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Abstract Let π1 and π2 be two generalized derivations of a ring R with associated derivations
δ1 and δ2 respectively. Let m,n ≥ 1 are fixed positive integers and K be a nonzero ideal of R.
In the present paper we discuss the left annihilator of the following two sets: {π1(a) ◦m π2(b)−
a ◦m b| a, b ∈ K} and {[π1(a), b]m + [a, δ1(b)]n − [a, b]| a, b ∈ K} and give a characterization
of π1 and π2. Moreover, we examine the case when R is a semiprime ring. Finally, we provide
examples to show that various restrictions imposed in the hypotheses of our theorems are not
superfluous.

1 Introduction

Throughout the paper R is always an associative ring with centre Z(R), C the extended centroid
of R, U its Utumi quotient ring and Q is the Martindale ring of quotients of R. Let x, y ∈ R,
[x, y] and x ◦ y stand for commutator xy − yx and anti-commutator xy + yx respectively. Also,
we set x ◦0 y = x, x ◦1 y = x ◦ y = xy + yx and x ◦m y = (x ◦m−1 y)y + y(x ◦m−1 y)
for m > 2 and [x, y]0 = x, [x, y]1 = xy − yx and [x, y]m = [x, y]m−1y − y[x, y]m−1,m ≥ 2
in non-commuting indeterminates x and y. Recall that a ring R is prime if xRy = {0} gives
that either x = 0 or y = 0 for all x, y ∈ R and is semiprime if xRx = {0} gives that x = 0
for all x ∈ R. Our target is to establish a relation between structure of ring and the nature of
favorable mapping defined on it. A map δ : R → R is called a derivation of R if δ is additive
and δ(ab) = δ(a)b + aδ(b) for any b, a ∈ R. If δ can be expressed as δ(a) = [b, a] for some
element b ∈ R, then δ is called an inner derivation. We use generally the notation Ib(a) to denote
inner derivation. By a generalized inner derivation on R, we mean a self mapping π on R if π is
additive and π(a) = ba + ac for some fixed b, c ∈ R. For suchlike mapping π, we can see that
π(ab) = a[c, b]+π(a)b = aIc(b)+π(a)b, where Ic denotes the inner derivation. This observation
gives the following definition: a map π : R → R is said to be a generalized derivation on R if
π(zw) = π(z)w + zδ(w) for all w, z ∈ R, where δ is a derivation on R.

Ashraf et al. [1] investigates the commutativity of a prime ring R admitting a derivation δ
satisfying δ(a)◦ δ(b) = a◦ b for all a, b ∈ I, where I is a nonzero ideal of R. Further, Huang [11]
proved that if L is a square closed Lie ideal of a prime ring R with characteristic different from
2 and generalized derivation π with associated derivation δ satisfying π(a) ◦ δ(b) = a ◦ b for all
a, b ∈ L, then either R is commutative or δ = 0.

Motivated by the above mentioned results, we prove the following:

Theorem 1.1. Let m be the fixed positive integer and K be a nonzero ideal of a prime ring R
with characteristic different from 2. If R admits generalized derivations π1 and π2 with associated
derivations δ1 and δ2 respectively and 0 6= a ∈ R such that a(π1(x) ◦m π2(y)− x ◦m y) = 0 for
all x, y ∈ K, then either R is commutative or there exist α and β ∈ C, extended centroid of R
such that π1(x) = αx and π2(x) = βx for all x ∈ R with a(αmβm − 1) = 0.

Huang [10] proved that if K is a nonzero ideal of a prime ring R with characteristic differ-
ent from 2 admitting a nonzero derivation δ satisfying [δ(x), δ(y)]m = [x, y]n for any y, x ∈ K
, for some positive integers m,n, then R is commutative. In this line of investigation, Dhara
et al. [2] proved the following: Let K be a nonzero ideal of a 2-torsion free semiprime ring
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R admitting a generalized derivation π with associated derivation δ such that δ(K) 6= {0}. If
[δ(y), π(x)] = ±[y, x] holds for all x, y ∈ K, then R contains a nonzero central ideal.

