Vol. 11(2)(2022), 129-135

On some properties of $\mathcal{I}^{\mathcal{K}}$ -convergence

Shyamal Debnath and Chiranjib Choudhury

Communicated by V. Lokesha

MSC 2020 Classifications: Primary 40A35; Secondary 40A05.

Keywords and phrases: Ideal, Filter, \mathcal{I} -convergence, $\mathcal{I}^{\mathcal{K}}$ -convergence.

The authors are thankful to the referee for his/her useful comments. The second author is grateful to University Grants Commission, India for their fellowships funding under the UGC-JRF scheme during the preparation of this paper.

Abstract. In 2011 M. Macaj and M. Sleziak first introduced the concept of $\mathcal{I}^{\mathcal{K}}$ convergence mainly as a generalization of statistical convergence. In this paper, we introduce and investigate a few interesting properties of $\mathcal{I}^{\mathcal{K}}$ convergence of real sequences. We also study some implication relations between $\mathcal{I}, \mathcal{I}^*$, and $\mathcal{I}^{\mathcal{K}}$ -convergence of such sequences. Further, we find the conditions under which (i) $\mathcal{I}^{\mathcal{K}}$ -convergence implies \mathcal{K} -convergence, (ii) $\mathcal{I}^{\mathcal{K}}$ -convergence implies \mathcal{I} -convergence, (iii) \mathcal{I} -convergence implies $\mathcal{I}^{\mathcal{K}}$ -convergence, and (iv) $\mathcal{K}^{\mathcal{I}}$ -convergence implies $\mathcal{I}^{\mathcal{K}}$ -convergence.

1 Introduction

The main objective of this paper is to deal with various properties of $\mathcal{I}^{\mathcal{K}}$ -convergence which is a generalization of \mathcal{I}^* -convergence.

In 2000 the idea of ideal convergence was first introduced by Kostrkyo and Salat[11]. They studied various fundamental properties of \mathcal{I} and \mathcal{I}^* -convergence and found that their idea is a generalization of so many important convergence concepts introduced earlier. Based on \mathcal{I} -convergence several generalizations was made by researchers and several analytical and topological properties has been investigated (see [6], [7], [9], [10], [14], [15]) and this area becomes one of the most active areas of research.

On the other hand in 2011, M. Macaj and M. Sleziak extended the idea of \mathcal{I}^* -convergence to $\mathcal{I}^{\mathcal{K}}$ -convergence(see [12]) where \mathcal{I} and \mathcal{K} both are ideals. Later on, several investigations have been done in this area and some fruitful outcome has been reflected in ([1],[2],[3],[4],[5],[13],[16]).

2 Definitions and Preliminaries

Definition 2.1. A family $\mathcal{I} \subset 2^X$ of subsets of a nonempty set X is said to be an ideal in X if and only if (i) $\emptyset \in \mathcal{I}$ (ii) $A, B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$ (Additive) and (iii) $A \in \mathcal{I}, B \subset A$ implies $B \in \mathcal{I}$ (Hereditary).

If $\forall x \in X, \{x\} \in \mathcal{I}$ then \mathcal{I} is said to be admissible. Also, \mathcal{I} is said to be non-trivial if $X \notin \mathcal{I}$ and $\mathcal{I} \neq \{\emptyset\}$.

Some standard examples of ideal are given below:

(i) The set \mathcal{I}_f of all finite subsets of \mathbb{N} is an admissible ideal in \mathbb{N} .

(ii) The set \mathcal{I}_d of all subsets of natural numbers having natural density 0 is an admissible ideal in ℕ.

(iii) The set $\mathcal{I}_c = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-1} < \infty\}$ is an admissible ideal in \mathbb{N} . (iv) Suppose $\mathbb{N} = \bigcup_{p=1}^{\infty} D_p$ be a decomposition of \mathbb{N} (for $i \neq j$, $D_i \cap D_j = \emptyset$). Then the set \mathcal{I} of

all subsets of \mathbb{N} which intersects finitely many D_p 's forms an ideal in \mathbb{N} .

More important examples can be found in [9] and [10].

Definition 2.2. A family $\mathcal{F} \subset 2^X$ of subsets of a nonempty set X is said to be a filter in X if and only if (i) $\emptyset \notin \mathcal{F}$ (ii) $M, N \in \mathcal{F}$ implies $M \cap N \in \mathcal{F}$ and (iii) $M \in \mathcal{F}, N \supset M$ implies $N \in \mathcal{F}$.

If \mathcal{I} is a proper non-trivial ideal in X, then $\mathcal{F}(\mathcal{I}) = \{M \subset X : \exists A \in \mathcal{I} \ s.t \ M = X \setminus A\}$ is a filter in X. It is called the filter associated with the ideal \mathcal{I} .

