require a uniform mesh with mesh size O(1/ε)
for the classical numerical methods, which is computationally not feasible. To overcome this
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drawback, in the literature, several finite difference methods (refer [3, 4] and references given
therein) and finite element methods on piecewise uniform meshes (refer [5]) are used.

In recent days several numerical methods are used to deal with one-dimensional time delay
parabolic problems (refer [6, 7, 8, 9]). A numerical scheme is developed for one dimensional
convection-diffusion delay parabolic problems in [10] by the upwind scheme on Shishkin mesh
and obtained first-order rate of convergence. To increase the rate of convergence, Das and Nate-
san in [6] solved the same problem by a combination of implicit Euler method for time direc-
tion on uniform mesh and hybrid scheme for spatial direction on Shishkin mesh. Mohapatra
and Natesan [11] used the Richardson extrapolation technique as a post processing technique
to obtain higher-order accurate solution of a delay singularly perturbed two point BVPs while
Shishkin et. al. [12] applied this idea to solve the parabolic reaction-diffusion equation. The
authors in [13] used extrapolation technique for singularly perturbed problems of on adaptive
mesh.

It is apparent that most of the works are done for 1D cases whereas a natural phenomena
can be modelled more accurately with two spatial variables. For the model problem (1.1), few
works are available in the literature. In [14] and [15], the discretized equations provide a penta-
diagonal matrix and the used methods are of first-order (up to a logarithmic term) convergent
and first-order convergent, respectively. To reduce the computational cost, in [16], fractional
step method is used, which reduces the discretized equations into two tridiagonal matrices. But
the scheme used there is of first-order convergence. For the first time in this paper, we are
proposing a method to obtain a second-order accurate solution for a 2D SPPDE with delay (1.1).
For that purpose first, we convert the model problem into a pair of 1D problems with the help
of a fractional step method. Then, we use the upwind scheme and the Richardson extrapolation
technique to obtain the optimal order of convergence.

The article is structured as follows. Some standard finite difference schemes which will be
used in the later part of the article are constructed in Section 2. In Section 3, the Richardson
extrapolation is implemented and the main result is presented. Some numerical simulations
accompanied with graphical explanations are presented in Section 4. The concluding remarks
are given in Section 5.

Notations. C and the subscriptedC denote positive constants independent of the perturbation
parameter ε, and the mesh parameters M, N . Standard L∞ norm is used which is denoted by
‖.‖∞ and for a continuous function f on G it is defined as ||f ||∞ = sup

(x,y,t)∈G
|f(x, y, t)|.

2 Discretization and finite difference schemes

Here, we focus on the discretization of the time domain and implementation of the fractional
step method on the model problem (1.1) by time semidiscretization.

2.1 Discretization of time domain

Let the positive integer M be the number of mesh interval in the time-direction and ∆t be the
size of uniform time step. The discretized time domain is given as ΩM

t = {tn = n∆t, n =
0, . . . ,M, tM = T, ∆t = T/M}. The temporal mesh size ∆T satisfies the constant p∆T = τ ,
where p is positive integer and tn = n∆t, such that n ≥ −p.

2.2 Time semidiscretization

Now, we do the time semidiscretization which will be helpful to analyse the fully discrete
scheme. The fractional step scheme is used for the time semidiscretization process of the IBVP
(1.1), which yields

z−m = φb(x, y,−tm), m = 0, . . . , p,


(I + ∆tLx,ε)zn+1/2 = zn − ∆tc1(x, y)zn+1−p + ∆tg1(x, y, tn+1), y ∈ (0, 1),

zn+1/2(0, y) = zn+1/2(1, y) = 0,
(2.1)
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
(I + ∆tLy,ε)zn+1 = zn+1/2 − ∆tc2(x, y)zn+1−p + ∆tg2(x, y, tn+1), x ∈ (0, 1),

zn+1(x, 0) = zn+1(x, 1) = 0,
(2.2)

where

Lx,ε ≡ −ε
∂2

∂x2 + a1(x, y)
∂

∂x
+ b1(x, y),

Ly,ε ≡ −ε
∂2

∂y2 + a2(x, y)
∂

∂y
+ b2(x, y),

b(x, y) = b1(x, y) + b2(x, y) and g(x, y, t) = g1(x, y, t) + g2(x, y, t), with

g1(x, 0, t) = g1(x, 1, t) = g2(0, y, t) = g2(1, y, t) = 0. (2.3)

We denote zn(x, y) as the solution z(x, y, t) of (1.1) at n-th time level, by using the above
scheme.

The stability of the scheme (2.1)-(2.2) is ensured as the operators (I + ∆tLx,ε) and (I +
∆tLy,ε) satisfy the following comparison principle.

Lemma 2.1. (Comparison Principle) Consider a mesh function Ψ(x, y) such that, Ψ(x, y) ≥ 0,
∀ (x, y) ∈ ∂D. Then (I+∆tLi,ε)Ψ(x, y) ≥ 0, i = x, y on D implies that Ψ(x, y) ≥ 0 ∀ (x, y) ∈
D.

