Left annihilator of identity with pair of generalized derivations in prime and semiprime rings

Asma Ali, ${ }^{1}$ Md Hamidur Rahaman and Farhat Ali
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16W25; Secondary 16N60, 15A27.
Keywords and phrases: Prime rings, Semiprime rings, Generalized derivations, Extended centroid.

Abstract

Let π_{1} and π_{2} be two generalized derivations of a ring \mathbb{R} with associated derivations δ_{1} and δ_{2} respectively. Let $m, n \geq 1$ are fixed positive integers and \mathbb{K} be a nonzero ideal of \mathbb{R}. In the present paper we discuss the left annihilator of the following two sets: $\left\{\pi_{1}(a) \circ_{m} \pi_{2}(b)-\right.$ $\left.a \circ_{m} b \mid \quad a, b \in \mathbb{K}\right\}$ and $\left\{\left[\pi_{1}(a), b\right]_{m}+\left[a, \delta_{1}(b)\right]_{n}-[a, b] \mid a, b \in \mathbb{K}\right\}$ and give a characterization of π_{1} and π_{2}. Moreover, we examine the case when \mathbb{R} is a semiprime ring. Finally, we provide examples to show that various restrictions imposed in the hypotheses of our theorems are not superfluous.

1 Introduction

Throughout the paper \mathbb{R} is always an associative ring with centre $\mathbb{Z}(\mathbb{R}), \mathbb{C}$ the extended centroid of \mathbb{R}, \mathbb{U} its Utumi quotient ring and \mathbb{Q} is the Martindale ring of quotients of \mathbb{R}. Let $x, y \in \mathbb{R}$, $[x, y]$ and $x \circ y$ stand for commutator $x y-y x$ and anti-commutator $x y+y x$ respectively. Also, we set $x \circ_{0} y=x, x \circ_{1} y=x \circ y=x y+y x$ and $x \circ_{m} y=\left(x \circ_{m-1} y\right) y+y\left(x \circ_{m-1} y\right)$ for $m \geqslant 2$ and $[x, y]_{0}=x,[x, y]_{1}=x y-y x$ and $[x, y]_{m}=[x, y]_{m-1} y-y[x, y]_{m-1}, m \geq 2$ in non-commuting indeterminates x and y. Recall that a ring \mathbb{R} is prime if $x \mathbb{R} y=\{0\}$ gives that either $x=0$ or $y=0$ for all $x, y \in \mathbb{R}$ and is semiprime if $x \mathbb{R} x=\{0\}$ gives that $x=0$ for all $x \in \mathbb{R}$. Our target is to establish a relation between structure of ring and the nature of favorable mapping defined on it. A map $\delta: \mathbb{R} \rightarrow \mathbb{R}$ is called a derivation of \mathbb{R} if δ is additive and $\delta(a b)=\delta(a) b+a \delta(b)$ for any $b, a \in \mathbb{R}$. If δ can be expressed as $\delta(a)=[b, a]$ for some element $b \in \mathbb{R}$, then δ is called an inner derivation. We use generally the notation $I_{b}(a)$ to denote inner derivation. By a generalized inner derivation on \mathbb{R}, we mean a self mapping π on \mathbb{R} if π is additive and $\pi(a)=b a+a c$ for some fixed $b, c \in \mathbb{R}$. For suchlike mapping π, we can see that $\pi(a b)=a[c, b]+\pi(a) b=a I_{c}(b)+\pi(a) b$, where I_{c} denotes the inner derivation. This observation gives the following definition: a map $\pi: \mathbb{R} \rightarrow \mathbb{R}$ is said to be a generalized derivation on \mathbb{R} if $\pi(z w)=\pi(z) w+z \delta(w)$ for all $w, z \in \mathbb{R}$, where δ is a derivation on \mathbb{R}.

Ashraf et al. [1] investigates the commutativity of a prime ring \mathbb{R} admitting a derivation δ satisfying $\delta(a) \circ \delta(b)=a \circ b$ for all $a, b \in \mathbb{I}$, where \mathbb{I} is a nonzero ideal of \mathbb{R}. Further, Huang [11] proved that if \mathbb{L} is a square closed Lie ideal of a prime ring \mathbb{R} with characteristic different from 2 and generalized derivation π with associated derivation δ satisfying $\pi(a) \circ \delta(b)=a \circ b$ for all $a, b \in \mathbb{L}$, then either R is commutative or $\delta=0$.