Definition 2.3. [11] A sequence $x = (x_k)$ is said to be \mathcal{I} -convergent to l if and only if for every $\varepsilon > 0$, the set $\{k \in \mathbb{N} : |x_k - l| \ge \varepsilon\}$ belongs to \mathcal{I} . The real number l is called the \mathcal{I} -limit of the sequence $x = (x_k)$. Symbolically, $\mathcal{I} - \lim x = l$.

Definition 2.4. [11] Let \mathcal{I} be an admissible ideal in \mathbb{N} . A sequence $x = (x_k)$ is said to be \mathcal{I}^* -convergent to l, if there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\}$ in the associated filter $\mathcal{F}(\mathcal{I})$ such that $\lim_k x_{m_k} = l$.

Definition 2.5. [5] Let \mathcal{I} and \mathcal{K} be two ideals on the same set X. Then \mathcal{I} is said to have the additive property with respect to \mathcal{K} or the condition $AP(\mathcal{I}, \mathcal{K})$ holds if for every countable family of mutually disjoint sets $(A_1, A_2, ...)$ from \mathcal{I} there exists a countable family of sets $(B_1, B_2, ...)$

in \mathcal{I} such that the symmetric differences $A_j \triangle B_j \in \mathcal{K}$ for every $j \in \mathbb{N}$ and $\bigcup_{j=1}^{\infty} B_j \in \mathcal{I}$.

In particular, if we consider $X = \mathbb{N}$ and $\mathcal{K} = \mathcal{I}_f$ then we obtain the condition AP which was introduced by Kostyrko et al. in [11].

Definition 2.6. [12] Let \mathcal{I} and \mathcal{K} be two ideals in \mathbb{N} . A sequence $x = (x_k)$ is said to be $\mathcal{I}^{\mathcal{K}}$ -convergent to l if there exists $M \in \mathcal{F}(\mathcal{I})$ such that the sequence $y = (y_k)$ defined by $y_k = \begin{cases} x_k, & k \in M \\ l, & k \notin M \end{cases}$ is \mathcal{K} -convergent to l.

If we consider $\mathcal{K} = \mathcal{I}_f$ then $\mathcal{I}^{\mathcal{K}}$ -convergence concept coincides with \mathcal{I}^* -convergence [11]. Further, if we take $\mathcal{K} = \mathcal{I}_d$ then we get \mathcal{I}^* -statistical convergence which was introduced by Debnath and Rakshit in [6].

Note that $\mathcal{I}^{\mathcal{I}_d}$ -convergence implies \mathcal{I} -statistical convergence (Theorem 3.9 of [6]).

Example 2.7. Consider the decomposition of \mathbb{N} given by $\mathbb{N} = \bigcup_{p=1}^{\infty} D_p$ where $D_p = \{2^{p-1}(2s-1) : s = 1, 2, 3, ..\}$. Let \mathcal{I} be the ideal consisting of all subsets of \mathbb{N} which intersects finite number of D_p 's. Consider the sequence $x = (x_k)$ defined by $x_k = \frac{1}{p}$ if $k \in D_p$. Then the sequence is $\mathcal{I}^{\mathcal{I}}$ -convergent to 0.

Justification: Let $M = \mathbb{N} \setminus D_1$. Then $M \in \mathcal{F}(\mathcal{I})$ and it is easy to verify that the sequence $y = (y_k)$ defined by $y_k = \begin{cases} x_k, & k \in M \\ 0, & k \notin M \end{cases}$ is \mathcal{I} -convergent to 0. Thus $\mathcal{I}^{\mathcal{I}} - \lim x = 0$.

Remark 2.8. [1] If \mathcal{I} and \mathcal{K} are two ideals in \mathbb{N} then the set $\mathcal{I} \vee \mathcal{K} = \{A \cup B : A \in \mathcal{I}, B \in \mathcal{K}\}$ forms an ideal in \mathbb{N} . Further if $\mathcal{I} \vee \mathcal{K}$ is non-trivial then the dual filter of $\mathcal{I} \vee \mathcal{K}$ is denoted and defined by $\mathcal{F}(\mathcal{I} \vee \mathcal{K}) = \{M \cap N : M \in \mathcal{F}(\mathcal{I}), N \in \mathcal{F}(\mathcal{K})\}.$

Throughout the paper, unless stated, the symbols $\mathcal{I}, \mathcal{K}, \mathcal{I} \lor \mathcal{K}, \mathcal{I}_1, \mathcal{I}_2, \mathcal{K}_1$, and \mathcal{K}_2 stands for non-trivial admissible ideal in \mathbb{N} , and the sequences that we have considered are real sequences.

