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Abstract. In 2011 M. Macaj and M. Sleziak first introduced the concept of ZX convergence
mainly as a generalization of statistical convergence. In this paper, we introduce and investigate
a few interesting properties of 7% convergence of real sequences. We also study some impli-
cation relations between Z, Z*, and I’C—convergence of such sequences. Further, we find the
conditions under which (i) Z* —convergence implies C—convergence, (ii) Z* —convergence im-
plies Z—convergence, (iii) Z—convergence implies Z* —convergence, and (iv) KZ —convergence
implies Z" —convergence.

1 Introduction

The main objective of this paper is to deal with various properties of Z* —convergence which is
a generalization of Z*—convergence.

In 2000 the idea of ideal convergence was first introduced by Kostrkyo and Salat[11]. They
studied various fundamental properties of Z and Z*—convergence and found that their idea
is a generalization of so many important convergence concepts introduced earlier. Based on
Z—convergence several generalizations was made by researchers and several analytical and topo-
logical properties has been investigated (see [6],[7],[9],[10],[14],[15]) and this area becomes one
of the most active areas of research.

On the other hand in 2011, M. Macaj and M. Sleziak extended the idea of Z* —convergence to
TIX —convergence(see [12]) where Z and K both are ideals. Later on, several investigations have
been done in this area and some fruitful outcome has been reflected in ([1],[2],[31,[4],[51,[13],[16]).

2 Definitions and Preliminaries

Definition 2.1. A family Z C 2% of subsets of a nonempty set X is said to be an ideal in X if
and only if (i) # € Z (ii) A, B € Z implies AU B € Z (Additive) and (iii) A € Z, B C A implies
B € T (Hereditary).

If vz € X, {«} € 7 then 7 is said to be admissible. Also, Z is said to be non-trivial if X ¢ 7
and Z # {0}.

Some standard examples of ideal are given below:
(i) The set T of all finite subsets of N is an admissible ideal in N.
(i1) The set Z,; of all subsets of natural numbers having natural density O is an admissible ideal in
N.
(iii) The set Z, = {A C N : > ., a~! < oo} is an admissible ideal in N.

(iv) Suppose N = |J D,, be a decomposition of N (for ¢ # j, D; N D; = (). Then the set Z of
p=1
all subsets of N which intersects finitely many D,’s forms an ideal in N.
More important examples can be found in [9] and [10].

Definition 2.2. A family F C 2% of subsets of a nonempty set X is said to be a filter in X if and
only if i) @ ¢ F (ii) M, N € F implies M N N € F and (iii) M € F, N D M implies N € F.
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If 7 is a proper non-trivial ideal in X, then F(Z) = {M C X :3A€ZsitM =X\ A}isa
filter in X. It is called the filter associated with the ideal Z.

Definition 2.3. [11] A sequence x = (=) is said to be Z—convergent to [ if and only if for every
e >0, theset {k € N: |z — | > ¢} belongs to Z. The real number [ is called the Z—limit of the
sequence x = (z). Symbolically, Z — limz = .

Definition 2.4. [11] Let Z be an admissible ideal in N. A sequence z = (=) is said to be
T*—convergent to [, if there exists a set M = {m; < mp < ... < my < ...} in the associated
filter F(Z) such that lilgn Ty, = 1.

Definition 2.5. [5] Let Z and K be two ideals on the same set X. Then Z is said to have the
additive property with respect to X or the condition AP(Z, K) holds if for every countable family
of mutually disjoint sets (Aj, Ay, ...) from Z there exists a countable family of sets (B, B, ...)

in Z such that the symmetric differences A; A B; € K forevery j € Nand |J B; € T.
j=1

In particular, if we consider X = N and K = 7 then we obtain the condition AP which was
introduced by Kostyrko et al. in [11].

Definition 2.6.[12] Let Z and K be two ideals in N. A sequence xz = (z3) is said to be
X —convergent to [ if there exists M € F(Z) such that the sequence y = (y;) defined by

rp, keM

is IC—convergent to [.
I, ke¢M g

Yk =

If we consider K = Z; then Z* —convergence concept coincides with Z* —convergence [11].
Further, if we take K = Z, then we get Z* —statistical convergence which was introduced by
Debnath and Rakshit in [6].

Note that Z%¢—convergence implies Z—statistical convergence (Theorem 3.9 of [6]).