Now, we introduce the local error to study the consistency of the method. We define the local
error as en = |z(tn, x, y)− z̃n(x, y)|, where z̃n is the approximation solution of z(tn, x, y) at one
time step of (2.1) and (2.2). So, z̃n is solution of the problem given as follows:

zn = z(tn), (x, y) ∈ D,


(I + ∆tLx,ε)z̃n+1/2 = zn − ∆tc1(x, y)z̃n+1−p + ∆tg1(x, y, tn+1), y ∈ (0, 1),

z̃n+1/2(0, y) = z̃n+1/2(1, y) = 0,
(2.4)


(I + ∆tLy,ε)z̃n+1 = z̃n+1/2 − ∆tc2(x, y)z̃n+1−p + ∆tg2(x, y, tn+1), x ∈ (0, 1),

z̃n+1(x, 0) = z̃n+1(x, 1) = 0.
(2.5)

Lemma 2.2. The solution z̃n+1/2 of (2.4) satisfies the following bound∣∣∣∣∂iz̃n+1/2

∂xi

∣∣∣∣ ≤ C (1 + ε−i exp
(
−α

x
(1− x)/ε

))
, 0 ≤ i ≤ 4.

Proof. Refer [16] for the proof.

To analyse the convergence of the semidiscrete scheme, we decompose z̃n+1/2 = r̃n+1/2 +
s̃n+1/2, where r̃n+1/2 is required for the outer region and s̃n+1/2 is required for the inner region.

Now, with the help of the bounds of the derivatives for z̃n+1/2, we get the bounds as follows:∣∣∣∣∣∣∣∣∂ir̃n+1/2

∂xi

∣∣∣∣∣∣∣∣
∞
≤ C

(
1 + ε3−i) , (2.6)

and ∣∣∣∣∂iw̃n+1/2

∂xi

∣∣∣∣ ≤ Cε−i exp(−α
x
(1− x)/ε), 0 ≤ i ≤ 4, (2.7)

by following the same idea used in [6].
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2.3 Discretization of space domain

We use the tensor product of 1D Shihskin meshes to define the spatial rectangular mesh D
N

, i.e.,
D
N

= I
N

x × I
N

y . The transition points, which are used to separate the coarse and fine meshes
are defined as

ρ
l
= min

{
1
2
, ρ

l,0ε lnN
}
, l = x, y,

where ρ
l,0 ≥ 2/α

l
. Throughout the analysis done in the paper, we assume that ρ

l
= ρ

l,0ε lnN ,
because otherwise it will be uniform mesh which is not the case of interest.

Shishkin mesh

Here, we give the Shishkin mesh based on the idea from [3]. We divide the interval [0, 1] into two
sub-intervals [0, 1− ρ

x
] and (1− ρ

x
, 1] where each sub-interval will contain N/2 mesh-intervals

with uniform step sizes, which we denote by

I
N

x =
{

0 = x0, x1, · · · , xN/2 = 1− ρ
x
, · · · , xN = 1

}
.

In the same way, we construct I
N

y =
{

0 = y0, y1, · · · , yN/2 = 1− ρ
y
, · · · , yN = 1

}
.

Further, we define hx,i and hy,j as the mesh step sizes in the x and y directions, respectively,
i.e.,

hx,i = xi − xi−1, i = 1, · · · , N, h̃x,i = hx,i + hx,i+1, i = 1, · · · , N − 1,

hy,j = yj − yj−1, j = 1, · · · , N, h̃y,j = hy,j + hy,j+1, j = 1, · · · , N − 1.

Let hl = 2ρ
l
/N and Hl = 2(1 − ρ

l
)/N , l = x, y, be the mesh widths in the inner layer region

and outer layer region respectively. Hence, we have

hl = 2ρ
l,0εN

−1 lnN, N−1 ≤ Hl ≤ 2N−1, l = x, y.

We denote GN,M as the discretized domain which is defined by GN,M = INx × INy ×ΩM
t .

2.4 Spatial discretization

We define the forward δ+x , the backward δ−x differences in the x-direction by

δ+x f
n
xi,y =

fnxi+1,y
− fnxi,y

hx,i+1
, δ−x f

n
xi,y =

fnxi,y − f
n
xi−1,y

hx,i
,

respectively. The central difference approximation δ2
x in the x-direction is given by

δ2
xf

n
xi,y =

2(δ+x fnxi,y − δ
−
x f

n
xi,y)

h̃x,i
.

In an analogous manner, we define δ+y , δ−y , and δ2
y.

We use the upwind scheme on INx to approximate Lx,ε and we denote the approximation as
LNx,ε. Hence, one can get the discretized equations as follows: For y ∈ INy ,

(I + ∆tLNx,ε)Z̃
n+1/2
xi,y = (I + ∆t(−εδ2

x + a1(xi, y)δ−x + b1(xi, y)))Z̃
n+1/2
xi,y

= z(xi, y, tn)− c1∆tZ̃(xi, y, tn+1−p) + ∆tg1(xi, y, tn+1),

i = 1, · · · , N − 1,

Z̃
n+1/2
0,y = Z̃

n+1/2
1,y = 0.