3 Main Results

Theorem 3.1. Suppose $x = (x_k)$ be a sequence such that $\mathcal{I}^{\mathcal{K}} - \lim x = l$. Then l is unique.

Proof. If possible suppose there exists $l_1, l_2 \in \mathbb{R}$, $l_1 \neq l_2$ such that

$$\mathcal{I}^{\mathcal{K}} - \lim x = l_1 \ and \ \mathcal{I}^{\mathcal{K}} - \lim x = l_2$$

So there exists $M, N \in \mathcal{F}(\mathcal{I})$ such that the sequences $y = (y_k)$ defined as $y_k = \begin{cases} x_k, & k \in M \\ l_1, & k \notin M \end{cases}$

and $z = (z_k)$ defined as $z_k = \begin{cases} x_k, & k \in N \\ l_2, & k \notin N \end{cases}$ are \mathcal{K} -convergent to l_1 and l_2 , respectively.

Therefore by Theorem 2.1 of [10], we can say that the sequence $y - z = (y_k - z_k)$ defined as **(**0. $k \in M \cap N$

$$y_k - z_k = \begin{cases} x_k - l_2, & k \in M \setminus N \\ l_1 - x_k, & k \in N \setminus M \\ l_1 - l_2, & k \in M^c \cap N^c \end{cases}$$
 is \mathcal{K} -convergent to $l_1 - l_2$. Thus by definition
$$\forall \varepsilon > 0, \ \{k \in \mathbb{N} : |(y_k - z_k) - (l_1 - l_2)| \ge \varepsilon\} \in \mathcal{K}.$$

Choose $\varepsilon = \frac{|l_1 - l_2|}{2}$. Then from Eq. (3.1) we get

$$\{k \in \mathbb{N} : |(y_k - z_k) - (l_1 - l_2)| \ge \frac{|l_1 - l_2|}{2}\} \in \mathcal{K}.$$

Now as the inclusion $M \cap N \subseteq \{k \in \mathbb{N} : |(y_k - z_k) - (l_1 - l_2)| \ge \frac{|l_1 - l_2|}{2}\}$ holds, so by hereditary of $\mathcal{K}, M \cap N \in \mathcal{K}$ which implies $\mathbb{N} \setminus (M \cap N) \in \mathcal{F}(\mathcal{K})$. Again as $M, N \in \mathcal{F}(\mathcal{I})$, so $M \cap N \in \mathcal{F}(\mathcal{I})$. Now $\mathbb{N} \setminus (M \cap N) \in \mathcal{F}(\mathcal{K})$ and $M \cap N \in \mathcal{F}(\mathcal{I})$ implies $(\mathbb{N} \setminus (M \cap N)) \cap (M \cap N) \in \mathcal{F}(\mathcal{I} \vee \mathcal{K})$ i.e $\emptyset \in \mathcal{F}(\mathcal{I} \vee \mathcal{K})$, a contradiction.

Theorem 3.2. Let \mathcal{I} , \mathcal{K} and $\mathcal{I} \vee \mathcal{K}$ be non-trivial ideal in \mathbb{N} such that $\mathcal{I}^{\mathcal{K}} - \lim x = l_1$ and $\mathcal{I}^{\mathcal{K}} - \lim y = l_2$. Then- $(i) \mathcal{I}^{\mathcal{K}} - \lim_{i \to \infty} (x + y) = l_1 + l_2 (ii) \mathcal{I}^{\mathcal{K}} - \lim_{i \to \infty} (xy) = l_1 l_2.$

Proof. (i) Suppose $\mathcal{I}^{\mathcal{K}} - \lim x = l_1$ and $\mathcal{I}^{\mathcal{K}} - \lim y = l_2$. Then by definition, there exists $M, N \in \mathcal{F}(\mathcal{I})$ such that the sequences $u = (u_k)$ defined by $u_k = \begin{cases} x_k, & k \in M \\ l_1, & k \notin M \end{cases}$ and $v = (v_k)$

defined by $v_k = \begin{cases} y_k, & k \in N \\ l_2, & k \notin N \end{cases}$ are \mathcal{K} -convergent to l_1 and l_2 , respectively. By Theorem 2.1(ii)

defined by $v_k - \lfloor l_2, k \notin N$ of [10], the sequence $u + v = (u_k + v_k)$ defined by $u_k + v_k = \begin{cases} x_k + y_k, k \in M \cap N \\ x_k + l_2, k \in M \setminus N \\ y_k + l_1, k \in N \setminus M \\ l_1 + l_2, k \in M^c \cap N^c \end{cases}$