Tendentious by the above results, we prove

Theorem 1.2. Let m,n be fixed positive integers, K be a nonzero ideal of a prime ring R with
characteristic different from 2 and 0 6= a ∈ R. If π is a generalized derivation of R with
associated derivation δ satisfying a([π(x), y]m + [x, δ(y)]n − [x, y]) = 0 for all x, y ∈ K, then
either R is commutative or there exist b ∈ U such that π(x) = bx for all x ∈ R.

Theorem 1.3. Let m,n be fixed positive integers and R is a semiprime ring with characteristic
different from 2 and 0 6= a ∈ R. If π is a generalized derivation of R with associated derivation
δ satisfying a([π(x), y]m + [x, δ(y)]n − [x, y]) = 0 for all x, y ∈ R, then R contains a nonzero
central ideal.

2 Main Results

We will use frequently the following important result due to Kharchenko [15]:
Let 0 6= δ be a derivation of a prime ring R and {0} 6= K be an ideal of R. Let
g(p1, ..., pn, δ(p1), ..., δ(pn)) be a differential identity in K i.e,

g(w1, ..., wn, δ(w1), ..., δ(wn)) = 0 for all w1, w2, ..., wn ∈ K.

Then we have exactly one of the following
(i) δ is an inner in Q, Martindale ring of quotient of R
(ii) δ is Q-outer and the following GPI is satisfied by K

g(w1, ..., wn, y1, ..., yn) = 0.

Remark 2.1. Let K be an ideal of R. Then
(i) U, R and K satisfy the same differential identities. [14, Theorem 2]
(ii) U, R and K satisfy the same GPI with coefficients in U .[4, Theorem 2]

Remark 2.2. Let π be a generalized derivation defined on a dense right ideal of a semiprime
ring R. Then π can be uniquely extended to U which takes the form π(x) = ax + δ(x), where
δ is a derivation on U and for some a ∈ U. Moreover, a and δ are uniquely determined by the
generalized derivation π. [13, Theorem 4]

Remark 2.3. Let F be a field, R a dense ring of F-linear transformations (over a vector space V)
of char(R) 6= 2 with dimCV ≥ 2, p, c ∈ R, and 0 6= c /∈ Z(R). Assume pv = 0, for any v ∈ V
such that {v, cv} is linear F-independent. Then p = 0. [16, Lemma 2.1]

Proof of Theorem 1.1 By hypothesis

a(π1(x) ◦m π2(y)− x ◦m y) = 0 for all x, y ∈ K. (2.1)

By Remark 2.2, π1(x) = bx+ δ1(x) and π2(x) = cx+ δ2(x) for some b, a ∈ U and derivations
δ1, δ2 on U. Hence

a((bx+ δ1(x)) ◦m (cy + δ2(y))− x ◦m y) = 0 for all x, y ∈ K. (2.2)

By Remark 2.1, we have

a((bx+ δ1(x)) ◦m (cy + δ2(y))− x ◦m y) = 0 for all x, y ∈ U (2.3)

that is

a(bx ◦m cy + δ1(x) ◦m cy + cx ◦m δ2(y) + δ1(x) ◦m δ2(y)− x ◦m y) = 0 (2.4)

for all x, y ∈ U.
Here the proof is divided into the following cases:
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Case 1 If both δ1 and δ2 are inner derivations, then δ1(x) = [q, x] and δ2(x) = [p, x] for any
x ∈ U and for some q and p ∈ U respectively. So, we have

F(x, y) = a(bx ◦m cy + [q, x] ◦m cy + cx ◦m [p, y]

+ [q, x] ◦m [p, y]− x ◦m y) = 0 for any y, x ∈ U. (2.5)

If C is infinite, then U
⊗

C Ē satisfies (2.5), where Ē stands for algebraic closure of C. By [12],
U and U ⊗C E are centrally closed and prime. Therefore, we may replace R by U ⊗C E or U
according to C is infinite or finite. Thus we may assume that R is centrally closed over C which is
either algebraically closed and F(x, y) = 0 for any x, y ∈ R or finite. By the use of Martindale’s
theorem [12], R is primitive ring with D as associative division ring as well as R has nonzero
socle, soc(R). By [9], R and dense ring of linear transformations for some vector space V over
C are isomorphic i.e R ∼= Mk(D), where k = dimDV. Assume that dimDV > 2, otherwise we
are done. Also assume that there exists v ∈ V such that qv and v are linearly D-independent.