Motivated by the above mentioned results, we prove the following:
Theorem 1.1. Let m be the fixed positive integer and \mathbb{K} be a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2 . If \mathbb{R} admits generalized derivations π_{1} and π_{2} with associated derivations δ_{1} and δ_{2} respectively and $0 \neq a \in \mathbb{R}$ such that $a\left(\pi_{1}(x) \circ_{m} \pi_{2}(y)-x \circ_{m} y\right)=0$ for all $x, y \in \mathbb{K}$, then either \mathbb{R} is commutative or there exist α and $\beta \in \mathbb{C}$, extended centroid of \mathbb{R} such that $\pi_{1}(x)=\alpha x$ and $\pi_{2}(x)=\beta x$ for all $x \in \mathbb{R}$ with $a\left(\alpha^{m} \beta^{m}-1\right)=0$.

Huang [10] proved that if \mathbb{K} is a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2 admitting a nonzero derivation δ satisfying $[\delta(x), \delta(y)]_{m}=[x, y]^{n}$ for any $y, x \in \mathbb{K}$, for some positive integers m, n, then R is commutative. In this line of investigation, Dhara et al. [2] proved the following: Let K be a nonzero ideal of a 2-torsion free semiprime ring
R admitting a generalized derivation π with associated derivation δ such that $\delta(\mathbb{K}) \neq\{0\}$. If $[\delta(y), \pi(x)]= \pm[y, x]$ holds for all $x, y \in \mathbb{K}$, then \mathbb{R} contains a nonzero central ideal.

Tendentious by the above results, we prove

Theorem 1.2. Let m, n be fixed positive integers, \mathbb{K} be a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2 and $0 \neq a \in \mathbb{R}$. If π is a generalized derivation of \mathbb{R} with associated derivation δ satisfying $a\left([\pi(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0$ for all $x, y \in \mathbb{K}$, then either \mathbb{R} is commutative or there exist $b \in \mathbb{U}$ such that $\pi(x)=b x$ for all $x \in \mathbb{R}$.

Theorem 1.3. Let m, n be fixed positive integers and \mathbb{R} is a semiprime ring with characteristic different from 2 and $0 \neq a \in \mathbb{R}$. If π is a generalized derivation of \mathbb{R} with associated derivation δ satisfying $a\left([\pi(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0$ for all $x, y \in \mathbb{R}$, then \mathbb{R} contains a nonzero central ideal.

2 Main Results

We will use frequently the following important result due to Kharchenko [15]: Let $0 \neq \delta$ be a derivation of a prime ring \mathbb{R} and $\{0\} \neq \mathbb{K}$ be an ideal of \mathbb{R}. Let $g\left(p_{1}, \ldots, p_{n}, \delta\left(p_{1}\right), \ldots, \delta\left(p_{n}\right)\right)$ be a differential identity in \mathbb{K} i.e,

$$
g\left(w_{1}, \ldots, w_{n}, \delta\left(w_{1}\right), \ldots, \delta\left(w_{n}\right)\right)=0 \text { for all } w_{1}, w_{2}, \ldots, w_{n} \in \mathbb{K}
$$

Then we have exactly one of the following
(i) δ is an inner in \mathbb{Q}, Martindale ring of quotient of \mathbb{R}
(ii) δ is \mathbb{Q}-outer and the following GPI is satisfied by \mathbb{K}

$$
g\left(w_{1}, \ldots, w_{n}, y_{1}, \ldots, y_{n}\right)=0
$$

Remark 2.1. Let \mathbb{K} be an ideal of \mathbb{R}. Then
(i) \mathbb{U}, \mathbb{R} and \mathbb{K} satisfy the same differential identities. [14, Theorem 2]
(ii) \mathbb{U}, \mathbb{R} and \mathbb{K} satisfy the same GPI with coefficients in U.[4, Theorem 2]

Remark 2.2. Let π be a generalized derivation defined on a dense right ideal of a semiprime ring \mathbb{R}. Then π can be uniquely extended to \mathbb{U} which takes the form $\pi(x)=a x+\delta(x)$, where δ is a derivation on \mathbb{U} and for some $a \in \mathbb{U}$. Moreover, a and δ are uniquely determined by the generalized derivation π. [13, Theorem 4]