Example 2.7. Consider the decomposition of N given by N = U D, where D, = {2P71(2s —

1) : s = 1,2,3,..}. Let Z be the ideal cons1st1ng of all subsets of N which intersects finite
number of D s. Consider the sequence © = (z) defined by =, = m L'if ¥ € D,. Then the

sequence is II —convergent to 0.
Justification: Let M = N\ D;. Then M € F(Z) and it is easy to verify that the sequence

keM
y = (yx) defined by yi, = {xk, €

is Z—convergent to 0. Thus ZZ — limz = 0.
0, k¢M

Remark 2.8. [1] If Z and K are two ideals in N thenthe set ZVK = {AUB: A€Z,B € K}
forms an ideal in N. Further if Z Vv K is non-trivial then the dual filter of Z Vv KC is denoted and
definedby F(ZVK)={MNN:Me F(I),N € F(K)}.

Throughout the paper, unless stated, the symbols Z, K, Z V K, Z;, I, K1, and K, stands for
non-trivial admissible ideal in N, and the sequences that we have considered are real sequences.

3 Main Results
Theorem 3.1. Suppose = = (x,) be a sequence such that T® — limx = 1. Then [ is unique.
Proof. 1f possible suppose there exists l1,l2 € R, [; # [, such that

K dimz =1 and ZF — limz = I,.

. ., keM

So there exists M, N € F(Z) such that the sequences y = (yy,) defined as y;, = {fk . Z o
1,

T, ke N

are KC—convergent to [; and [, respectively.
b, k¢N g 1 2 p y

and z = (z;) defined as z, = {



On some properties of 7 —convergence 131

Therefore by Theorem 2.1 of [10], we can say that the sequence y — z = (yx — 2 ) defined as
0, ke MNN
xk—b, keM \ N
lh—x, kEN \ M
I — 1y, ke McNN¢

Yk — 2k = is L—convergent to [; — I,. Thus by definition

Ve >0, {keN:|(yx —2x) — (1 — )| > ¢} €K. (3.1)
Choose € = M Then from Eq. (3.1) we get

I —
{keN:|(yk—zk)—(ll—l2)|2|172l2|}en

Now as the inclusion MNN C {k € N: |(yp—zx)—(l1 —12)| > @} holds, so by hereditary of
K, MNN € K which implies N\ (M NN) € F(K). Againas M, N € F(Z),so MNN € F(I).
Now N\ (M NN) € F(K)and M NN € F(Z) implies (N\ (M NN))N(MNN)e F(ZVK)
i.e® € F(ZV K), acontradiction. o

Theorem 3.2. Let Z, K and TV K be non-trivial ideal in N such that TF — limz = 1, and
I —limy = ly. Then-

(i) IF —lim(x +y) = I; + I (ii) TV — lim(zy) = Lo

Proof. (i) Suppose ZX — limz = I, and ZX — limy = [,. Then by definition, there exists
rp, keM

M, N € F(Z) such that the sequences u = (uy) defined by us =
i, k¢M

and v = (vy)

Yk, kEN

are K—convergent to [ and [, respectively. By Theorem 2.1(ii)
L, k¢N

defined by vy = {

Tk +yr, KEMNN

T+, ke M\N .
of [10], the sequence u + v = (uy + vy ) defined by wuy + vy, = is
[10] q (uk + vr) y ur + v gl keN\M

L+ 1, ke M°NN¢
IC—convergent to [; + [,. In other words

Ve >0, {k€N2|(uk+Uk)—(ll+l2)|Z&}G/C. 3.2)
By definition of u + v we have

{kEN: |(uk+vk)—(ll+l2)| ZE} :{kEMﬂNZ |(.Z‘k+yk)—(ll+lz)| ZE}
U{k’GM\N:‘kall‘ZE} (33)
U{k e N\ M : |y — | = e}
Clearly M N N € F(Z). Now consider the sequence w = (wy,) defined as

{xk+yk, ke MNN
k:

Lt k¢ MAN Then from Eq. (3.2), (3.3) and by definition of w

{keN:|wg— (i +h)|>e}={ke MNN : |wg — (I; + )| > ¢}
U{ke MNN)°: |lwg— (L + )| >¢}
={ke MNN : |(xp+yr)— (1 + )| >}
C{keN:|(up+uvg)— (1 + L) >e} ek.