(2.8)
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Similarly, for x ∈ INx ,

(I + ∆tLNy,ε)Z̃
n+1
x,yj = (I + ∆t(−εδ2

y + a2(x, yj)δ−y + b2(x, yj)))Z̃n+1
x,yj

= Z̃
n+1/2
x,yj − c2∆tZ̃(x, yj , tn+1−p) + ∆tg2(x, yj , tn+1),

j = 1, · · · , N − 1,

Z̃n+1
x,0 = Z̃n+1

x,1 = 0,

(2.9)

where Z(x, y, tm) = z(x, y, tm), for m = 0, · · · , p. After rearranging the terms in (2.8), we get
(I + ∆tLNx,ε)Z̃

n+1/2
xi,y ≡ v−i Z̃

n+1/2
xi−1,y + v0

i Z̃
n+1/2
xi,y +v+i Z̃

n+1/2
xi+1,y = Gxi,y,

i = 1, · · · , N − 1,

Z̃
n+1/2
0,y = Z̃

n+1/2
1,y = 0,

(2.10)

where 
v−i = ∆t

(
− 2ε
h̃x,ihx,i

− a1(xi, y)

hx,i

)
, v+i = ∆t

(
− 2ε
h̃x,ihx,i+1

)
,

v0
i = 1 + ∆tb1(xi, y)− v−i − v+i ,
Gxi,y = z(xi, y, tn)− c1∆tZ̃(xi, y, tn+1−p) + ∆tg1(xi, y, tn+1).

(2.11)

One can observe that, for i = 1, · · · , N − 1, v−i < 0, v+i < 0 and v0
i > 0, moreover the

discretized matrix is strictly diagonally dominant. These facts ensure that the discretized matrix
is M -matrix. Hence, the scheme is stable, uniformly. In a similar way for the difference operator
of (2.9) one can get the above result.

2.5 Error analysis

To do the convergence analysis, we write the fully discretized form as follows:

(I + ∆tLNx,ε)Z
n+1/2
i,j = Zni,j −∆tc1(xi, yj)Z

n+1−p
i,j

+∆tg1(xi, yj , tn+1), 1 ≤ i ≤ N − 1,

Z
n+1/2
0,j = Z

n+1/2
N,j = 0, 0 ≤ j ≤ N,

(2.12)



(I + ∆tLNy,ε)Z
n+1
i,j = Z

n+1/2
i,j −∆tc2(xi, yj)Z

n+1−p
i,j

+∆tg2(xi, yj , tn+1), 1 ≤ j ≤ N − 1,

Zn+1
i,0 = Zn+1

i,N = 0, 0 ≤ i ≤ N,

(2.13)

Z−mi,j = ϕb(xi, yj ,−tm),
for i, j = 0, · · · , N, and m = 0, · · · , p.

Theorem 2.3. At time level tn = n∆t, let z and {Zn} be the solution of continuous problem (1.1)
and solution of fully discrete problem (2.12)-(2.13), respectively, then∥∥z(xi, yj , tn)− Zni,j∥∥∞ ≤ C(∆t+N−1+β lnN), for (xi, yj , tn) ∈ GN,M ,

for a ε, N independent positive constant C, with 0 < β < 1.

Proof. The proof can be found in [16].

For the accuracy improvement, we propose the Richardson extrapolation technique, which is
discussed in the next section.
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3 Post processing technique for the discrete solution

3.1 Extrapolation for z̃

By following the technique discussed in [17], we get

z̃extpt(tn) = 2z̃(tn)− z̃(tn), tn ∈ Ω
M
t , (3.1)

where z̃ is semidiscrete solution of (2.4)-(2.5) on Ω2M
t , with 2M intervals in the t-direction.

Error bound for z̃extpt

Theorem 3.1. Let z(tn) be the exact solution of (1.1) and z̃extpt(tn) be the time extrapolated
solution of z(tn), then for tn ∈ ΩM

t ,

|(z − z̃extpt)(x, y, tn)| = O(∆t3).

Proof. The proof can be done case-wise depending upon the different time interval.
Case 1. For the first time interval, i.e., for n = 0, · · · , p, the error estimate |z(tn) −

z̃extpt(tn)| = O(∆t3) can be obtained by following [17], as the initial condition is given for
the first time interval.

Case 2. Main difficulty occurs when the initial condition can not be used, i.e., for the case
n ≥ p+1. To derive the nodal error |z(tn)− z̃extpt(tn)|, forn = p+1, . . . , 2p, first we combine
(2.4) and (2.5), which provides

(I + ∆tLx,ε)((I + ∆tLy,ε)z̃n+1 − ∆tg2(x, y, tn+1) + c2∆tz̃(x, y, tn+1−p))

= −c1∆tz̃(x, y, tn+1−p) + zn(x, y) + ∆tg1(x, y, tn+1),

then we get

(I + ∆tLx,ε + ∆tLy,ε)z̃n+1 = zn(x, y) + ∆tg(x, y, tn+1)− (∆t)2Lx,εLy,εz̃n+1

−c2∆tz̃(x, y, tn+1−p)− c1∆tz̃(x, y, tn+1−p)+

c2(∆t)2Lx,εz̃(x, y, tn+1−p) + (∆t)2Lx,εg2(x, y, tn+1)

= zn(x, y) + ∆tg(x, y, tn+1)− c∆tz̃(x, y, tn+1−p)

+c2(∆t)2Lx,εz̃(x, y, tn+1−p)

+(∆t)2Lxg2(x, y, tn+1)− (∆t)2LxLy z̃n+1.

