Left annihilator of identity with pair of generalized derivations in prime and semiprime rings

Asma Ali, ¹ Md Hamidur Rahaman and Farhat Ali

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16W25; Secondary 16N60, 15A27.

Keywords and phrases: Prime rings, Semiprime rings, Generalized derivations, Extended centroid.

Abstract Let π_1 and π_2 be two generalized derivations of a ring \mathbb{R} with associated derivations δ_1 and δ_2 respectively. Let $m, n \ge 1$ are fixed positive integers and \mathbb{K} be a nonzero ideal of \mathbb{R} . In the present paper we discuss the left annihilator of the following two sets: $\{\pi_1(a) \circ_m \pi_2(b) - a \circ_m b | a, b \in \mathbb{K}\}$ and $\{[\pi_1(a), b]_m + [a, \delta_1(b)]_n - [a, b] | a, b \in \mathbb{K}\}$ and give a characterization of π_1 and π_2 . Moreover, we examine the case when \mathbb{R} is a semiprime ring. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

1 Introduction

Throughout the paper \mathbb{R} is always an associative ring with centre $\mathbb{Z}(\mathbb{R})$, \mathbb{C} the extended centroid of \mathbb{R} , \mathbb{U} its Utumi quotient ring and \mathbb{Q} is the Martindale ring of quotients of \mathbb{R} . Let $x, y \in \mathbb{R}$, [x, y] and $x \circ y$ stand for commutator xy - yx and anti-commutator xy + yx respectively. Also, we set $x \circ_0 y = x$, $x \circ_1 y = x \circ y = xy + yx$ and $x \circ_m y = (x \circ_{m-1} y)y + y(x \circ_{m-1} y)$ for $m \ge 2$ and $[x, y]_0 = x, [x, y]_1 = xy - yx$ and $[x, y]_m = [x, y]_{m-1}y - y[x, y]_{m-1}, m \ge 2$ in non-commuting indeterminates x and y. Recall that a ring \mathbb{R} is prime if $x\mathbb{R}y = \{0\}$ gives that either x = 0 or y = 0 for all $x, y \in \mathbb{R}$ and is semiprime if $x \mathbb{R} x = \{0\}$ gives that x = 0for all $x \in \mathbb{R}$. Our target is to establish a relation between structure of ring and the nature of favorable mapping defined on it. A map $\delta : \mathbb{R} \to \mathbb{R}$ is called a derivation of \mathbb{R} if δ is additive and $\delta(ab) = \delta(a)b + a\delta(b)$ for any $b, a \in \mathbb{R}$. If δ can be expressed as $\delta(a) = [b, a]$ for some element $b \in \mathbb{R}$, then δ is called an inner derivation. We use generally the notation $I_b(a)$ to denote inner derivation. By a generalized inner derivation on \mathbb{R} , we mean a self mapping π on \mathbb{R} if π is additive and $\pi(a) = ba + ac$ for some fixed $b, c \in \mathbb{R}$. For such like mapping π , we can see that $\pi(ab) = a[c, b] + \pi(a)b = aI_c(b) + \pi(a)b$, where I_c denotes the inner derivation. This observation gives the following definition: a map $\pi : \mathbb{R} \to \mathbb{R}$ is said to be a generalized derivation on \mathbb{R} if $\pi(zw) = \pi(z)w + z\delta(w)$ for all $w, z \in \mathbb{R}$, where δ is a derivation on \mathbb{R} .

Ashraf et al. [1] investigates the commutativity of a prime ring \mathbb{R} admitting a derivation δ satisfying $\delta(a) \circ \delta(b) = a \circ b$ for all $a, b \in \mathbb{I}$, where \mathbb{I} is a nonzero ideal of \mathbb{R} . Further, Huang [11] proved that if \mathbb{L} is a square closed Lie ideal of a prime ring \mathbb{R} with characteristic different from 2 and generalized derivation π with associated derivation δ satisfying $\pi(a) \circ \delta(b) = a \circ b$ for all $a, b \in \mathbb{L}$, then either R is commutative or $\delta = 0$.