(3.4)

From Eq. (3.4), it is clear that w is —convergent to [; + [,. Hence = + y is I’C—convergent to
1+ 0.
(i) We omitted the proof as it can be obtained by applying similar technique. O

Theorem 3.3. Let T* — limz = [ then T — limx = .
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Proof. Let Z* — limz = [. Then there exists aset M = {m; < my < ... < my < ...} € F(I)

. Do , keM
such that hlgnxmk = [. Which implies that the sequence y = (y;,) defined as y;, = fk X Z M
is ordinary convergent to [. Now by Theorem 2.1 of [10], we can say that for any ideal K, the
sequence y = (i) is K—convergent to /. Hence x = (x}) is " —convergent to 1. i

Remark 3.4. Converse of the above theorem is not necessarily true. Consider Example 2.7. The
sequence is Z* —convergent to 0 for K = Z. But it is not Z*—convergent to 0 (Example 2.1 of

[10D.
Theorem 3.5. Let K — limz = [ then TV — limx = 1.
Proof. Since K — limx = [, so for every € > 0,
{keN:|z, -1 >e} ek. (3.5)

Choose M = N from F(Z). Consider the sequence y = (y) defined by yx, = =,k € M. Then
using Eq. (3.5), we getforeverye > 0, {k € N : |y, —1| > ¢} € Ki.ey = (yx) is K—convergent
to . Hence ZF — limx = [. O

Remark 3.6. Converse of Theorem 3.5 is not necessarily true.

Example 3.7. Consider the ideals Z. = {A C N : > _,a' < oo}andZy = {A C N :

I, kisprime

d(A) = 0}. Let z = (wy) be the sequence defined as zj = . Then there

0, kis not prime
exists M = set of all non-prime numbers € F(Z4) such that the sequence y = (yj) defined as

0, k¢M
T4%°—convergent to 0.
But we claim that © = (xy,) is not Z.—convergent to 0. For if Z, — limz = 0, then for ¢ = %, the
set {k € N : |z), — 0| > 1} = set of all prime numbers € 7., a contradiction.

, ke M .
Y = {xk is the null sequence and therefore Z.—convergent to 0. Hence x = (zy,) is

From the above example naturally question arises under what condition a sequence Z* —converging
to [ will also —convergent to [. The next theorem is regarding such a condition.

Theorem 3.8. Let T and K be two ideals in N such that T C K. Let x = (xy) be a real sequence
such that T* — limx = . Then K — limz = L.

Proof. Let T C K holds and the sequence z = () is Z® —convergent to I. So by definition,
T, ke M .

S
I, ke¢M'

there exists M € F(Z) such that the sequence y = (yi) defined as y = {
IC—convergent to [, which immediately implies
Ve>0,{keM:|z,—1| >c} k. (3.6)

Thus {k e N:|zp — 1| > e} C{ke M : |z, — 1| >} UN\ M) € K by Eq. (3.6) and since as
per our assumption Z C K. Hence K — limz = [. O

Theorem 3.9. If every subsequence of v = (x},) is T® —convergent to |, then x is T —convergent
tol.

Proof. If possible let us assume the contrary. Then for every M € F(Z), the sequence y = (yx)
Lk, S

I, k¢M
an €37 > 0 such that

defined as yj, = is not X —convergent to I. Thus for every M € F(Z) there exists

A=Mn{keN:|z, -1 >em} ¢ K.

Since K is admissible, so A is infinite. Let A = {a; < ay < .... < a; < ...}. Construct a
subsequence » = (zj) defined as z, = z,, for k € N. Then Z* — lim z # [, a contradiction to
our hypothesis. O
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Theorem 3.10. Let = = (x1,) be a sequence such that T* —limx = . Then every subsequence
of x is T —convergent to | if and only if both T and K does not contain infinite sets.

Proof. There are two possible cases.

Case-I: When K contain an infinite set.

Suppose A be an infinite set and A € K. Then N\ A € F(K) and N \ A is also infinite. Let
e > 0 be arbitrary. Choose {1 € R such that [; # [. Define a sequence x = (zj) as zp =

{ll’ ked . Then {k € N : |z — | > e} C A € K which means that z is —convergent
I, keN\A

to [. Therefore by Theorem 3.5, z is T —convergent to [. But clearly the subsequence () e
of  is T —convergent to /; not to [.

Case-II: When /C does not contain an infinite set.

If K does not contains an infinite set, then X = Z; and Z" —convergence concept coincides with
T*—convergence.

Subcase-I: If 7 contain an infinite set.

Let B be any infinite set such that B € Z. Then N\ B € F(Z) and N\ B is also infinite. Define
(& keB

I, keN\B
the subsequence (zx)rep of x is not Z* —convergent to I.

Subcase-II: If 7 does not contain an infinite set.

In this subcase, Z* —convergence coincides with ordinary convergence (as Proposition 3.1 of [1]
is true for Z* —convergence) so any subsequence of z is convergent to [.

a sequence v = (z) as zp = { . Clearly z is Z* —convergent to [. But clearly

|
Remark 3.11. If a sequence is Z® —convergent then it may not be Z—convergent.
Example 3.12. Let us consider the ideal Z which is defined in Example 2.7 and the ideal Z, =
{ACN:Y 407! <oo}. Let M = {k € N : k = 27 for some non-negative integer p}.
1, keM
0, k¢ M
is 7% —convergent to 0 but z is not Z—convergent to 0.