If pv is not a member of the span of {v, qv}, then {v, pv, qv} is linearly independent. By the
density of ring R, there exist x, y ∈ R such that

xqv = −v, xv = 0, ypv = v, yv = 0, xpv = 0, yqv = v. (2.6)

Multiplying equation (2.5) by v from right and using conditions in equation (2.6), we get

a(−1)m−12m−1v = 0.

Since R has characteristic different from 2, we have av = 0. If a ∈ Z(R), then v = 0, a
contradiction. If a /∈ Z(R), then by Remark 2.3, we have a = 0, again a contradiction.

If pv is a member of the span of {v, qv}, then p = vα+ qvβ for some α, 0 6= β ∈ D. Again
by the density of ring R, there exist x, y ∈ R such that

xv = 0, yqv = v, xqv = −v, yv = 0. (2.7)

Again multiplying equation (2.5) by v from right and using conditions in equations (2.7), we get

a(−1)m−12m−1vβ = 0.

Again using that R has characteristic different from 2, we have av = 0. Using the same argu-
ments as used, we get a = 0, a contradiction.

Therefore, {v, qv} is linearly dependent over D and hence q ∈ Z(R) i.e δ1 = 0. Similarly, we
can show that δ2 = 0. From (2.4), we have the following

a(bx ◦m cy − x ◦m y) = 0 for all x, y ∈ U. (2.8)

Let for any u ∈ V, {u, bu} is linearly independent. Since dimDV > 2, we can choose t ∈ V such
that {u, bu, t} is also linearly independent. By density of R, there exist x, y ∈ R such that

xu = 0, xbu = 0, xt = u, yu = t, ybu = 0, yt = 0. (2.9)

Now mulplying (2.8) by u from right, we get au = 0. Using the arguments that have been used
above, we get contradiction. Therefore, {u, bu} is linearly dependent i.e b ∈ C. Similary, we can
show that c ∈ C. Using these in (2.8), we get

a(bmcm − 1)x ◦m y = 0. (2.10)

In particular, for x = y, we have a(bmcm − 1)xm+1 = 0. Using primeness of R, we get
a(bmcm − 1) = 0
Case 2 Let δ1 and δ2 are not both inner derivations of U . Then δ1 and δ2 are C-linearly dependent
modulo Dint i.e δ2(y) = [p, y]+βδ1(y) for some p ∈ U and β ∈ C. If either β = 0 or δ2 is inner,
then δ1 is also inner which is a contradiction. So, β 6= 0 and δ2 is not inner. Then by (2.4), we
have

a(bx ◦m cy + δ1(x) ◦m cy + cx ◦m ([p, y] +

βδ1(y)) + δ1(x) ◦m ([p, y] + βδ1(y))− x ◦m y) = 0 for any x, y ∈ U.



Left annihilator of identity with pair of generalized derivations 111

Use of Kharchenko’s Theorem [15] gives that

a(bx ◦m cy + x1 ◦m cy + cx ◦m ([p, y] +

βy1) + x1 ◦m ([p, y] + βy1)− x ◦m y) = 0

for all x1, y1, x, y ∈ K. Taking y = 0 = x, we obtain

a(x1 ◦m y1) = 0 (2.11)

for all x1, y1 ∈ I . By [4, Theorem 2], Q as well as R satisfy the polynomial identity a(x1◦my1) =
0. By [3, Lemma 1], we have R ⊆ Mn(F), the ring of n × n matrices over some field F, where
n ≥ 1. Also, Mn(F) and R satisfy the same polynomial identity, i.e, a(x1 ◦m y1) = 0, for
any x1, y1 ∈ Mn(F). To denote matrix unit with 1 in (i, j)th-entry and zero elsewhere, we use
the notation eij . Taking y1 = e11, a = e11x1 = e12, we see that e11(x1 ◦m y1) = e12 6= 0, a
contradiction.