Motivated by the above mentioned results, we prove the following:

Theorem 1.1. Let *m* be the fixed positive integer and \mathbb{K} be a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2. If \mathbb{R} admits generalized derivations π_1 and π_2 with associated derivations δ_1 and δ_2 respectively and $0 \neq a \in \mathbb{R}$ such that $a(\pi_1(x) \circ_m \pi_2(y) - x \circ_m y) = 0$ for all $x, y \in \mathbb{K}$, then either \mathbb{R} is commutative or there exist α and $\beta \in \mathbb{C}$, extended centroid of \mathbb{R} such that $\pi_1(x) = \alpha x$ and $\pi_2(x) = \beta x$ for all $x \in \mathbb{R}$ with $a(\alpha^m \beta^m - 1) = 0$.

Huang [10] proved that if \mathbb{K} is a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2 admitting a nonzero derivation δ satisfying $[\delta(x), \delta(y)]_m = [x, y]^n$ for any $y, x \in \mathbb{K}$, for some positive integers m, n, then R is commutative. In this line of investigation, Dhara et al. [2] proved the following: Let K be a nonzero ideal of a 2-torsion free semiprime ring R admitting a generalized derivation π with associated derivation δ such that $\delta(\mathbb{K}) \neq \{0\}$. If $[\delta(y), \pi(x)] = \pm [y, x]$ holds for all $x, y \in \mathbb{K}$, then \mathbb{R} contains a nonzero central ideal.

Tendentious by the above results, we prove

Theorem 1.2. Let m, n be fixed positive integers, \mathbb{K} be a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2 and $0 \neq a \in \mathbb{R}$. If π is a generalized derivation of \mathbb{R} with associated derivation δ satisfying $a([\pi(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0$ for all $x, y \in \mathbb{K}$, then either \mathbb{R} is commutative or there exist $b \in \mathbb{U}$ such that $\pi(x) = bx$ for all $x \in \mathbb{R}$.

Theorem 1.3. Let m, n be fixed positive integers and \mathbb{R} is a semiprime ring with characteristic different from 2 and $0 \neq a \in \mathbb{R}$. If π is a generalized derivation of \mathbb{R} with associated derivation δ satisfying $a([\pi(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0$ for all $x, y \in \mathbb{R}$, then \mathbb{R} contains a nonzero central ideal.

2 Main Results

We will use frequently the following important result due to Kharchenko [15]: Let $0 \neq \delta$ be a derivation of a prime ring \mathbb{R} and $\{0\} \neq \mathbb{K}$ be an ideal of \mathbb{R} . Let $q(p_1, ..., p_n, \delta(p_1), ..., \delta(p_n))$ be a differential identity in K i.e.

 $g(w_1, ..., w_n, \delta(w_1), ..., \delta(w_n)) = 0$ for all $w_1, w_2, ..., w_n \in \mathbb{K}$.

Then we have exactly one of the following

(i) δ is an inner in \mathbb{Q} , Martindale ring of quotient of \mathbb{R} (ii) δ is Q-outer and the following GPI is satisfied by K

$$g(w_1, ..., w_n, y_1, ..., y_n) = 0.$$

Remark 2.1. Let \mathbb{K} be an ideal of \mathbb{R} . Then

(i) \mathbb{U} , \mathbb{R} and \mathbb{K} satisfy the same differential identities. [14, Theorem 2] (ii) \mathbb{U} , \mathbb{R} and \mathbb{K} satisfy the same GPI with coefficients in U.[4, Theorem 2]

Remark 2.2. Let π be a generalized derivation defined on a dense right ideal of a semiprime ring \mathbb{R} . Then π can be uniquely extended to \mathbb{U} which takes the form $\pi(x) = ax + \delta(x)$, where δ is a derivation on U and for some $a \in U$. Moreover, a and δ are uniquely determined by the generalized derivation π . [13, Theorem 4]