Since t ∈ (τ, 2τ ], we have

(I + ∆tLx,ε + ∆tLy,ε)z̃n+1 = zn(x, y) + ∆tg − c∆tz̃τ (x, y, tn+1−p)+

c2(∆t)2Lx,εz̃τ (x, y, tn+1−p) + (∆t)2Lxg2(x, y, tn+1)

−(∆t)2LxLy z̃n+1,

where z̃τ (x, y, t) is the solution of (2.4)-(2.5) at t ∈ [0, τ ].
Again the PDE (1.1) can be written in semidiscrete form as

z(tn+1)− z(tn)
∆t

+ (Lx,ε + Ly,ε)z(tn+1) = −cz(x, y, tn+1−p) + g(x, y, tn+1)

−∆t

2
ztt(tn+1) +O(∆t2),

which implies that

(I + ∆tLx,ε + ∆tLy,ε)z(tn+1) = zn − c∆tz(x, y, tn+1−p) + ∆tg(x, y, tn+1)

−(∆t)
2

2
ztt(tn+1) +O(∆t3).
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Therefore, the local truncation error is

(I + ∆tLx,ε + ∆tLy,ε)(z̃n+1 − z(tn+1)) = −c∆t(z̃τ (x, y, tn+1−p)

−zτ (x, y, tn+1−p)) + c2(∆t)2Lx,εz̃τ (x, y, tn+1−p)− (∆t)2Lx,εLy,εz̃n+1

+(∆t)2Lx,εg2(x, y, tn+1) +
(∆t)2

2
ztt(tn+1) +O(∆t3),

(3.2)

where zτ (x, y, t) is the solution of (1.1) at t ∈ [0, τ ].
Since |z̃τ (x, y, tn+1−p)− zτ (x, y, tn+1−p)| ≤ C(∆t)2,

(I + ∆tLx,ε + ∆tLy,ε)(z̃n+1 − z(tn+1)) = c2(∆t)2Lx,εz̃τ (x, y, tn+1−p)−

(∆t)2Lx,εLy,εz̃n+1 + (∆t)2Lx,εg2(x, y, tn+1) +
(∆t)2

2
ztt(tn+1) +O(∆t3).

(3.3)

Next, by assuming χ = c2Lx,εz̃τ (x, y, tn+1−p)−Lx,εLy,εz̃(x, y, tn+1)+Lx,ε(g2)+(1/2)ztt(tn+1)
and following the process used in [17], we can get (z − z̃extpt) (x, y, tn+1) = O(∆t3).

We can find the same outcome for t ≥ 2τ in an analogous way.

3.2 Extrapolation for Z̃

Here, we introduce the extrapolation formula for the space discrete solution as follows:

Z̃extp(xi, yj) = 2 ˜̃Z(xi, yj)− Z̃(xi, yj), (xi, yj) ∈ DN , (3.4)

The forumula (3.4) can be derived easily by following the idea used in [17] and [16], where,

Z̃nxi,yj and ˜̃Z(x̃i, ỹj) are the numerical solutions of the discrete problem (2.8)-(2.9) on the mesh
DN and D2N , respectively.

For the sake of further analysis, we decompose z in right hand side of (2.4) as r + s, where
r and s are the outer and inner components, respectively. Similarly R̃ + S̃ and R̃ + S̃ are the
decompositions of the solution Z̃n+1/2

xi,y of (2.8) in the domains GN,M and GN, 2M , respectively.
Further, we decompose z̃ as z̃ = ψ̃r+ ψ̃s. The outer components r̃ and r are further decomposed
into r̃ = r̃0 + εr̃1 + ε2r̃2 and r = r0 + εr1 + ε2r2, which satisfy the following equation:

−ε∆t r̃′′(x) + a1(x, y)∆t r̃′(x) + (1 + ∆tb1(x, y))r̃(x)

= r(x, y, tn)− c1(x, y)∆tr̃(x, y, tn+1−p) + ∆tg1(x, y, tn+1), y ∈ (0, 1),

r̃(0) = 0, r̃(1) =
3∑
i=0

εi r̃i(1, t),

r̃(x, y, tn+1−p) = z̃τ (x, y, tn+1−p).

(3.5)

The inner components s̃ and s satisfy the equation given below:

−ε∆t s̃′′(x) + a1(x, y)∆t s̃′(x) + (1 + ∆tb1(x, y))s̃(x) = s(x, y, tn)−

c1(x, y)∆ts̃(x, y, tn+1−p), y ∈ (0, 1),

s̃(0) = 0, s̃(1) = z̃n+1/2|x=1 − r̃(1),

s̃(x, y, tn+1−p) = 0.

(3.6)
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The discrete solutions R̃ and S̃ satisfy the following discrete equations

(I + ∆tLNx,ε)R̃ = (I + ∆t(−εδ2
x + a1(xi, y)δ−x + b1(xi, y)))R̃

= r(xi, y, tn)− ∆tc1(xi, y)R̃(xi, y, tn+1−p)

+∆tg1(xi, y, tn+1), i = 1, · · · , N − 1,

R̃0 = r̃(0), R̃1 = r̃(1),

R̃(xi, y, tn+1−p) = Z̃1(xi, y, tn+1−p)),

(I + ∆tLNx,ε)S̃ = (I + ∆t(−εδ2
x + a1(xi, y)δ−x + b1(xi, y)))S̃

= s(xi, y, tn)− ∆tc1(xi, y)S̃(xi, y, tn+1−p),

i = 1, · · · , N − 1,

S̃0 = s̃(0), S̃1 = s̃(1),

S̃(xi, y, tn+1−p) = 0,

(3.7)

respectively.
We write the error in the following form:

(Z̃ − z̃)(xi, y, tn+1/2) = (R̃− r̃)(xi, y, tn+1/2) + (S̃ − s̃)(xi, y, tn+1/2).