The case δ1(x) = [q, x] + γδ2(x) for some γ ∈ C and q ∈ U is analogous.
Case 3 Now assume δ1 and δ2 are Outer. Now by Kharchenko’s Theorem [15], we have

a(bx ◦m cy + x1 ◦m cy + cx ◦m y1 + x1 ◦m y1 − x ◦m y) = 0

for any x1, y1, x, y ∈ K. For y = x = 0, we have

a(x1 ◦m y1) = 0 (2.12)

which is same as (2.11). Therefore, by the similar arguments as above this leads that R is com-
mutative. This overpast the proof of theorem.

If we take π1 = π2 = π, we have the following corollary:

Corollary 2.4. Let m be the fixed positive integer and K be a nonzero ideal of a prime ring
R with characteristic different from 2. If R admits a generalized derivation π with associated
derivation δ and 0 6= a ∈ R such that a(π(x) ◦m π(y) − x ◦m y) = 0 for all x, y ∈ K, then
either R is commutative or there exists α ∈ C, extended centroid of R such that π(x) = αx for
all x ∈ R with a(α2m − 1) = 0.

Proof of Theorem 1.2 By hypothesis

a([π(x), y]m + [x, δ(y)]n − [x, y]) = 0 for any y, x ∈ K. (2.13)

By Remark 2.1, we have

a([π(x), y]m + [x, δ(y)]n − [x, y]) = 0 for any y, x ∈ U. (2.14)

By Remark 2.2, π(x) = bx+ δ(x) for some b ∈ U and derivation δ on U. Then we have

a([bx+ δ(x), y]m + [x, δ(y)]n − [x, y]) = 0 for any y, x ∈ U. (2.15)

That is

a([bx, y]m + [δ(x), y]m + [x, δ(y)]n − [x, y]) = 0 for any y, x ∈ U. (2.16)

The proof is divided into the following cases on the basis of Kharchenko’s theorem [15, Theorem
2]:
Case I Let δ be an inner derivation i.e δ(x) = [q, x] for any x ∈ U and for some q ∈ U. Then

F(x, y) = a([bx, y]m + [δ(x), y]m + [x, δ(y)]n − [x, y]) = 0 for any y, x ∈ U. (2.17)

If C is infinite, then U
⊗

C Ē satisfies (2.5), where Ē stands for algebraic closure of C. By [12],
U and U ⊗C E are centrally closed and prime. Therefore, we may replace R by U ⊗C E or U
according to C is infinite or finite. Thus we may assume that R is centrally closed over C which is
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either algebraically closed and F(x, y) = 0 for any y, x ∈ R or finite. By the use of Martindale’s
theorem [12], R is primitive ring with D as associative division ring as well as R has nonzero
socle, soc(R). By [9], R and dense ring of linear transformations for some vector space V over
C are isomorphic i.e R ∼= Mk(D), where k = dimDV. Assume that dimDV > 2, otherwise we
are done. Also assume that there exists v ∈ V such that qv and v are linearly D-independent.

Since dimDV > 2, we can find an element w ∈ V such that {w, qv, v} is linearly independent
over D. By the density of the ring R, we can find x, y ∈ R such that

xv = 0, yw = v, xqv = w, xw = 0, yv = 0, yqv = v. (2.18)

Multiplying equation (2.17) from right by v and using conditions in equation (2.18), we get
av = 0. By the same argument that we have used in preecedant, we have {qv, v} is linearly
dependent and hence q ∈ Z(R) i.e d = 0.
Case 2 Let d be an outer derivation. Then

a([bx, y]m + [x1, y]m + [x, y1]n − [x, y]) = 0 for any y, x, x1, y1, s ∈ K. (2.19)

In particular, choosing y = 0, we get a([x, y1]n) = 0 for any y1, x ∈ K. By [4, Theorem 2], Q as
well as R satisfy the polynomial identity a([x, y1]n) = 0. By [3, Lemma 1], we have R ⊆Mn(F),
the ring of n× n matrices over some field F, where n ≥ 1. Also, Mn(F) and R satisfy the same
polynomial identity, i.e, a([x, y1]n) = 0, for any x, y1 ∈Mn(F). To denote matrix unit with 1 in
(i, j)th-entry and zero elsewhere, we use the notation eij . Taking y1 = e11, a = e11x1 = e12, we
see that e11([x, y1]m) = e12 6= 0, a contradiction.