 \mathcal{K} -convergent to $l_1 + l_2$. In other words

$$\forall \varepsilon > 0, \{k \in \mathbb{N} : |(u_k + v_k) - (l_1 + l_2)| \ge \varepsilon\} \in \mathcal{K}.$$
(3.2)

By definition of u + v we have

$$\{k \in \mathbb{N} : |(u_k + v_k) - (l_1 + l_2)| \ge \varepsilon\} = \{k \in M \cap N : |(x_k + y_k) - (l_1 + l_2)| \ge \varepsilon\}$$
$$\cup \{k \in M \setminus N : |x_k - l_1| \ge \varepsilon\}$$
$$\cup \{k \in N \setminus M : |y_k - l_2| \ge \varepsilon\}.$$
(3.3)

Clearly $M \cap N \in \mathcal{F}(\mathcal{I})$. Now consider the sequence $w = (w_k)$ defined as $w_k = \begin{cases} x_k + y_k, & k \in M \cap N \\ l_1 + l_2, & k \notin M \cap N \end{cases}$. Then from Eq. (3.2), (3.3) and by definition of w $\{k \in \mathbb{N} : |w_k - (l_1 + l_2)| \ge \varepsilon\} = \{k \in M \cap N : |w_k - (l_1 + l_2)| \ge \varepsilon\}$ $\cup \{k \in (M \cap N)^c : |w_k - (l_1 + l_2)| \ge \varepsilon\}$ $= \{k \in M \cap N : |(x_k + y_k) - (l_1 + l_2)| \ge \varepsilon\}$ $\subseteq \{k \in \mathbb{N} : |(u_k + v_k) - (l_1 + l_2)| > \varepsilon\} \in \mathcal{K}.$

From Eq. (3.4), it is clear that w is \mathcal{K} -convergent to $l_1 + l_2$. Hence x + y is $\mathcal{I}^{\mathcal{K}}$ -convergent to $l_1 + l_2$.

(ii) We omitted the proof as it can be obtained by applying similar technique.

Theorem 3.3. Let $\mathcal{I}^* - \lim x = l$ then $\mathcal{I}^{\mathcal{K}} - \lim x = l$.

(3.1)

(3.4)

Proof. Let $\mathcal{I}^* - \lim x = l$. Then there exists a set $M = \{m_1 < m_2 < ... < m_k < ...\} \in \mathcal{F}(\mathcal{I})$ such that $\lim_k x_{m_k} = l$. Which implies that the sequence $y = (y_k)$ defined as $y_k = \begin{cases} x_k, & k \in M \\ l, & k \notin M \end{cases}$ is ordinary convergent to l. Now by Theorem 2.1 of [10], we can say that for any ideal \mathcal{K} , the sequence $y = (y_k)$ is \mathcal{K} -convergent to l. Hence $x = (x_k)$ is $\mathcal{I}^{\mathcal{K}}$ -convergent to l.

Remark 3.4. Converse of the above theorem is not necessarily true. Consider Example 2.7. The sequence is $\mathcal{I}^{\mathcal{K}}$ -convergent to 0 for $\mathcal{K} = \mathcal{I}$. But it is not \mathcal{I}^* -convergent to 0 (Example 2.1 of [10]).

Theorem 3.5. Let $\mathcal{K} - \lim x = l$ then $\mathcal{I}^{\mathcal{K}} - \lim x = l$.

Proof. Since $\mathcal{K} - \lim x = l$, so for every $\varepsilon > 0$,

$$\{k \in \mathbb{N} : |x_k - l| \ge \varepsilon\} \in \mathcal{K}.$$
(3.5)

Choose $M = \mathbb{N}$ from $\mathcal{F}(\mathcal{I})$. Consider the sequence $y = (y_k)$ defined by $y_k = x_k, k \in M$. Then using Eq. (3.5), we get for every $\varepsilon > 0$, $\{k \in \mathbb{N} : |y_k - l| \ge \varepsilon\} \in \mathcal{K}$ i.e $y = (y_k)$ is \mathcal{K} -convergent to l. Hence $\mathcal{I}^{\mathcal{K}} - \lim x = l$.

Remark 3.6. Converse of Theorem 3.5 is not necessarily true.

Example 3.7. Consider the ideals $\mathcal{I}_c = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-1} < \infty\}$ and $\mathcal{I}_d = \{A \subseteq \mathbb{N} : d(A) = 0\}$. Let $x = (x_k)$ be the sequence defined as $x_k = \begin{cases} 1, & k \text{ is prime} \\ 0, & k \text{ is not prime} \end{cases}$. Then there exists $M = \text{set of all non-prime numbers} \in \mathcal{F}(\mathcal{I}_d)$ such that the sequence $y = (y_k)$ defined as $y_k = \begin{cases} x_k, & k \in M \\ 0, & k \notin M \end{cases}$ is the null sequence and therefore \mathcal{I}_c -convergent to 0. Hence $x = (x_k)$ is $\mathcal{I}_d^{\mathcal{I}_c}$ -convergent to 0.