Extrapolation technique for the outer and inner components

Lemma 3.2. The local truncation error after extrapolation in the time direction associated to
the smooth component satisfies

(R̃extpt − r̃extpt)(xi, y, tn+1/2) = hx,iη(xi, y) +O(N−2),

where R̃n+1/2
extpt and r̃

n+1/2
extpt are the extrapolated solutions in the time direction for R̃n+1/2 and

r̃n+1/2, respectively.

Proof. By using Taylor’s expansion, (2.6) and ε < N−1 < Hx, we get,

(I + ∆tLNx,ε)(R̃− r̃)(xi, y, tn+1/2)

= r(xi, y, tn)− ∆tc1(xi, y)R̃(xi, y, tn+1−p) + ∆tg1(xi, y, tn)− (I + ∆tLNx,ε)r̃(xi, y, tn+1/2)

= r(xi, y, tn)− ∆tc1(xi, y)R̃(xi, y, tn+1−p) + (I + ∆tLx,ε)r̃n+1/2 − r(xi, y, tn)
+∆tc1(xi, y)r̃(xi, y, tn+1−p)− (I + ∆tLNx,ε)r̃(xi, y, tn+1/2)

= −c1∆t(R̃(xi, y, tn+1−p)− r̃(xi, y, tn+1−p)) + ((I + ∆tLx,ε)− (I + ∆tLNx,ε))r̃(xi, y, tn+1/2).

To prove the required result, we discuss case-wise depending on the time intervals.
Case 1. For t ∈ (0, τ ], we can use the given initial condition, and the required bound can be

obtained by following the idea of [17].
Case 2. For t ∈ (τ, 2τ ]

(I + ∆tLNx,ε)(R̃− r̃)(xi, y, tn+1/2)

= −c1∆tN−1 lnN +
∆t

2
hx,i

2
a1(xi, y)

∂2r̃

∂x2 (xi, y, tn+1/2) +O(H2
x)

= −c1∆tN−1 lnN + hxi,y(I + ∆tLx,ε)η(xi, y) +O(H2
x),

where η denotes the smooth component of E and E is defined as the solution of
(I + ∆tLx,ε)E =

∆t

2
a1(x, y)

∂2r̃

∂x2 (x, y, tn+1), y ∈ (0, 1),

E(0) = E(1) = 0.

(3.8)
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With the application of comparison principle together with an appropriate barrier function, we
get (R̃− r̃)(xi, y, tn+1/2) = −c1∆tN−1 lnN + hxi,yη(xi, y) +O(H2

x).
Similarly, in the finer mesh

(R̃ − ψ̃r)(xi, y, tn+1/2) = −c1
∆t

2
N−1 lnN + hxi,yη(xi, y) +O(H2

x).

Therefore, we get

(R̃extpt − r̃extpt)(xi, y, tn+1/2) = hx,iη(xi, y) +O(N−2).

Case 3. Analogously, the required bound can be obtained for tn ≥ 2τ .

Now, by using the Lemma 3.2 and following the process done in [17], we can have the
following two lemmas.

Lemma 3.3. The error bound for smooth component R̃(xi, y, tn+1/2) after extrapolation is given
as ∣∣∣(R̃extp − r̃extpt) (xi, y, tn+1/2)

∣∣∣ ≤ CN−2,

where ε ≤ N−1.

Lemma 3.4. The error bound for singular component S̃(xi, y, tn+1/2) after extrapolation is
given as (

S̃extp − s̃extpt
)
(xi, y, tn+1/2) ≤ CN−2, for 1 ≤ i ≤ N/2,

where ε ≤ N−1.

Next, we will find the effect of the Richardson extrapolation on xi ∈ (1− ρx, 1]. We have,

(
I + ∆tLNx,ε

) (
S̃ − s̃

)
(xi, y, tn+1/2)

=
(
I + ∆tLNx,ε

)
S̃(xi, y, tn+1/2)−

(
I + ∆tLNx,ε

)
s̃(xi, y, tn+1/2)

= s(xi, y, tn)− ∆tc1(xi, y)S̃(xi, y, tn+1−p)−
(
I + ∆tLNx,ε

)
s̃, by using (3.7)

=
(
(I + ∆tLx,ε)−

(
I + ∆tLNx,ε

))
s̃

+c1(xi, y)∆t
(
S̃(xi, y, tn+1−p)− s̃(xi, y, tn+1−p)

)
. (3.9)

For t ∈ (0, τ ], by using the given initial conditions of (3.6) and (3.7), we can have(
S̃(xi, y, tn+1−p)− s̃(xi, y, tn+1−p)

)
= 0.

Now by putting that in (3.9), we get(
I + ∆tLNx,ε

) (
S̃ − s̃

)
=
(
(I + ∆tLx,ε)−

(
I + ∆tLNx,ε

))
s̃.

Hence, by using the analogues idea of [17], one can have

(S̃ − s̃)(xi, y, tn+1/2) = (N−1 lnN)F (xi, y) +O(N−2 ln2 N).

Next, for t ∈ (τ, 2τ ], we know
(
S̃(xi, y, tn+1−p)− s̃(xi, y, tn+1−p)

)
will lie on (0, τ ].

By using the a result obtained in [16], we can get(
S̃(xi, y, tn+1−p)− s̃(xi, y, tn+1−p)

)
≤ CN−1 lnN.