Proof of Theorem 1.3 We know that any derivation defined on R, a semiprime ring can be
uniquely extended to a derivation on U, left Utumi ring of quotient of R and hence every deriva-
tion of R can be defined on U [14, Lemma 2]. Also, U and R satisfy the same generalized
polynomial identity (GPI) and differential identities (see [4] and [14]). By [13, Theorem 4], π
can be expressed as π(x) = δ(x)+ bx for some b ∈ U and a derivation δ defined on U. We have

a([bx, y]m + [δ(x), y]m + [x, δ(y)]n − [x, y]) = 0 for any y, x ∈ U. (2.20)

Let M(C) = {A | A is maximal ideal of C} and let P ∈ M(C). Then PU is prime ideal of U
which is invariant under all derivation of U by the theory of orthogonal completions of semiprime
ring ([14, p.31-32]). Also,

⋂
{PU | P ∈M(C)} = {0}. Setting U = U/PU. Now any derivation

δ of R canonically induces a derivation δ on U defined by δ(x) = δ(x) for any x ∈ Ū. Then

ā([b̄x̄, ȳ]m + [δ(x), ȳ]m + [x̄, δ(y)]n − [x, y]) = 0

for all x, y ∈ U. It is clear that U is a prime ring. So by the use of Theorem 1.2, we have,
either [U,U] ⊆ PU or δ(U) ⊆ PU for any P ∈M(C). This gives that δ(U)[U,U] ⊆ PU for
any P ∈M(C). Since

⋂
{U | P ∈M(C) } = {0}, we have δ(U)[U,U] = {0}. In particular, we

have δ(R)[R,R] = {0}. Further, this can be written as [δ(R),R]R[δ(R),R] = 0. Since R is a
semiprime ring, we obtain that [δ(R),R] = 0. Then by [17, Theorem 3], R contains a nonzero
central ideal.

The following examples demonstrate that R to be prime can not be omitted in the hypothesis
of Theorem 1.1 and Theorem 1.2.

Example 2.5. For any ring R1 which has characteristic different from two, letR =

{(
z w

0 0

)
|

z, w ∈ R1

}
and K =

{(
0 w

0 0

)
| w ∈ R1

}
. Then K is a nonzero ideal of R. De-

fine maps π1, π2, δ2, δ1 : R → R by π1

((
z w

0 0

))
=

(
z 2w
0 0

)
, π2

((
z w

0 0

))
=(

z 0
0 0

)
, δ1

((
z w

0 0

))
=

(
0 −w
0 0

)
and δ2

((
z w

0 0

))
=

(
0 w

0 0

)
Then π1
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and π2 are generalized derivations on R associated with derivations δ1 and δ2 respectively satis-
fying a(π1(x) ◦m π2(y)− x ◦m y) = 0 for all x, y ∈ K. However neither R is commutative nor
π1(x) = αx and π2(x) = βx for all x ∈ R as δ1 and δ2 are nonzero. Hence Theorem 1.1 is not
true for arbitrary rings.

Example 2.6. Let R =

{(
x y

0 z

)
| x, y, z ∈ R1

}
and K =

{(
0 y

0 0

)
| y ∈ R1

}
, where

R1 is a ring which has characteristic different from two. Then K is a nonzero ideal of R. Define

maps π, δ : R → R by π

((
x y

0 z

))
=

(
x 0
0 0

)
and δ

((
x y

0 z

))
=

(
0 y

0 0

)
.

Then π is a generalized derivation associated with the derivation δ satisfying a([π(x), y]m +
[x, δ(y)]n − [x, y]) = 0 for all x, y ∈ K. However neither R is commutative nor π(x) = bx for
all x ∈ R as δ is nonzero. Hence Theorem 1.2 does not hold for arbitrary rings.
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