Remark 2.3. Let \mathbb{F} be a field, \mathbb{R} a dense ring of \mathbb{F}-linear transformations (over a vector space \mathbb{V}) of $\operatorname{char}(\mathbb{R}) \neq 2$ with $\operatorname{dim}_{\mathbb{C}} \mathbb{V} \geq 2, p, c \in \mathbb{R}$, and $0 \neq c \notin \mathbb{Z}(\mathbb{R})$. Assume $p v=0$, for any $v \in \mathbb{V}$ such that $\{v, c v\}$ is linear \mathbb{F}-independent. Then $p=0$. [16, Lemma 2.1]

Proof of Theorem 1.1 By hypothesis

$$
\begin{equation*}
a\left(\pi_{1}(x) \circ_{m} \pi_{2}(y)-x \circ_{m} y\right)=0 \text { for all } x, y \in \mathbb{K} \tag{2.1}
\end{equation*}
$$

By Remark 2.2, $\pi_{1}(x)=b x+\delta_{1}(x)$ and $\pi_{2}(x)=c x+\delta_{2}(x)$ for some $b, a \in \mathbb{U}$ and derivations δ_{1}, δ_{2} on \mathbb{U}. Hence

$$
\begin{equation*}
a\left(\left(b x+\delta_{1}(x)\right) \circ_{m}\left(c y+\delta_{2}(y)\right)-x \circ_{m} y\right)=0 \text { for all } x, y \in \mathbb{K} \tag{2.2}
\end{equation*}
$$

By Remark 2.1, we have

$$
\begin{equation*}
a\left(\left(b x+\delta_{1}(x)\right) \circ_{m}\left(c y+\delta_{2}(y)\right)-x \circ_{m} y\right)=0 \text { for all } x, y \in \mathbb{U} \tag{2.3}
\end{equation*}
$$

that is

$$
\begin{equation*}
a\left(b x \circ_{m} c y+\delta_{1}(x) \circ_{m} c y+c x \circ_{m} \delta_{2}(y)+\delta_{1}(x) \circ_{m} \delta_{2}(y)-x \circ_{m} y\right)=0 \tag{2.4}
\end{equation*}
$$

for all $x, y \in \mathbb{U}$.
Here the proof is divided into the following cases:

Case 1 If both δ_{1} and δ_{2} are inner derivations, then $\delta_{1}(x)=[q, x]$ and $\delta_{2}(x)=[p, x]$ for any $x \in \mathbb{U}$ and for some q and $p \in \mathbb{U}$ respectively. So, we have

$$
\begin{align*}
\mathbb{F}(x, y) & =a\left(b x \circ_{m} c y+[q, x] \circ_{m} c y+c x \circ_{m}[p, y]\right. \\
& \left.+[q, x] \circ_{m}[p, y]-x \circ_{m} y\right)=0 \text { for any } y, x \in \mathbb{U} . \tag{2.5}
\end{align*}
$$

If \mathbb{C} is infinite, then $\mathbb{U} \otimes_{\mathbb{C}} \overline{\mathbb{E}}$ satisfies (2.5), where $\overline{\mathbb{E}}$ stands for algebraic closure of \mathbb{C}. By [12], \mathbb{U} and $\mathbb{U} \otimes_{\mathbb{C}} \mathbb{E}$ are centrally closed and prime. Therefore, we may replace \mathbb{R} by $\mathbb{U} \otimes_{\mathbb{C}} \mathbb{E}$ or \mathbb{U} according to \mathbb{C} is infinite or finite. Thus we may assume that \mathbb{R} is centrally closed over \mathbb{C} which is either algebraically closed and $\mathbb{F}(x, y)=0$ for any $x, y \in \mathbb{R}$ or finite. By the use of Martindale's theorem [12], \mathbb{R} is primitive ring with \mathbb{D} as associative division ring as well as \mathbb{R} has nonzero socle, $\operatorname{soc}(\mathbb{R})$. By [9], \mathbb{R} and dense ring of linear transformations for some vector space \mathbb{V} over \mathbb{C} are isomorphic i.e $\mathbb{R} \cong \mathbb{M}_{k}(\mathbb{D})$, where $k=\operatorname{dim}_{\mathbb{D}} \mathbb{V}$. Assume that $\operatorname{dim}_{\mathbb{D}} \mathbb{V} \geqslant 2$, otherwise we are done. Also assume that there exists $v \in \mathbb{V}$ such that $q v$ and v are linearly \mathbb{D}-independent.