Hence,(
I + ∆tLNx,ε

) (
S̃ − s̃

)
(xi, y, tn+1/2) =

(
(I + ∆tLx,ε)−

(
I + ∆tLNx,ε

))
s̃(xi, y, tn+ 1

2
)

+Cc1(xi, y)∆tN−1 lnN.
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With the help of Taylor’s expansion, we get

(
(I + ∆tLx,ε)−

(
I + ∆tLNx,ε

))
s̃(xi, y, tn+1/2) = −

ε∆th2
x

4!

[
∂4s̃

∂x4 (ξ1) +
∂4s̃

∂x4 (ξ2)

]
+
hx∆t

2
a1(xi, y)

∂2s̃

∂x2 (xi, y)−
h2
x∆t

3!
a1(xi, y)

∂3s̃

∂x3 (ξ3, y).

where ξ1 ∈ (xi, xi+1) and ξ2, ξ3 ∈ (xi−1, xi).
Hence, it can be deduced that

(
I + ∆tLNx,ε

) (
S̃ − s̃

)
(xi, y, tn+1/2) =

2ε∆t
αx

(
N−1 lnN

)
a1(xi, y)

∂2s̃

∂x2 (xi, y)

+O(ε−1 exp(−αx(1− xi+1)/ε)N−2 ln2 N)

+Cc1(xi, y)∆tN−1 lnN,

by using (2.7).
To deal with the right side of the above equation, we assume

(I + ∆tLx,ε)F =
2ε
αx

∆ta1(x, y)
∂2s̃

∂x2 (x, y) + Cc1(xi, y)∆t, y ∈ (0, 1),

F (1− ρx) = F (1) = 0,

when x ∈ (1− ρx, 1).
Approaching in an analogues way as done in [18], we can obtain

(S̃ − s̃)(xi, y, tn+1/2) = (N−1 lnN)F (xi, y) +O(N−2 ln2 N).

By proceeding in a similar way, for the entire time domain (0, T ], we can have

(S̃ − s̃)(xi, y, tn+1/2) = (N−1 lnN)F (xi, y) +O(N−2 ln2 N).

Likewise,we get

(S̃ − ψ̃s)(xi, y, tn+1/2) = (N−1 lnN)F (xi, y) +O(N−2 ln2 N),

in the finer mesh of temporal direction.
Now, by some simple calculations one can get(

S̃extpt − s̃extpt
)
(xi, y, tn+1/2) = (N−1 lnN)F (xi, y) +O(N−2 ln2 N).

As we know that∣∣∣(S̃extp − s̃extpt)(xi, y, tn+1/2)
∣∣∣ = ∣∣∣(2S̃extpt − S̃extpt − s̃extpt)(xi, y, tn+1/2)

∣∣∣ ,
we can deduce that

∣∣∣S̃extp(xi, y, tn+1/2)− s̃extpt(xi, y, tn+1/2)
∣∣∣ ≤ CN−2 ln2 N.

By considering the above bounds, we are ready to state the lemma given below.

Lemma 3.5. For N/2+1 ≤ i ≤ N −1, the error related to the inner component S̃ after the post
processing technique satisfies∣∣∣(S̃extp − s̃extpt)(xi, y, tn+1/2)

∣∣∣ ≤ C (N−2 ln2 N
)
.

By merging the results of Lemmas 3.3, 3.4 and 3.5, we get∣∣∣(z̃n+1/2
extpt − Z̃

n+1/2
extp

)
(xi, y)

∣∣∣ ≤ CN−2 ln2 N. (3.10)

Semidiscrete problems (2.4) and (2.5) are of almost the same form except for the first term
of both equations in right hand side; i.e., the RHS of (2.5) involves z̃n+1/2 contrary to zn as in
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(2.4). But, by using
∣∣∣(z̃n+1/2 − Z̃n+1/2)(xi, y)

∣∣∣ ≤ CN−1 lnN , [16] and deriving in an analogues
way as before, for 1 ≤ j ≤ N − 1 we get the error bound as follows:∣∣∣(z̃n+1

extpt − Z̃
n+1
extp

)
(x, yj)

∣∣∣ ≤ CN−2 ln2 N. (3.11)

We can write

‖(z − Zextp) (xi, yj , tn+1)‖∞
≤ ‖(z − z̃extpt) (xi, yj , tn+1)‖∞ +

∥∥∥(z̃extpt − Z̃extp) (xi, yj , tn+1)
∥∥∥
∞

+
∥∥∥(Z̃extp − Zextp) (xi, yj , tn+1)

∥∥∥
∞
.

Next, by using Theorem 3.1 and equation (3.11), we obtain that

‖(z − Zextp) (xi, yj , tn+1)‖∞ ≤ C
(

∆t3 +N−2 ln2 N
)
+
∥∥∥(Z̃extp − Zextp) (xi, yj , tn+1)

∥∥∥
∞
,

Hence, we have

‖(z − Zextp) (xi, yj , tn+1)‖∞ ≤ C∆t
(

∆t2 +N−2+β ln2 N
)

+
∥∥∥(Z̃extp − Zextp) (xi, yj , tn+1)

∥∥∥
∞
,

where 0 < β < 1 and N−β ≤ C∆t.
Since the fully discrete scheme is stable, we can have∥∥∥(Z̃extp − Zextp) (xi, yj , tn+1)

∥∥∥
∞
≤
∥∥∥z(xi, yj , tn−1)− Zextpn−1

xi,yj

∥∥∥
∞
.

Therefore, we are ready to state the main convergence theorem for the proposed method applied
on (1.1).