But we claim that $x = (x_k)$ is not \mathcal{I}_c -convergent to 0. For if $\mathcal{I}_c - \lim x = 0$, then for $\varepsilon = \frac{1}{2}$, the set $\{k \in \mathbb{N} : |x_k - 0| \ge \frac{1}{2}\}$ = set of all prime numbers $\in \mathcal{I}_c$, a contradiction.

From the above example naturally question arises under what condition a sequence $\mathcal{I}^{\mathcal{K}}$ -converging to l will also \mathcal{K} -convergent to l. The next theorem is regarding such a condition.

Theorem 3.8. Let \mathcal{I} and \mathcal{K} be two ideals in \mathbb{N} such that $\mathcal{I} \subseteq \mathcal{K}$. Let $x = (x_k)$ be a real sequence such that $\mathcal{I}^{\mathcal{K}} - \lim x = l$. Then $\mathcal{K} - \lim x = l$.

Proof. Let $\mathcal{I} \subseteq \mathcal{K}$ holds and the sequence $x = (x_k)$ is $\mathcal{I}^{\mathcal{K}}$ -convergent to l. So by definition, there exists $M \in \mathcal{F}(\mathcal{I})$ such that the sequence $y = (y_k)$ defined as $y_k = \begin{cases} x_k, & k \in M \\ l, & k \notin M \end{cases}$ is \mathcal{K} -convergent to l, which immediately implies

$$\forall \varepsilon > 0, \{k \in M : |x_k - l| \ge \varepsilon\} \in \mathcal{K}.$$
(3.6)

Thus $\{k \in \mathbb{N} : |x_k - l| \ge \varepsilon\} \subseteq \{k \in M : |x_k - l| \ge \varepsilon\} \cup (\mathbb{N} \setminus M) \in \mathcal{K}$ by Eq. (3.6) and since as per our assumption $\mathcal{I} \subseteq \mathcal{K}$. Hence $\mathcal{K} - \lim x = l$.

Theorem 3.9. If every subsequence of $x = (x_k)$ is $\mathcal{I}^{\mathcal{K}}$ -convergent to l, then x is $\mathcal{I}^{\mathcal{K}}$ -convergent to l.

Proof. If possible let us assume the contrary. Then for every $M \in \mathcal{F}(\mathcal{I})$, the sequence $y = (y_k)$ defined as $y_k = \begin{cases} x_k, & k \in M \\ l, & k \notin M \end{cases}$ is not \mathcal{K} -convergent to l. Thus for every $M \in \mathcal{F}(\mathcal{I})$ there exists an $\varepsilon_M > 0$ such that

$$A = M \cap \{k \in \mathbb{N} : |x_k - l| \ge \varepsilon_M\} \notin \mathcal{K}.$$

Since \mathcal{K} is admissible, so A is infinite. Let $A = \{a_1 < a_2 < \dots < a_k < \dots\}$. Construct a subsequence $z = (z_k)$ defined as $z_k = x_{a_k}$ for $k \in \mathbb{N}$. Then $\mathcal{I}^{\mathcal{K}} - \lim z \neq l$, a contradiction to our hypothesis.

Theorem 3.10. Let $x = (x_k)$ be a sequence such that $\mathcal{I}^{\mathcal{K}} - \lim x = l$. Then every subsequence of x is $\mathcal{I}^{\mathcal{K}}$ -convergent to l if and only if both \mathcal{I} and \mathcal{K} does not contain infinite sets.

Proof. There are two possible cases.

Case-I: When ${\cal K}$ contain an infinite set.

Suppose A be an infinite set and $A \in \mathcal{K}$. Then $\mathbb{N} \setminus A \in \mathcal{F}(\mathcal{K})$ and $\mathbb{N} \setminus A$ is also infinite. Let $\varepsilon > 0$ be arbitrary. Choose $l_1 \in \mathbb{R}$ such that $l_1 \neq l$. Define a sequence $x = (x_k)$ as $x_k = \begin{cases} l_1, & k \in A \\ l, & k \in \mathbb{N} \setminus A \end{cases}$. Then $\{k \in \mathbb{N} : |x_k - l| \ge \varepsilon\} \subseteq A \in \mathcal{K}$ which means that x is \mathcal{K} -convergent

 $l, k \in \mathbb{N} \setminus A$. Then $\{k \in \mathbb{N} : |x_k - i| \geq e\} \subseteq A \in \mathcal{K}$ which means that x is \mathcal{K} -convergent to l. Therefore by Theorem 3.5, x is $\mathcal{I}^{\mathcal{K}}$ -convergent to l. But clearly the subsequence $(x_k)_{k \in A}$ of x is $\mathcal{I}^{\mathcal{K}}$ -convergent to l_1 not to l.