If $p v$ is not a member of the span of $\{v, q v\}$, then $\{v, p v, q v\}$ is linearly independent. By the density of ring \mathbb{R}, there exist $x, y \in \mathbb{R}$ such that

$$
\begin{equation*}
x q v=-v, x v=0, y p v=v, y v=0, x p v=0, y q v=v \tag{2.6}
\end{equation*}
$$

Multiplying equation (2.5) by v from right and using conditions in equation (2.6), we get

$$
a(-1)^{m-1} 2^{m-1} v=0
$$

Since \mathbb{R} has characteristic different from 2 , we have $a v=0$. If $a \in \mathbb{Z}(\mathbb{R})$, then $v=0$, a contradiction. If $a \notin \mathbb{Z}(\mathbb{R})$, then by Remark 2.3, we have $a=0$, again a contradiction.

If $p v$ is a member of the span of $\{v, q v\}$, then $p=v \alpha+q v \beta$ for some $\alpha, 0 \neq \beta \in \mathbb{D}$. Again by the density of ring \mathbb{R}, there exist $x, y \in \mathbb{R}$ such that

$$
\begin{equation*}
x v=0, y q v=v, x q v=-v, y v=0 . \tag{2.7}
\end{equation*}
$$

Again multiplying equation (2.5) by v from right and using conditions in equations (2.7), we get

$$
a(-1)^{m-1} 2^{m-1} v \beta=0
$$

Again using that \mathbb{R} has characteristic different from 2, we have $a v=0$. Using the same arguments as used, we get $a=0$, a contradiction.

Therefore, $\{v, q v\}$ is linearly dependent over \mathbb{D} and hence $q \in \mathbb{Z}(\mathbb{R})$ i.e $\delta_{1}=0$. Similarly, we can show that $\delta_{2}=0$. From (2.4), we have the following

$$
\begin{equation*}
a\left(b x \circ_{m} c y-x \circ_{m} y\right)=0 \text { for all } x, y \in \mathbb{U} \tag{2.8}
\end{equation*}
$$

Let for any $u \in \mathbb{V},\{u, b u\}$ is linearly independent. Since $\operatorname{dim}_{\mathbb{D}} \mathbb{V} \geqslant 2$, we can choose $t \in \mathbb{V}$ such that $\{u, b u, t\}$ is also linearly independent. By density of \mathbb{R}, there exist $x, y \in \mathbb{R}$ such that

$$
\begin{equation*}
x u=0, x b u=0, x t=u, y u=t, y b u=0, y t=0 \tag{2.9}
\end{equation*}
$$

Now mulplying (2.8) by u from right, we get $a u=0$. Using the arguments that have been used above, we get contradiction. Therefore, $\{u, b u\}$ is linearly dependent i.e $b \in \mathbb{C}$. Similary, we can show that $c \in \mathbb{C}$. Using these in (2.8), we get

$$
\begin{equation*}
a\left(b^{m} c^{m}-1\right) x \circ_{m} y=0 \tag{2.10}
\end{equation*}
$$

In particular, for $x=y$, we have $a\left(b^{m} c^{m}-1\right) x^{m+1}=0$. Using primeness of \mathbb{R}, we get $a\left(b^{m} c^{m}-1\right)=0$
Case 2 Let δ_{1} and δ_{2} are not both inner derivations of U. Then δ_{1} and δ_{2} are \mathbb{C}-linearly dependent modulo $\mathbb{D}_{\text {int }}$ i.e $\delta_{2}(y)=[p, y]+\beta \delta_{1}(y)$ for some $p \in \mathbb{U}$ and $\beta \in \mathbb{C}$. If either $\beta=0$ or δ_{2} is inner, then δ_{1} is also inner which is a contradiction. So, $\beta \neq 0$ and δ_{2} is not inner. Then by (2.4), we have

$$
\begin{gathered}
a\left(b x \circ_{m} c y+\delta_{1}(x) \circ_{m} c y+c x \circ_{m}([p, y]+\right. \\
\left.\left.\beta \delta_{1}(y)\right)+\delta_{1}(x) \circ_{m}\left([p, y]+\beta \delta_{1}(y)\right)-x \circ_{m} y\right)=0 \text { for any } x, y \in U .
\end{gathered}
$$