Consider the sequence = = (x) defined by =), = { . Then it is easy to check that

Theorem 3.13. Let Z and K be two ideals in N. Let x = (xy,) be any real sequence. Then
IF —limx = limplies T — limx = [ if and only if K C T.

Proof. Let us assume the contrary. Then there exists a set, say A € I\ Z. Let [; and I, be two
I, ked

. Let
l,, keN\A

real numbers such that /| # [,. Define a sequence x = () as xp =
€ > 0 be arbitrary. Clearly
{keN:|zy—lL|>e} CAek

which means that 2 is —convergent to l,. Therefore by Theorem 3.5, 2 is ZX —convergent to
l,. By hypothesis x is Z—convergent to l. Therefore for ¢ = |} — lp|, {k € N : |z — lp| >
|li — |} = A € Z, a contradiction. Hence we must have IC C 7.
Proof of converse part is straightforward (similar to Theorem 3.1 (ii) of [1]) so omitted.
|

Remark 3.14. If a sequence is Z—convergent then it may not be Z® —convergent. Consider the
ideal Z and the sequence = = (zy) defined in Example 2.7. Then it is proven in Example 2.1 of
[10] that ZZ — lim 2 # O although Z — limz = 0.

Theorem 3.15. Let T and K be two ideals in N. Then T — limx = [ implies TX — limz = [ if
and only if the condition AP(Z, K) holds.

Proof. The proof is similar to the proof of Theorem 3.4 and 3.5 in [1]. O

Remark 3.16. If a sequence is X' —convergent then it may not be Z* —convergent. Consider
Example 2.7. Clearly, z is Zt* —convergent to 0 but not Z% —convergent to 0.
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Theorem 3.17. Let T and K be two ideals in N. Then K* — limz = [ implies T — limz = [ if
ZCKk.

Proof. Proof is trivial so omitted. O
Theorem 3.18. Let Z, IC, Z;, 1, K;, K> are ideals in N. Then-
(i) If T —limz = | = T — limz then T°V&2 — limz = L.
(i) If I’ —limz = | = IX — limx then (Z; V I,)X — limz = L.
Proof. (i) Since "' —limx = [ and T — limx = [, so there exists M, N € F(Z) such that
Ve, >0, {keM:|zy—1|>cteKiand{k € N : |z, — 1| >} € Ks.
By the hereditary property of K; and KC,, we have
Ve, 0 >0, {ke MNN:|zp—1|>e}eKiand{ke MNN: |z, -1 >} € K. (3.7)
Let n > 0 be arbitrary. Then from Eq. (3.7), choosing ¢ = § = n we get

{keMﬂNﬂxk*”Zn}G’C]\/’Cz.

e, ke MNN .

Now as M NN € F(Z), so the sequence w = defined as = S
W () qu w = (wy) Wy {l, k¢ MAN i

K1 V Ky —convergent to [. Hence (Z; V 7,)% — limz = [.
(ii) Since Z}* — limz = [ and ZJ — limz = [, so there exists M € F(Z;) and N € F(Z,) such
that

Ve, d >0, {keM:|zy—1|>c}eKand{k e N :|z, -1 >} € K.

By hereditary property of K, we have
Ve, 0 >0, {ke MNN:z,>l+e}eKand{ke MNN:z, <l-0}eK.
Which implies
Ve, >0, {ke MNN:x>l4+ecorz, <l—4§}eK. (3.8)
Let > 0 be arbitrary. Choosing ¢ = § = n we get from Eq. (3.8),
V>0, {ke MNN:|zx—1]>n}eK.
As M NN € F(T, VI,), so we can conclude that (Z; V )% — limz = [. O

Theorem 3.19. For any sequence v = (z1,) if I* —limx = | = KX —lim x then- (i) (Z V IC)IV’Cf

limz =1land (ii)) TV K —limx = 1.
Proof. (i) From the given conditions, there exist M € F(Z) and N € F(K) such that
Ve, 0 >0,{keM:|zx—1|>cteKand{ke N:|z, -1 >} el
which implies
Ve, 0 >0,{keM: |z —1|>ctU{keN:|z, -1 >} €eTVK.
Let n > 0 be given. Then choosing ¢ = § = 1 we get
Vnp>0,{ke MNN: |xgp—1l|>n} C{ke MUN: |z -1l >nteI VK.

Now it is a routine work to prove that (Z v K)*¥* — limz = 1.
(i1) The proof is parallel to that of Proposition 3.1 in [1]. O
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