Case-II: When \mathcal{K} does not contain an infinite set.

If \mathcal{K} does not contains an infinite set, then $\mathcal{K} = \mathcal{I}_f$ and $\mathcal{I}^{\mathcal{K}}$ -convergence concept coincides with \mathcal{I}^* -convergence.

Subcase-I: If \mathcal{I} contain an infinite set.

Let B be any infinite set such that $B \in \mathcal{I}$. Then $\mathbb{N} \setminus B \in \mathcal{F}(\mathcal{I})$ and $\mathbb{N} \setminus B$ is also infinite. Define a sequence $x = (x_k)$ as $x_k = \begin{cases} \xi, & k \in B \\ l, & k \in \mathbb{N} \setminus B \end{cases}$. Clearly x is \mathcal{I}^* -convergent to l. But clearly

the subsequence $(x_k)_{k \in B}$ of x is not \mathcal{I}^* -convergent to l.

Subcase-II: If \mathcal{I} does not contain an infinite set.

In this subcase, $\mathcal{I}^{\mathcal{K}}$ -convergence coincides with ordinary convergence (as Proposition 3.1 of [1] is true for $\mathcal{I}^{\mathcal{K}}$ -convergence) so any subsequence of x is convergent to l.

Remark 3.11. If a sequence is $\mathcal{I}^{\mathcal{K}}$ -convergent then it may not be \mathcal{I} -convergent.

Example 3.12. Let us consider the ideal \mathcal{I} which is defined in Example 2.7 and the ideal $\mathcal{I}_c = \{A \subseteq \mathbb{N} : \sum_{a \in A} a^{-1} < \infty\}$. Let $M = \{k \in \mathbb{N} : k = 2^p \text{ for some non-negative integer } p\}$. Consider the sequence $x = (x_k)$ defined by $x_k = \begin{cases} 1, & k \in M \\ 0, & k \notin M \end{cases}$. Then it is easy to check that x

is $\mathcal{I}^{\mathcal{I}_c}$ -convergent to 0 but x is not \mathcal{I} -convergent to 0.

Theorem 3.13. Let \mathcal{I} and \mathcal{K} be two ideals in \mathbb{N} . Let $x = (x_k)$ be any real sequence. Then $\mathcal{I}^{\mathcal{K}} - \lim x = l$ implies $\mathcal{I} - \lim x = l$ if and only if $\mathcal{K} \subseteq \mathcal{I}$.

Proof. Let us assume the contrary. Then there exists a set, say $A \in \mathcal{K} \setminus \mathcal{I}$. Let l_1 and l_2 be two real numbers such that $l_1 \neq l_2$. Define a sequence $x = (x_k)$ as $x_k = \begin{cases} l_1, & k \in A \\ l_2, & k \in \mathbb{N} \setminus A \end{cases}$. Let $\varepsilon > 0$ be arbitrary. Clearly

$$\{k \in \mathbb{N} : |x_k - l_2| \ge \varepsilon\} \subseteq A \in \mathcal{K}$$

which means that x is \mathcal{K} -convergent to l_2 . Therefore by Theorem 3.5, x is $\mathcal{I}^{\mathcal{K}}$ -convergent to l_2 . By hypothesis x is \mathcal{I} -convergent to l_2 . Therefore for $\varepsilon = |l_1 - l_2|$, $\{k \in \mathbb{N} : |x_k - l_2| \ge |l_1 - l_2|\} = A \in \mathcal{I}$, a contradiction. Hence we must have $\mathcal{K} \subseteq \mathcal{I}$.

Proof of converse part is straightforward (similar to Theorem 3.1 (ii) of [1]) so omitted.

Remark 3.14. If a sequence is \mathcal{I} -convergent then it may not be $\mathcal{I}^{\mathcal{K}}$ -convergent. Consider the ideal \mathcal{I} and the sequence $x = (x_k)$ defined in Example 2.7. Then it is proven in Example 2.1 of [10] that $\mathcal{I}^{\mathcal{I}_t} - \lim x \neq 0$ although $\mathcal{I} - \lim x = 0$.

Theorem 3.15. Let \mathcal{I} and \mathcal{K} be two ideals in \mathbb{N} . Then $\mathcal{I} - \lim x = l$ implies $\mathcal{I}^{\mathcal{K}} - \lim x = l$ if and only if the condition $AP(\mathcal{I}, \mathcal{K})$ holds.