Remark 2.3. Let \mathbb{F} be a field, \mathbb{R} a dense ring of \mathbb{F} -linear transformations (over a vector space \mathbb{V}) of $char(\mathbb{R}) \neq 2$ with $dim_{\mathbb{C}} \mathbb{V} \geq 2$, $p, c \in \mathbb{R}$, and $0 \neq c \notin \mathbb{Z}(\mathbb{R})$. Assume pv = 0, for any $v \in \mathbb{V}$ such that $\{v, cv\}$ is linear \mathbb{F} -independent. Then p = 0. [16, Lemma 2.1]

Proof of Theorem 1.1 By hypothesis

$$a(\pi_1(x) \circ_m \pi_2(y) - x \circ_m y) = 0 \text{ for all } x, y \in \mathbb{K}.$$
(2.1)

By Remark 2.2, $\pi_1(x) = bx + \delta_1(x)$ and $\pi_2(x) = cx + \delta_2(x)$ for some $b, a \in \mathbb{U}$ and derivations δ_1, δ_2 on U. Hence

$$a((bx + \delta_1(x)) \circ_m (cy + \delta_2(y)) - x \circ_m y) = 0 \text{ for all } x, y \in \mathbb{K}.$$
(2.2)

By Remark 2.1, we have

$$a((bx + \delta_1(x)) \circ_m (cy + \delta_2(y)) - x \circ_m y) = 0 \text{ for all } x, y \in \mathbb{U}$$

$$(2.3)$$

that is

$$a(bx \circ_m cy + \delta_1(x) \circ_m cy + cx \circ_m \delta_2(y) + \delta_1(x) \circ_m \delta_2(y) - x \circ_m y) = 0$$
(2.4)

for all $x, y \in \mathbb{U}$.

Here the proof is divided into the following cases:

Case 1 If both δ_1 and δ_2 are inner derivations, then $\delta_1(x) = [q, x]$ and $\delta_2(x) = [p, x]$ for any $x \in \mathbb{U}$ and for some q and $p \in \mathbb{U}$ respectively. So, we have

$$\mathbb{F}(x,y) = a(bx \circ_m cy + [q,x] \circ_m cy + cx \circ_m [p,y] + [q,x] \circ_m [p,y] - x \circ_m y) = 0 \text{ for any } y, x \in \mathbb{U}.$$
(2.5)

If \mathbb{C} is infinite, then $\mathbb{U} \bigotimes_{\mathbb{C}} \mathbb{E}$ satisfies (2.5), where \mathbb{E} stands for algebraic closure of \mathbb{C} . By [12], \mathbb{U} and $\mathbb{U} \otimes_{\mathbb{C}} \mathbb{E}$ are centrally closed and prime. Therefore, we may replace \mathbb{R} by $\mathbb{U} \otimes_{\mathbb{C}} \mathbb{E}$ or \mathbb{U} according to \mathbb{C} is infinite or finite. Thus we may assume that \mathbb{R} is centrally closed over \mathbb{C} which is either algebraically closed and $\mathbb{F}(x, y) = 0$ for any $x, y \in \mathbb{R}$ or finite. By the use of Martindale's theorem [12], \mathbb{R} is primitive ring with \mathbb{D} as associative division ring as well as \mathbb{R} has nonzero socle, $soc(\mathbb{R})$. By [9], \mathbb{R} and dense ring of linear transformations for some vector space \mathbb{V} over \mathbb{C} are isomorphic i.e $\mathbb{R} \cong \mathbb{M}_k(\mathbb{D})$, where $k = dim_{\mathbb{D}}\mathbb{V}$. Assume that $dim_{\mathbb{D}}\mathbb{V} \ge 2$, otherwise we are done. Also assume that there exists $v \in \mathbb{V}$ such that qv and v are linearly \mathbb{D} -independent.