Use of Kharchenko's Theorem [15] gives that

$$
\begin{gathered}
a\left(b x \circ_{m} c y+x_{1} \circ_{m} c y+c x \circ_{m}([p, y]+\right. \\
\left.\left.\beta y_{1}\right)+x_{1} \circ_{m}\left([p, y]+\beta y_{1}\right)-x \circ_{m} y\right)=0
\end{gathered}
$$

for all $x_{1}, y_{1}, x, y \in \mathbb{K}$. Taking $y=0=x$, we obtain

$$
\begin{equation*}
a\left(x_{1} \circ_{m} y_{1}\right)=0 \tag{2.11}
\end{equation*}
$$

for all $x_{1}, y_{1} \in I$. By $\left[4\right.$, Theorem 2], \mathbb{Q} as well as \mathbb{R} satisfy the polynomial identity $a\left(x_{1} \circ_{m} y_{1}\right)=$ 0 . By [3, Lemma 1], we have $\mathbb{R} \subseteq \mathbb{M}_{n}(\mathbb{F})$, the ring of $n \times n$ matrices over some field \mathbb{F}, where $n \geq 1$. Also, $\mathbb{M}_{n}(\mathbb{F})$ and \mathbb{R} satisfy the same polynomial identity, i.e, $a\left(x_{1} \circ_{m} y_{1}\right)=0$, for any $x_{1}, y_{1} \in \mathbb{M}_{n}(\mathbb{F})$. To denote matrix unit with 1 in $(i, j)^{t h}$-entry and zero elsewhere, we use the notation $e_{i j}$. Taking $y_{1}=e_{11}, a=e_{11} x_{1}=e_{12}$, we see that $e_{11}\left(x_{1} \circ_{m} y_{1}\right)=e_{12} \neq 0$, a contradiction.

The case $\delta_{1}(x)=[q, x]+\gamma \delta_{2}(x)$ for some $\gamma \in \mathbb{C}$ and $q \in \mathbb{U}$ is analogous.
Case 3 Now assume δ_{1} and δ_{2} are Outer. Now by Kharchenko's Theorem [15], we have

$$
a\left(b x \circ_{m} c y+x_{1} \circ_{m} c y+c x \circ_{m} y_{1}+x_{1} \circ_{m} y_{1}-x \circ_{m} y\right)=0
$$

for any $x_{1}, y_{1}, x, y \in \mathbb{K}$. For $y=x=0$, we have

$$
\begin{equation*}
a\left(x_{1} \circ_{m} y_{1}\right)=0 \tag{2.12}
\end{equation*}
$$

which is same as (2.11). Therefore, by the similar arguments as above this leads that R is commutative. This overpast the proof of theorem.

If we take $\pi_{1}=\pi_{2}=\pi$, we have the following corollary:

Corollary 2.4. Let m be the fixed positive integer and \mathbb{K} be a nonzero ideal of a prime ring \mathbb{R} with characteristic different from 2 . If \mathbb{R} admits a generalized derivation π with associated derivation δ and $0 \neq a \in \mathbb{R}$ such that $a\left(\pi(x) \circ_{m} \pi(y)-x \circ_{m} y\right)=0$ for all $x, y \in \mathbb{K}$, then either \mathbb{R} is commutative or there exists $\alpha \in \mathbb{C}$, extended centroid of \mathbb{R} such that $\pi(x)=\alpha x$ for all $x \in \mathbb{R}$ with $a\left(\alpha^{2 m}-1\right)=0$.

Proof of Theorem 1.2 By hypothesis

$$
\begin{equation*}
a\left([\pi(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0 \text { for any } y, x \in \mathbb{K} . \tag{2.13}
\end{equation*}
$$

By Remark 2.1, we have

$$
\begin{equation*}
a\left([\pi(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0 \text { for any } y, x \in \mathbb{U} . \tag{2.14}
\end{equation*}
$$

By Remark 2.2, $\pi(x)=b x+\delta(x)$ for some $b \in \mathbb{U}$ and derivation δ on \mathbb{U}. Then we have

$$
\begin{equation*}
a\left([b x+\delta(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0 \text { for any } y, x \in \mathbb{U} . \tag{2.15}
\end{equation*}
$$

That is

$$
\begin{equation*}
a\left([b x, y]_{m}+[\delta(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0 \text { for any } y, x \in \mathbb{U} \tag{2.16}
\end{equation*}
$$

The proof is divided into the following cases on the basis of Kharchenko's theorem [15, Theorem 2]:
Case I Let δ be an inner derivation i.e $\delta(x)=[q, x]$ for any $x \in \mathbb{U}$ and for some $q \in \mathbb{U}$. Then

$$
\begin{equation*}
\mathbb{F}(x, y)=a\left([b x, y]_{m}+[\delta(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0 \text { for any } y, x \in \mathbb{U} \tag{2.17}
\end{equation*}
$$