Proof. The proof is similar to the proof of Theorem 3.4 and 3.5 in [1].

Remark 3.16. If a sequence is $\mathcal{K}^{\mathcal{I}}$ -convergent then it may not be $\mathcal{I}^{\mathcal{K}}$ -convergent. Consider Example 2.7. Clearly, x is $\mathcal{I}_{f}^{\mathcal{I}}$ -convergent to 0 but not $\mathcal{I}^{\mathcal{I}_{f}}$ -convergent to 0.

Theorem 3.17. Let \mathcal{I} and \mathcal{K} be two ideals in \mathbb{N} . Then $\mathcal{K}^{\mathcal{I}} - \lim x = l$ implies $\mathcal{I}^{\mathcal{K}} - \lim x = l$ if $\mathcal{I} \subseteq \mathcal{K}$.

Proof. Proof is trivial so omitted.

Theorem 3.18. Let $\mathcal{I}, \mathcal{K}, \mathcal{I}_l, \mathcal{I}_2, \mathcal{K}_l, \mathcal{K}_2$ are ideals in \mathbb{N} . Then-(i) If $\mathcal{I}^{\mathcal{K}_l} - \lim x = l = \mathcal{I}^{\mathcal{K}_2} - \lim x$ then $\mathcal{I}^{\mathcal{K}_l \vee \mathcal{K}_2} - \lim x = l$. (ii) If $\mathcal{I}_l^{\mathcal{K}} - \lim x = l = \mathcal{I}_2^{\mathcal{K}} - \lim x$ then $(\mathcal{I}_l \vee \mathcal{I}_2)^{\mathcal{K}} - \lim x = l$.

Proof. (i) Since $\mathcal{I}^{\mathcal{K}_1} - \lim x = l$ and $\mathcal{I}^{\mathcal{K}_2} - \lim x = l$, so there exists $M, N \in \mathcal{F}(\mathcal{I})$ such that

$$\forall \varepsilon, \delta > 0, \{k \in M : |x_k - l| \ge \varepsilon\} \in \mathcal{K}_1 \text{ and } \{k \in N : |x_k - l| \ge \delta\} \in \mathcal{K}_2$$

By the hereditary property of \mathcal{K}_1 and \mathcal{K}_2 , we have

$$\forall \varepsilon, \delta > 0, \{k \in M \cap N : |x_k - l| \ge \varepsilon\} \in \mathcal{K}_1 \text{ and } \{k \in M \cap N : |x_k - l| \ge \delta\} \in \mathcal{K}_2.$$
(3.7)

Let $\eta > 0$ be arbitrary. Then from Eq. (3.7), choosing $\varepsilon = \delta = \eta$ we get

$$\{k \in M \cap N : |x_k - l| \ge \eta\} \in \mathcal{K}_1 \lor \mathcal{K}_2.$$

Now as $M \cap N \in \mathcal{F}(\mathcal{I})$, so the sequence $w = (w_k)$ defined as $w_k = \begin{cases} x_k, & k \in M \cap N \\ l, & k \notin M \cap N \end{cases}$ is $\mathcal{K}_1 \vee \mathcal{K}_2$ -convergent to l. Hence $(\mathcal{I}_1 \vee \mathcal{I}_2)^K - \lim x = l$.

(ii) Since $\mathcal{I}_1^{\mathcal{K}} - \lim x = l$ and $\mathcal{I}_2^{\mathcal{K}} - \lim x = l$, so there exists $M \in \mathcal{F}(\mathcal{I}_1)$ and $N \in \mathcal{F}(\mathcal{I}_2)$ such that

 $\forall \varepsilon, \delta > 0, \{k \in M : |x_k - l| \ge \varepsilon\} \in \mathcal{K} and \{k \in N : |x_k - l| \ge \delta\} \in \mathcal{K}.$

By hereditary property of \mathcal{K} , we have

$$\forall \varepsilon, \delta > 0, \{k \in M \cap N : x_k \ge l + \varepsilon\} \in \mathcal{K} and \{k \in M \cap N : x_k \le l - \delta\} \in \mathcal{K}.$$

Which implies

$$\forall \varepsilon, \delta > 0, \{k \in M \cap N : x_k \ge l + \varepsilon \text{ or } x_k \le l - \delta\} \in \mathcal{K}.$$
(3.8)

Let $\eta > 0$ be arbitrary. Choosing $\varepsilon = \delta = \eta$ we get from Eq. (3.8),

$$\forall \eta > 0, \{k \in M \cap N : |x_k - l| \ge \eta\} \in \mathcal{K}.$$

As $M \cap N \in \mathcal{F}(\mathcal{I}_1 \vee \mathcal{I}_2)$, so we can conclude that $(\mathcal{I}_1 \vee \mathcal{I}_2)^K - \lim x = l$.