If pv is not a member of the span of $\{v, qv\}$, then $\{v, pv, qv\}$ is linearly independent. By the density of ring \mathbb{R} , there exist $x, y \in \mathbb{R}$ such that

$$xqv = -v, xv = 0, ypv = v, yv = 0, xpv = 0, yqv = v.$$
(2.6)

Multiplying equation (2.5) by v from right and using conditions in equation (2.6), we get

$$a(-1)^{m-1}2^{m-1}v = 0$$

Since \mathbb{R} has characteristic different from 2, we have av = 0. If $a \in \mathbb{Z}(\mathbb{R})$, then v = 0, a contradiction. If $a \notin \mathbb{Z}(\mathbb{R})$, then by Remark 2.3, we have a = 0, again a contradiction.

If pv is a member of the span of $\{v, qv\}$, then $p = v\alpha + qv\beta$ for some $\alpha, 0 \neq \beta \in \mathbb{D}$. Again by the density of ring \mathbb{R} , there exist $x, y \in \mathbb{R}$ such that

$$xv = 0, yqv = v, xqv = -v, yv = 0.$$
 (2.7)

Again multiplying equation (2.5) by v from right and using conditions in equations (2.7), we get

$$a(-1)^{m-1}2^{m-1}v\beta = 0.$$

Again using that \mathbb{R} has characteristic different from 2, we have av = 0. Using the same arguments as used, we get a = 0, a contradiction.

Therefore, $\{v, qv\}$ is linearly dependent over \mathbb{D} and hence $q \in \mathbb{Z}(\mathbb{R})$ i.e $\delta_1 = 0$. Similarly, we can show that $\delta_2 = 0$. From (2.4), we have the following

$$a(bx \circ_m cy - x \circ_m y) = 0 \text{ for all } x, y \in \mathbb{U}.$$
(2.8)

Let for any $u \in \mathbb{V}$, $\{u, bu\}$ is linearly independent. Since $dim_{\mathbb{D}}\mathbb{V} \ge 2$, we can choose $t \in \mathbb{V}$ such that $\{u, bu, t\}$ is also linearly independent. By density of \mathbb{R} , there exist $x, y \in \mathbb{R}$ such that

$$xu = 0, xbu = 0, xt = u, yu = t, ybu = 0, yt = 0.$$
 (2.9)

Now mulplying (2.8) by u from right, we get au = 0. Using the arguments that have been used above, we get contradiction. Therefore, $\{u, bu\}$ is linearly dependent i.e $b \in \mathbb{C}$. Similarly, we can show that $c \in \mathbb{C}$. Using these in (2.8), we get

$$a(b^m c^m - 1)x \circ_m y = 0. (2.10)$$

In particular, for x = y, we have $a(b^m c^m - 1)x^{m+1} = 0$. Using primeness of \mathbb{R} , we get $a(b^m c^m - 1) = 0$

Case 2 Let δ_1 and δ_2 are not both inner derivations of U. Then δ_1 and δ_2 are \mathbb{C} -linearly dependent modulo \mathbb{D}_{int} i.e $\delta_2(y) = [p, y] + \beta \delta_1(y)$ for some $p \in \mathbb{U}$ and $\beta \in \mathbb{C}$. If either $\beta = 0$ or δ_2 is inner, then δ_1 is also inner which is a contradiction. So, $\beta \neq 0$ and δ_2 is not inner. Then by (2.4), we have

$$a(bx \circ_m cy + \delta_1(x) \circ_m cy + cx \circ_m ([p, y] + \beta\delta_1(y)) + \delta_1(x) \circ_m ([p, y] + \beta\delta_1(y)) - x \circ_m y) = 0 \text{ for any } x, y \in U$$