Theorem 3.6. (Error after extrapolation) If z and Zextp denote the solution of (1.1) and the
extrapolated solution of (2.12)-(2.13) at time level tn = n∆t, respectively. Then, we have the
error bound as follows:

‖z(xi, yj , tn)− Zextp(xi, yj , tn)‖∞ ≤ C
(
N−2+β ln2 N + ∆t2

)
, for (xi, yj , tn) ∈ GN,M ,

where 0 < β < 1.

4 Numerical Results

This section is dedicated to confirm the effectiveness of the proposed scheme numerically. We
apply the scheme on two test problems and tabulated the results, where we start with M = 40
and N = 32. Further we doubled the values of M and N . Under the condition of compatibility

g(x, y, t) = 0, forx ∈ {0, 1}, y ∈ {0, 1}, and t ∈ [0, T ],

to satisfy the property given in (2.3), we write g(x, y, t) as

g2(x, y, t) = y (g(x, 1, t)− g(x, 0, t)) + g(x, 0, t), g1(x, y, t) = g(x, y, t)− g2(x, y, t).

Example 4.1. Consider the following test problem:

zt − ε∆z + (1 + x)zx + (2− y)zy + (x2 + y2 + 1)z = z(x, y, t− 1) + g(x, y, t),

(x, y, t) ∈ D× (0, 2],

z(x, y, t) = ϕb(x, y, t), (x, y, t) ∈ D× [−1, 0],

z(x, y, t) = 0, (x, y, t) ∈ ∂D× [0, 2].

(4.1)
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Figure 1. Extrapolated numerical solutions at N = 32 and t = 2 for Example 4.2.

We choose the source function g(x, y, t) and initial data ϕb(x, y, t) to fit with the exact solu-
tion

z(x, y, t) = e−txy(γ1(x)− 1)(γ2(y)− 1),

where
γ1(x) = e

−(3−2x−x2)
2ε and γ2(y) = e

−(3−4y+y2)
2ε .

Example 4.2. Consider the following test problem:
zt − ε∆z + zx + zy = z(x, y, t− 1) + g(x, y, t), (x, y, t) ∈ D× (0, 2]
z(x, y, t) = ϕb(x, y, t), (x, y, t) ∈ D× [−1, 0],

z(x, y, t) = 0, (x, y, t) ∈ ∂D× [0, 2].

(4.2)

We choose the source function g(x, y, t) and initial data ϕb(x, y, t) to fit with the exact solu-
tion

z(x, y, t) = (1− exp(−t)) (m1 +m2x+ exp(−(1− x)/ε)) (m1 +m2y + exp(−(1− y)/ε)) ,

where m1 = − exp(−1/ε),m2 = −1 −m1. To visualize the numerical solution, we have given
surface plots in Figure 1, for different values of ε, i.e. 10−2 and 10−8. One can observe the sharp
layer, when ε is closed to zero.
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For each ε, to calculate the maximum pointwise error, we use the formula

eN,∆tε = max
(xi,yj ,tn)∈GN,M

|z(xi, yj , tn)− Z(xi, yj , tn)| , (before extrapolation),

and

eN,∆tε, extp = max
(xi,yj ,tn)∈GN,M

|z(xi, yj , tn)− Zextp(xi, yj , tn)| , (after extrapolation),

where z(xi, yj , tn) denotes the exact solution, Z(xi, yj , tn) andZextp(xi, yj , tn) denote the
numerical solutions obtained before and after extrapolation.

For each ε, we calculate the corresponding order of convergence as

pN,∆tε = log2

(
eN,∆tε

e
2N,∆t/2
ε

)
, (before extrapolation),

and

pN,∆tε, extp = log2

(
eN,∆tε, extp

e
2N,∆t/2
ε, extp

)
, (after extrapolation).

Parameter-uniform maximum nodal error is calculated by

eN,∆t = max
ε
eN,∆tε , (before extrapolation),

and
eN,∆textp = max

ε
eN,∆tε, extp, (after extrapolation),

and associated order of convergence is calculated as

pN,∆t = log2

(
eN,∆t

e2N,∆t/2

)
, (before extrapolation),

and

pN,∆textp = log2

(
eN,∆textp

e
2N,∆t/2
extp

)
, (after extrapolation).

In the Table 1 and Table 2, we provide the maximum pointwise errors and the corresponding
order of convergence. Numerical results given in the Table 1 and Table 2, reflect the fact that
the solution converges parameter-uniformly. The effectiveness of the scheme can also be seen
from the tables, i.e., after applying the proposed technique, maximum point wise errors and the
corresponding order of convergence are improved.

To show the numerical order of convergence (before and after extrapolation) for the Example
4.1 and Example 4.2, we provide the loglog plot for maximum pointwise errors in the Figure
2 and Figure 3 respectively. For the problem considered in this paper, the numerical rate of
convergence obtained is maximum till now.

5 Conclusion

In this paper, we propose a parameter-uniform numerical method for a class of 2D singularly
perturbed parabolic time delay problem having convection and diffusion terms of the form (1.1).
First, to transform the problem into a set of 1D problems, we used the fractional-step method.
Then, we applied the upwind finite difference scheme along with the Richardson extrapolation
technique. We proved theoretically that the proposed method is almost second-order conver-
gence. To support the theoretical finding, we provided numerical results. It is evident from both
the ways that the method is quite effective to increase the order of convergence for our model
problem. Few deficiencies also can be observed in the proposed strategy, such as, to capture
the layer region numerically, we have used Shishkin mesh. To construct the Shishkin mesh, we
need apriori information regarding the layer location, layer width etc. Sometime it may not be
possible to have those information apriori. This issue can be taken care off by using adaptive
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Table 1. Before and after extrapolations, maximum pointwise errors and order of convergence
for Example 4.1.