If \mathbb{C} is infinite, then $\mathbb{U} \bigotimes_{\mathbb{C}} \overline{\mathbb{E}}$ satisfies (2.5), where $\overline{\mathbb{E}}$ stands for algebraic closure of \mathbb{C}. By [12], \mathbb{U} and $\mathbb{U} \otimes_{\mathbb{C}} \mathbb{E}$ are centrally closed and prime. Therefore, we may replace \mathbb{R} by $\mathbb{U} \otimes_{\mathbb{C}} \mathcal{E}$ or \mathbb{U} according to \mathbb{C} is infinite or finite. Thus we may assume that \mathbb{R} is centrally closed over \mathbb{C} which is
either algebraically closed and $\mathbb{F}(x, y)=0$ for any $y, x \in \mathbb{R}$ or finite. By the use of Martindale's theorem [12], \mathbb{R} is primitive ring with \mathbb{D} as associative division ring as well as \mathbb{R} has nonzero socle, $\operatorname{soc}(\mathbb{R})$. By [9], \mathbb{R} and dense ring of linear transformations for some vector space \mathbb{V} over \mathbb{C} are isomorphic i.e $\mathbb{R} \cong \mathbb{M}_{k}(\mathbb{D})$, where $k=\operatorname{dim}_{\mathbb{D}} \mathbb{V}$. Assume that $\operatorname{dim}_{\mathbb{D}} \mathbb{V} \geqslant 2$, otherwise we are done. Also assume that there exists $v \in \mathbb{V}$ such that $q v$ and v are linearly \mathbb{D}-independent.

Since $\operatorname{dim}_{\mathbb{D}} \mathbb{V} \geqslant 2$, we can find an element $w \in \mathbb{V}$ such that $\{w, q v, v\}$ is linearly independent over \mathbb{D}. By the density of the ring \mathbb{R}, we can find $x, y \in \mathbb{R}$ such that

$$
\begin{equation*}
x v=0, y w=v, x q v=w, x w=0, y v=0, y q v=v . \tag{2.18}
\end{equation*}
$$

Multiplying equation (2.17) from right by v and using conditions in equation (2.18), we get $a v=0$. By the same argument that we have used in preecedant, we have $\{q v, v\}$ is linearly dependent and hence $q \in Z(R)$ i.e $d=0$.
Case 2 Let d be an outer derivation. Then

$$
\begin{equation*}
a\left([b x, y]_{m}+\left[x_{1}, y\right]_{m}+\left[x, y_{1}\right]_{n}-[x, y]\right)=0 \text { for any } y, x, x_{1}, y_{1}, s \in \mathbb{K} . \tag{2.19}
\end{equation*}
$$

In particular, choosing $y=0$, we get $a\left(\left[x, y_{1}\right]_{n}\right)=0$ for any $y_{1}, x \in \mathbb{K}$. By [4, Theorem 2], \mathbb{Q} as well as \mathbb{R} satisfy the polynomial identity $a\left(\left[x, y_{1}\right]_{n}\right)=0$. By [3, Lemma 1], we have $\mathbb{R} \subseteq \mathbb{M}_{n}(\mathbb{F})$, the ring of $n \times n$ matrices over some field \mathbb{F}, where $n \geq 1$. Also, $\mathbb{M}_{n}(\mathbb{F})$ and \mathbb{R} satisfy the same polynomial identity, i.e, $a\left(\left[x, y_{1}\right]_{n}\right)=0$, for any $x, y_{1} \in \mathbb{M}_{n}(\mathbb{F})$. To denote matrix unit with 1 in $(i, j)^{t h}$-entry and zero elsewhere, we use the notation $e_{i j}$. Taking $y_{1}=e_{11}, a=e_{11} x_{1}=e_{12}$, we see that $e_{11}\left(\left[x, y_{1}\right]_{m}\right)=e_{12} \neq 0$, a contradiction.