Use of Kharchenko's Theorem [15] gives that

$$a(bx \circ_m cy + x_1 \circ_m cy + cx \circ_m ([p, y] + \beta y_1) + x_1 \circ_m ([p, y] + \beta y_1) - x \circ_m y) = 0$$

for all $x_1, y_1, x, y \in \mathbb{K}$. Taking y = 0 = x, we obtain

$$a(x_1 \circ_m y_1) = 0 \tag{2.11}$$

for all $x_1, y_1 \in I$. By [4, Theorem 2], \mathbb{Q} as well as \mathbb{R} satisfy the polynomial identity $a(x_1 \circ_m y_1) = 0$. By [3, Lemma 1], we have $\mathbb{R} \subseteq \mathbb{M}_n(\mathbb{F})$, the ring of $n \times n$ matrices over some field \mathbb{F} , where $n \geq 1$. Also, $\mathbb{M}_n(\mathbb{F})$ and \mathbb{R} satisfy the same polynomial identity, i.e, $a(x_1 \circ_m y_1) = 0$, for any $x_1, y_1 \in \mathbb{M}_n(\mathbb{F})$. To denote matrix unit with 1 in $(i, j)^{th}$ -entry and zero elsewhere, we use the notation e_{ij} . Taking $y_1 = e_{11}, a = e_{11}x_1 = e_{12}$, we see that $e_{11}(x_1 \circ_m y_1) = e_{12} \neq 0$, a contradiction.

The case $\delta_1(x) = [q, x] + \gamma \delta_2(x)$ for some $\gamma \in \mathbb{C}$ and $q \in \mathbb{U}$ is analogous. **Case 3** Now assume δ_1 and δ_2 are Outer. Now by Kharchenko's Theorem [15], we have

$$a(bx \circ_m cy + x_1 \circ_m cy + cx \circ_m y_1 + x_1 \circ_m y_1 - x \circ_m y) = 0$$

for any $x_1, y_1, x, y \in \mathbb{K}$. For y = x = 0, we have

$$a(x_1 \circ_m y_1) = 0 \tag{2.12}$$

which is same as (2.11). Therefore, by the similar arguments as above this leads that R is commutative. This overpast the proof of theorem.

If we take $\pi_1 = \pi_2 = \pi$, we have the following corollary:

Corollary 2.4. Let *m* be the fixed positive integer and \mathbb{K} be a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2. If \mathbb{R} admits a generalized derivation π with associated derivation δ and $0 \neq a \in \mathbb{R}$ such that $a(\pi(x) \circ_m \pi(y) - x \circ_m y) = 0$ for all $x, y \in \mathbb{K}$, then either \mathbb{R} is commutative or there exists $\alpha \in \mathbb{C}$, extended centroid of \mathbb{R} such that $\pi(x) = \alpha x$ for all $x \in \mathbb{R}$ with $a(\alpha^{2m} - 1) = 0$.

Proof of Theorem 1.2 By hypothesis

$$a([\pi(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0 \text{ for any } y, x \in \mathbb{K}.$$
(2.13)

By Remark 2.1, we have

$$a([\pi(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0 \text{ for any } y, x \in \mathbb{U}.$$
(2.14)

By Remark 2.2, $\pi(x) = bx + \delta(x)$ for some $b \in \mathbb{U}$ and derivation δ on \mathbb{U} . Then we have

$$a([bx + \delta(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0 \text{ for any } y, x \in \mathbb{U}.$$
 (2.15)

That is

$$a([bx,y]_m + [\delta(x),y]_m + [x,\delta(y)]_n - [x,y]) = 0 \text{ for any } y, x \in \mathbb{U}.$$
 (2.16)

The proof is divided into the following cases on the basis of Kharchenko's theorem [15, Theorem 2]:

Case I Let δ be an inner derivation i.e $\delta(x) = [q, x]$ for any $x \in \mathbb{U}$ and for some $q \in \mathbb{U}$. Then

$$\mathbb{F}(x,y) = a([bx,y]_m + [\delta(x),y]_m + [x,\delta(y)]_n - [x,y]) = 0 \text{ for any } y, x \in \mathbb{U}.$$
 (2.17)