Extra-
ε polation Number of spatial mesh intervals N

16 32 64 128 256 512
Before 1.0654e-01 8.4968e-02 5.8123e-02 3.6785e-02 2.2100e-02 1.2794e-02

10−2 0.3265 0.5478 0.6600 0.7351 0.7886
After 3.5710e-02 1.7511e-02 8.6349e-03 3.9237e-03 1.5548e-03 5.4760e-04

1.0281 1.0200 1.1380 1.3355 1.5055
Before 1.2005e-01 9.6667e-02 6.5608e-02 4.1396e-02 2.4861e-02 1.4364e-02

10−4 0.3126 0.5591 0.6644 0.7356 0.7914
After 3.8248e-02 1.6651e-02 7.0367e-03 2.8532e-03 1.2644e-03 7.0958e-04

1.1998 1.2427 1.3023 1.1741 0.8334
Before 1.2025e-01 9.6993e-02 6.6018e-02 4.1650e-02 2.4964e-02 1.4413e-02

10−6 0.3101 0.5550 0.6645 0.7385 0.7925
After 3.8260e-02 1.6725e-02 7.0318e-03 2.6252e-03 9.1127e-04 3.0106e-04

1.1939 1.2500 1.4215 1.5264 1.5978
Before 1.2025e-01 9.6997e-02 6.6023e-02 4.1656e-02 2.4970e-02 1.4420e-02

10−8 0.3100 0.5550 0.6644 0.7383 0.7921
After 3.8261e-02 1.6726e-02 7.0319e-03 2.6254e-03 9.1141e-04 3.0336e-04

1.1938 1.2501 1.4214 1.5264 1.5871
eN, ∆t Before 1.2025e-01 9.6997e-02 6.6023e-02 4.1656e-02 2.4970e-02 1.4420e-02
pN, ∆t 0.3100 0.5550 0.6644 0.7383 0.7921
eN, ∆t
extp After 3.8261e-02 1.7511e-02 8.6349e-03 3.9237e-03 1.5548e-03 7.0958e-04

pN, ∆t
extp 1.1276 1.0200 1.1380 1.3355 1.1316

Table 2. Before and after extrapolations, maximum pointwise errors and order of convergence
for Example 4.2.

Extra-
ε polation Number of spatial mesh intervals N

16 32 64 128 256 512
Before 1.0798e-01 6.6775e-02 4.0097e-02 2.3696e-02 1.3720e-02 7.8000e-03

10−2 0.6934 0.7358 0.7589 0.7883 0.8147
After 1.9807e-02 6.3272e-03 2.1082e-03 7.0689e-04 2.3252e-04 7.4426e-05

1.6463 1.5856 1.5765 1.6041 1.6435
Before 1.1904e-01 7.2681e-02 4.3029e-02 2.5086e-02 1.4396e-02 8.1308e-03

10−4 0.7118 0.7563 0.7784 0.8012 0.8242
After 2.9079e-02 1.0106e-02 3.5975e-03 1.2599e-03 4.2641e-04 1.3867e-04

1.5247 1.4901 1.5137 1.5630 1.6205
Before 1.1916e-01 7.2751e-02 4.3068e-02 2.5107e-02 1.4409e-02 8.1384e-03

10−6 0.7118 0.7563 0.7784 0.8012 0.8242
After 2.9227e-02 1.0186e-02 3.6471e-03 1.2906e-03 4.4634e-04 1.5170e-04

1.5208 1.4817 1.4987 1.5319 1.5569
Before 1.1916e-01 7.2752e-02 4.3068e-02 2.5108e-02 1.4409e-02 8.1385e-03

10−8 0.7118 0.7564 0.7785 0.8012 0.8241
After 2.9228e-02 1.0186e-02 3.6476e-03 1.2909e-03 4.4655e-04 1.5241e-04

1.5207 1.4816 1.4985 1.5315 1.5509
eN, ∆t Before 1.1916e-01 7.2752e-02 4.3068e-02 2.5108e-02 1.4409e-02 8.1385e-03
pN, ∆t 0.7118 0.7564 0.7785 0.8012 0.8241
eN, ∆t
extp After 2.9228e-02 1.0186e-02 3.6476e-03 1.2909e-03 4.4655e-04 1.5241e-04

pN, ∆t
extp 1.5207 1.4816 1.4985 1.5315 1.5509
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Figure 2. Comparison of maximum pointwise errors through loglog plot for Example 4.1.
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Figure 3. Comparison of maximum pointwise errors through loglog plot for Example 4.2.
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grid equidistribution technique, for which, no such prior information is required. Another obser-
vation which can be treated as a limitation of the proposed strategy is the order of convergence is
not exactly second-order, more precisely, it is reduced by logarithmic factor. Since, we are using
Shishkin mesh, it is not possible to remove that term, as because, that logarithmic term appears
from the transition parameter of the Shishkin mesh. As a practical interest, for our future work,
we shall try to use the proposed method to solve a 2D degenerate SPPDE with delay term where
the degenerate term causes boundary turning point.
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