Theorem 3.19. For any sequence $x = (x_k)$ if $\mathcal{I}^{\mathcal{K}} - \lim x = l = \mathcal{K}^{\mathcal{I}} - \lim x$ then- (i) $(\mathcal{I} \vee \mathcal{K})^{\mathcal{I} \vee \mathcal{K}} - \lim x = l$ and (ii) $\mathcal{I} \vee \mathcal{K} - \lim x = l$.

Proof. (i) From the given conditions, there exist $M \in \mathcal{F}(\mathcal{I})$ and $N \in \mathcal{F}(\mathcal{K})$ such that

$$\forall \varepsilon, \delta > 0, \{k \in M : |x_k - l| \ge \varepsilon\} \in \mathcal{K} \text{ and } \{k \in N : |x_k - l| \ge \delta\} \in \mathcal{I}$$

which implies

$$\forall \varepsilon, \delta > 0, \{k \in M : |x_k - l| \ge \varepsilon\} \cup \{k \in N : |x_k - l| \ge \delta\} \in \mathcal{I} \lor \mathcal{K}.$$

Let $\eta > 0$ be given. Then choosing $\varepsilon = \delta = \eta$ we get

$$\forall \eta > 0, \{k \in M \cap N : |x_k - l| \ge \eta\} \subseteq \{k \in M \cup N : |x_k - l| \ge \eta\} \in \mathcal{I} \lor \mathcal{K}.$$

Now it is a routine work to prove that $(\mathcal{I} \vee \mathcal{K})^{\mathcal{I} \vee \mathcal{K}} - \lim x = l$. (ii) The proof is parallel to that of Proposition 3.1 in [1].

Г	-	
_		

References

- A. K. Banerjee and M. Paul, Weak and weak* *I^K*-convergence in normed spaces, arXiv.org/abs/1811.06707 (2018).
- [2] A. K. Banerjee and M. Paul, Strong- $\mathcal{I}^{\mathcal{K}}$ -convergence in probabilistic metric spaces, arXiv.org/abs/1808.03268v1 (2018).
- [3] A. K. Banerjee and M. Paul, A note on $\mathcal{I}^{\mathcal{K}}$ nd $\mathcal{I}^{\mathcal{K}^*}$ -convergence in topological spaces, *arXiv.org/abs/1807.11772v1* (2018).
- [4] P. Das, S. Sengupta and J. Supina, I^K-convergence of sequence of functions, Math. Slovaca. 69(5), 1137–1148 (2019).
- [5] P. Das, M. Sleziak and V.Toma, I^K-Cauchy functions, *Topology Appl.* 173, 9–27 (2014).
- [6] S. Debnath and D. Rakshit, On I-statistical convergence, Iran. J. Math. Sci. Inform. 13(2), 101–109 (2018).
- [7] K. Demirci, I-limit superior and limit inferior, Math. Commun. 6(2), 165-172 (2001).
- [8] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95(2), 293-305 (1981).
- [9] J. Gogola, M. Macaj and T. Visnyai, On $I_c^{(q)}$ -convergence, Ann. Math. Inform. 38, 27–36 (2011).
- [10] P. Kostyrko, M. Macaj, T. Salat and M. Sleziak, I-convergence and extremal I-limit points, *Math. Slovaca*. 55(4), 443–464 (2005).
- [11] P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exch. 26(2), 669–686 (2000-2001).
- [12] M. Macaj and M. Sleziak, I^K-convergence, Real Anal. Exch. 36(1), 177-194 (2010-2011).
- [13] M. Mursaleen, S. Debnath and D. Rakshit, On *I*-statistical limit superior and *I*-statistical limit inferior, *Filomat* 31(7), 2103–2108 (2017).
- [14] A. Nabiev, S. Pehlivan and M. Gurdal, On *I*-Cauchy sequences, *Taiwanese J. Math.* 11(2), 569–576 (2007).
- [15] T. Salat, B. C. Tripathy and M. Ziman, On some properties of *I*-convergence, *Tatra Mt. Math. Publ.* 28(2), 274–286 (2004).
- [16] E. Savas, S. Debnath and D. Rakshit, On *I*-statistically rough convergence, *Publ. Inst. Math.(Beograd)* (*N.S.*) 105(119), 145–150 (2019).

Author information

Shyamal Debnath, Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India.

E-mail: shyamalnitamath@gmail.com

Chiranjib Choudhury, Department of Mathematics, Tripura University (A Central University), Suryamaninagar-799022, Agartala, India.

E-mail: chiranjib choudhury 1230gmail.com

Received: October 5, 2020 Accepted: May 29, 2021