If \mathbb{C} is infinite, then $\mathbb{U} \bigotimes_{\mathbb{C}} \overline{\mathbb{E}}$ satisfies (2.5), where $\overline{\mathbb{E}}$ stands for algebraic closure of \mathbb{C} . By [12], \mathbb{U} and $\mathbb{U} \otimes_{\mathbb{C}} \mathbb{E}$ are centrally closed and prime. Therefore, we may replace \mathbb{R} by $\mathbb{U} \otimes_{\mathbb{C}} \mathcal{E}$ or \mathbb{U} according to \mathbb{C} is infinite or finite. Thus we may assume that \mathbb{R} is centrally closed over \mathbb{C} which is

either algebraically closed and $\mathbb{F}(x, y) = 0$ for any $y, x \in \mathbb{R}$ or finite. By the use of Martindale's theorem [12], \mathbb{R} is primitive ring with \mathbb{D} as associative division ring as well as \mathbb{R} has nonzero socle, $soc(\mathbb{R})$. By [9], \mathbb{R} and dense ring of linear transformations for some vector space \mathbb{V} over \mathbb{C} are isomorphic i.e $\mathbb{R} \cong \mathbb{M}_k(\mathbb{D})$, where $k = dim_{\mathbb{D}}\mathbb{V}$. Assume that $dim_{\mathbb{D}}\mathbb{V} \ge 2$, otherwise we are done. Also assume that there exists $v \in \mathbb{V}$ such that qv and v are linearly \mathbb{D} -independent.

Since $dim_{\mathbb{D}} \mathbb{V} \ge 2$, we can find an element $w \in \mathbb{V}$ such that $\{w, qv, v\}$ is linearly independent over \mathbb{D} . By the density of the ring \mathbb{R} , we can find $x, y \in \mathbb{R}$ such that

$$xv = 0, yw = v, xqv = w, xw = 0, yv = 0, yqv = v.$$
 (2.18)

Multiplying equation (2.17) from right by v and using conditions in equation (2.18), we get av = 0. By the same argument that we have used in precedant, we have $\{qv, v\}$ is linearly dependent and hence $q \in Z(R)$ i.e d = 0. **Case 2** Let d be an outer derivation. Then

$$a([bx, y]_m + [x_1, y]_m + [x, y_1]_n - [x, y]) = 0 \text{ for any } y, x, x_1, y_1, s \in \mathbb{K}.$$
 (2.19)

In particular, choosing y = 0, we get $a([x, y_1]_n) = 0$ for any $y_1, x \in \mathbb{K}$. By [4, Theorem 2], \mathbb{Q} as well as \mathbb{R} satisfy the polynomial identity $a([x, y_1]_n) = 0$. By [3, Lemma 1], we have $\mathbb{R} \subseteq \mathbb{M}_n(\mathbb{F})$, the ring of $n \times n$ matrices over some field \mathbb{F} , where $n \ge 1$. Also, $\mathbb{M}_n(\mathbb{F})$ and \mathbb{R} satisfy the same polynomial identity, i.e, $a([x, y_1]_n) = 0$, for any $x, y_1 \in \mathbb{M}_n(\mathbb{F})$. To denote matrix unit with 1 in $(i, j)^{th}$ -entry and zero elsewhere, we use the notation e_{ij} . Taking $y_1 = e_{11}, a = e_{11}x_1 = e_{12}$, we see that $e_{11}([x, y_1]_m) = e_{12} \neq 0$, a contradiction.

Proof of Theorem 1.3 We know that any derivation defined on \mathbb{R} , a semiprime ring can be uniquely extended to a derivation on \mathbb{U} , left Utumi ring of quotient of \mathbb{R} and hence every derivation of \mathbb{R} can be defined on \mathbb{U} [14, Lemma 2]. Also, \mathbb{U} and \mathbb{R} satisfy the same generalized polynomial identity (GPI) and differential identities (see [4] and [14]). By [13, Theorem 4], π can be expressed as $\pi(x) = \delta(x) + bx$ for some $b \in \mathbb{U}$ and a derivation δ defined on \mathbb{U} . We have

$$a([bx, y]_m + [\delta(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0 \text{ for any } y, x \in U.$$
(2.20)