Proof of Theorem 1.3 We know that any derivation defined on \mathbb{R}, a semiprime ring can be uniquely extended to a derivation on \mathbb{U}, left Utumi ring of quotient of \mathbb{R} and hence every derivation of \mathbb{R} can be defined on $\mathbb{U}[14$, Lemma 2]. Also, \mathbb{U} and \mathbb{R} satisfy the same generalized polynomial identity (GPI) and differential identities (see [4] and [14]). By [13, Theorem 4], π can be expressed as $\pi(x)=\delta(x)+b x$ for some $b \in \mathbb{U}$ and a derivation δ defined on \mathbb{U}. We have

$$
\begin{equation*}
a\left([b x, y]_{m}+[\delta(x), y]_{m}+[x, \delta(y)]_{n}-[x, y]\right)=0 \text { for any } y, x \in U \tag{2.20}
\end{equation*}
$$

Let $\mathbb{M}(\mathbb{C})=\{\mathbb{A} \mid \mathbb{A}$ is maximal ideal of $\mathbb{C}\}$ and let $\mathbb{P} \in \mathbb{M}(\mathbb{C})$. Then $\mathbb{P} \mathbb{U}$ is prime ideal of \mathbb{U} which is invariant under all derivation of \mathbb{U} by the theory of orthogonal completions of semiprime ring $([14$, p.31-32]). Also, $\bigcap\{\mathbb{P} \mathbb{U} \mid \mathbb{P} \in \mathbb{M}(\mathbb{C})\}=\{0\}$. Setting $\mathbb{U}=\mathbb{U} / \mathbb{P} \mathbb{U}$. Now any derivation δ of \mathbb{R} canonically induces a derivation $\bar{\delta}$ on $\overline{\mathbb{U}}$ defined by $\bar{\delta}(\bar{x})=\overline{\delta(x)}$ for any $x \in \overline{\mathbb{U}}$. Then

$$
\bar{a}\left([\bar{b} \bar{x}, \bar{y}]_{m}+[\overline{\delta(x)}, \bar{y}]_{m}+[\bar{x}, \overline{\delta(y)}]_{n}-[x, y]\right)=0
$$

for all $\bar{x}, \bar{y} \in \overline{\mathbb{U}}$. It is clear that $\overline{\mathbb{U}}$ is a prime ring. So by the use of Theorem 1.2 , we have, either $[\mathbb{U}, \mathbb{U}] \subseteq \mathbb{P} \mathbb{U}$ or $\delta(\mathbb{U}) \subseteq \mathbb{P} \mathbb{U}$ for any $\mathbb{P} \in \mathbb{M}(\mathbb{C})$. This gives that $\delta(\mathbb{U})[\mathbb{U}, \mathbb{U}] \subseteq \mathbb{P} \mathbb{U}$ for any $\mathbb{P} \in \mathbb{M}(\mathbb{C})$. Since $\bigcap\{\mathbb{U} \mid \mathbb{P} \in \mathbb{M}(\mathbb{C})\}=\{0\}$, we have $\delta(\mathbb{U})[\mathbb{U}, \mathbb{U}]=\{0\}$. In particular, we have $\delta(\mathbb{R})[\mathbb{R}, \mathbb{R}]=\{0\}$. Further, this can be written as $[\delta(\mathbb{R}), \mathbb{R}] \mathbb{R}[\delta(\mathbb{R}), \mathbb{R}]=0$. Since \mathbb{R} is a semiprime ring, we obtain that $[\delta(\mathbb{R}), \mathbb{R}]=0$. Then by $[17$, Theorem 3$], \mathbb{R}$ contains a nonzero central ideal.

The following examples demonstrate that \mathbb{R} to be prime can not be omitted in the hypothesis of Theorem 1.1 and Theorem 1.2.

Example 2.5. For any ring \mathbb{R}_{1} which has characteristic different from two, let $R=\left\{\left.\left(\begin{array}{cc}z & w \\ 0 & 0\end{array}\right) \right\rvert\,\right.$ $\left.z, w \in \mathbb{R}_{1}\right\}$ and $\mathbb{K}=\left\{\left.\left(\begin{array}{cc}0 & w \\ 0 & 0\end{array}\right) \right\rvert\, w \in \mathbb{R}_{1}\right\}$. Then \mathbb{K} is a nonzero ideal of \mathbb{R}. Define maps $\pi_{1}, \pi_{2}, \delta_{2}, \delta_{1}: \mathbb{R} \rightarrow \mathbb{R}$ by $\pi_{1}\left(\left(\begin{array}{cc}z & w \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}z & 2 w \\ 0 & 0\end{array}\right), \pi_{2}\left(\left(\begin{array}{cc}z & w \\ 0 & 0\end{array}\right)\right)=$ $\left(\begin{array}{cc}z & 0 \\ 0 & 0\end{array}\right), \delta_{1}\left(\left(\begin{array}{cc}z & w \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{cc}0 & -w \\ 0 & 0\end{array}\right)$ and $\delta_{2}\left(\left(\begin{array}{cc}z & w \\ 0 & 0\end{array}\right)\right)=\left(\begin{array}{ll}0 & w \\ 0 & 0\end{array}\right)$ Then π_{1}
and π_{2} are generalized derivations on \mathbb{R} associated with derivations δ_{1} and δ_{2} respectively satisfying $a\left(\pi_{1}(x) \circ_{m} \pi_{2}(y)-x \circ_{m} y\right)=0$ for all $x, y \in \mathbb{K}$. However neither \mathbb{R} is commutative nor $\pi_{1}(x)=\alpha x$ and $\pi_{2}(x)=\beta x$ for all $x \in \mathbb{R}$ as δ_{1} and δ_{2} are nonzero. Hence Theorem 1.1 is not true for arbitrary rings.