Let $\mathbb{M}(\mathbb{C}) = \{\mathbb{A} \mid \mathbb{A} \text{ is maximal ideal of } \mathbb{C}\}\$ and let $\mathbb{P} \in \mathbb{M}(\mathbb{C})$. Then $\mathbb{P}\mathbb{U}$ is prime ideal of \mathbb{U} which is invariant under all derivation of \mathbb{U} by the theory of orthogonal completions of semiprime ring ([14, p.31-32]). Also, $\bigcap \{\mathbb{P}\mathbb{U} \mid \mathbb{P} \in \mathbb{M}(\mathbb{C})\} = \{0\}$. Setting $\overline{\mathbb{U}} = \mathbb{U}/\mathbb{P}\mathbb{U}$. Now any derivation δ of \mathbb{R} canonically induces a derivation $\overline{\delta}$ on $\overline{\mathbb{U}}$ defined by $\overline{\delta}(\overline{x}) = \overline{\delta(x)}$ for any $x \in \overline{\mathbb{U}}$. Then

$$\bar{a}([\bar{b}\bar{x},\bar{y}]_m + [\delta(x),\bar{y}]_m + [\bar{x},\delta(y)]_n - [x,y]) = 0$$

for all $\overline{x}, \overline{y} \in \overline{\mathbb{U}}$. It is clear that $\overline{\mathbb{U}}$ is a prime ring. So by the use of Theorem 1.2, we have, either $[\mathbb{U}, \mathbb{U}] \subseteq \mathbb{P}\mathbb{U}$ or $\delta(\mathbb{U}) \subseteq \mathbb{P}\mathbb{U}$ for any $\mathbb{P} \in \mathbb{M}(\mathbb{C})$. This gives that $\delta(\mathbb{U})[\mathbb{U}, \mathbb{U}] \subseteq \mathbb{P}\mathbb{U}$ for any $\mathbb{P} \in \mathbb{M}(\mathbb{C})$. Since $\bigcap \{\mathbb{U} \mid \mathbb{P} \in \mathbb{M}(\mathbb{C})\} = \{0\}$, we have $\delta(\mathbb{U})[\mathbb{U}, \mathbb{U}] = \{0\}$. In particular, we have $\delta(\mathbb{R})[\mathbb{R}, \mathbb{R}] = \{0\}$. Further, this can be written as $[\delta(\mathbb{R}), \mathbb{R}]\mathbb{R}[\delta(\mathbb{R}), \mathbb{R}] = 0$. Since \mathbb{R} is a semiprime ring, we obtain that $[\delta(\mathbb{R}), \mathbb{R}] = 0$. Then by [17, Theorem 3], \mathbb{R} contains a nonzero central ideal.

The following examples demonstrate that \mathbb{R} to be *prime* can not be omitted in the hypothesis of Theorem 1.1 and Theorem 1.2.

Example 2.5. For any ring \mathbb{R}_1 which has characteristic different from two, let $R = \left\{ \begin{pmatrix} z & w \\ 0 & 0 \end{pmatrix} \mid z, w \in \mathbb{R}_1 \right\}$ and $\mathbb{K} = \left\{ \begin{pmatrix} 0 & w \\ 0 & 0 \end{pmatrix} \mid w \in \mathbb{R}_1 \right\}$. Then \mathbb{K} is a nonzero ideal of \mathbb{R} . Define maps $\pi_1, \pi_2, \delta_2, \delta_1 : \mathbb{R} \to \mathbb{R}$ by $\pi_1 \left(\begin{pmatrix} z & w \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} z & 2w \\ 0 & 0 \end{pmatrix}, \pi_2 \left(\begin{pmatrix} z & w \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} z & 0 \\ 0 & 0 \end{pmatrix}, \delta_1 \left(\begin{pmatrix} z & w \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & -w \\ 0 & 0 \end{pmatrix}$ and $\delta_2 \left(\begin{pmatrix} z & w \\ 0 & 0 \end{pmatrix} \right) = \begin{pmatrix} 0 & w \\ 0 & 0 \end{pmatrix}$ Then π_1

and π_2 are generalized derivations on \mathbb{R} associated with derivations δ_1 and δ_2 respectively satisfying $a(\pi_1(x) \circ_m \pi_2(y) - x \circ_m y) = 0$ for all $x, y \in \mathbb{K}$. However neither \mathbb{R} is commutative nor $\pi_1(x) = \alpha x$ and $\pi_2(x) = \beta x$ for all $x \in \mathbb{R}$ as δ_1 and δ_2 are nonzero. Hence Theorem 1.1 is not true for arbitrary rings.

Example 2.6. Let $\mathbb{R} = \left\{ \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \mid x, y, z \in \mathbb{R}_1 \right\}$ and $\mathbb{K} = \left\{ \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} \mid y \in \mathbb{R}_1 \right\}$, where \mathbb{R}_1 is a ring which has characteristic different from two. Then \mathbb{K} is a nonzero ideal of \mathbb{R} . Define maps $\pi, \delta : \mathbb{R} \to \mathbb{R}$ by $\pi \left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \right) = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ and $\delta \left(\begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \right) = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}$. Then π is a generalized derivation associated with the derivation δ satisfying $a([\pi(x), y]_m + [x, \delta(y)]_n - [x, y]) = 0$ for all $x, y \in \mathbb{K}$. However neither \mathbb{R} is commutative nor $\pi(x) = bx$ for all $x \in \mathbb{R}$ as δ is nonzero. Hence Theorem 1.2 does not hold for arbitrary rings.

References

- [1] M. Ashraf, N. Rehman, On commutativity of rings with derivations, Results Math., 42, 3-8 (2002).
- B. Dhara, S. Ali, A. Pattanayak, Identities with generalized derivations in semiprime rings, *Demonstratio Mathematica*, XLVI(3), 453–460 (2013).
- [3] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118, 731-734 (1993).
- [4] C.L Chuang, GPIs having coefficients in Utumi quotient rings, *Proc. Amer. Math. Soc.*, **103**, 723–728 (1988).
- [5] H.E. Bell, M.N. Daif, On commutativity and strong commutativity-preserving maps, *Cand. Math. Bull.*, 37, 443–447 (1994).
- [6] J.H. Mayne, Centralizing mappings of prime rings, Cand. Math. Bull., 27, 122–126 (1984).
- [7] K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, *Rings with generalized identities*, Int. Pure and Applied Mathematics, Dekker, New York, 1996.
- [8] M. Brěsar, On the distance of the composition of two derivations to the generalized derivations, *Glasgow Math. J.*, 33, 89–93 (1991).
- [9] N. Jacobson, Structure of Rings, Colloq. Publications, Amer. Math. Soc., 1956.
- [10] S. Huang, Derivation with Engel conditions in prime and semiprime rings, *Czechoslovak Math. J.*, 61, 1135–1140 (2011).
- [11] S. Huang, Generalized derivation of prime rings, *International Journal of Mathematics and Mathematical Sciences*, **2007**, (2007).
- [12] T. Erickson, W.S. Martindale III, J.M. Osborn, Prime nonassociative algebras, *Pacific J. Math.*, **60**, 49–63 (1975).
- [13] T.K. Lee, Generalized derivations of left faithful rings, Commun. Algebra, 27, 4057–4073 (1999).
- [14] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 8, 27–38 (1992).
- [15] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17, 155–168 (1978).
- [16] A. Ali, V. De Filippis, S. Khan, Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings, *Comm. Algebra*, 44, 87-97 (2016).
- [17] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, *Canad. Math. Bull.*, 30, 92–101 (1987).

Author information

Asma Ali, ¹ Md Hamidur Rahaman and Farhat Ali, Department of Mathematics, Aligarh Muslim University, Aligarh-202002, ¹ Department of Mathematics, A.P.C Roy Govt. College, Siliguri-734010, India. E-mail: asma_ali2@rediffmail.com, rahamanhamidmath@gmail.com, 04farhatamu@gmail.com

```
Received: October 1, 2020
Accepted: January 9, 2021
```