Example 2.6. Let $\mathbb{R}=\left\{\left.\left(\begin{array}{cc}x & y \\ 0 & z\end{array}\right) \right\rvert\, x, y, z \in \mathbb{R}_{1}\right\}$ and $\mathbb{K}=\left\{\left.\left(\begin{array}{cc}0 & y \\ 0 & 0\end{array}\right) \right\rvert\, y \in \mathbb{R}_{1}\right\}$, where \mathbb{R}_{1} is a ring which has characteristic different from two. Then \mathbb{K} is a nonzero ideal of \mathbb{R}. Define $\operatorname{maps} \pi, \delta: \mathbb{R} \rightarrow \mathbb{R}$ by $\pi\left(\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)\right)=\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)$ and $\delta\left(\left(\begin{array}{ll}x & y \\ 0 & z\end{array}\right)\right)=\left(\begin{array}{ll}0 & y \\ 0 & 0\end{array}\right)$. Then π is a generalized derivation associated with the derivation δ satisfying $a\left([\pi(x), y]_{m}+\right.$ $\left.[x, \delta(y)]_{n}-[x, y]\right)=0$ for all $x, y \in \mathbb{K}$. However neither \mathbb{R} is commutative nor $\pi(x)=b x$ for all $x \in \mathbb{R}$ as δ is nonzero. Hence Theorem 1.2 does not hold for arbitrary rings.

References

[1] M. Ashraf , N. Rehman, On commutativity of rings with derivations, Results Math.,42, 3-8 (2002).
[2] B. Dhara, S. Ali, A. Pattanayak, Identities with generalized derivations in semiprime rings, Demonstratio Mathematica, XLVI(3), 453-460 (2013).
[3] C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc., 118, 731-734 (1993).
[4] C.L Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103, 723-728 (1988).
[5] H.E. Bell, M.N. Daif, On commutativity and strong commutativity-preserving maps, Cand. Math. Bull., 37, 443-447 (1994).
[6] J.H. Mayne, Centralizing mappings of prime rings, Cand. Math. Bull., 27, 122-126 (1984).
[7] K.I. Beidar, W.S. Martindale III, A.V. Mikhalev, Rings with generalized identities, Int. Pure and Applied Mathematics, Dekker, New York, 1996.
[8] M. Brĕsar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, 89-93 (1991).
[9] N. Jacobson, Structure of Rings, Colloq. Publications, Amer. Math. Soc., 1956.
[10] S. Huang, Derivation with Engel conditions in prime and semiprime rings, Czechoslovak Math. J., 61, 1135-1140 (2011).
[11] S. Huang, Generalized derivation of prime rings, International Journal of Mathematics and Mathematical Sciences, 2007, (2007).
[12] T. Erickson, W.S. Martindale III, J.M. Osborn, Prime nonassociative algebras, Pacific J. Math., 60, 49-63 (1975).
[13] T.K. Lee, Generalized derivations of left faithful rings, Commun. Algebra, 27, 4057-4073 (1999).
[14] T.K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sin., 8, 27-38 (1992).
[15] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17, 155-168 (1978).
[16] A. Ali, V. De Filippis, S. Khan, Power Values of Generalized Derivations with Annihilator Conditions in Prime Rings, Comm. Algebra, 44, 87-97 (2016).
[17] H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 , 92-101 (1987).

Author information

Asma Ali, ${ }^{1}$ Md Hamidur Rahaman and Farhat Ali, Department of Mathematics, Aligarh Muslim University, Aligarh-202002, ${ }^{1}$ Department of Mathematics, A.P.C Roy Govt. College, Siliguri-734010, India.
E-mail: asma_ali2@rediffmail.com, rahamanhamidmath@gmail.com, 04farhatamu@gmail.com
Received: October 1, 2020
Accepted: January 9, 2021

