
Palestine Journal of Mathematics

Vol. 11(2)(2022) , 129–135 © Palestine Polytechnic University-PPU 2022

On some properties of IK−convergence

Shyamal Debnath and Chiranjib Choudhury

Communicated by V. Lokesha

MSC 2020 Classifications: Primary 40A35; Secondary 40A05.

Keywords and phrases: Ideal, Filter, I−convergence, IK−convergence.

The authors are thankful to the referee for his/her useful comments. The second author is grateful to University Grants
Commission, India for their fellowships funding under the UGC-JRF scheme during the preparation of this paper.

Abstract. In 2011 M. Macaj and M. Sleziak first introduced the concept of IK convergence
mainly as a generalization of statistical convergence. In this paper, we introduce and investigate
a few interesting properties of IK convergence of real sequences. We also study some impli-
cation relations between I, I∗, and IK−convergence of such sequences. Further, we find the
conditions under which (i) IK−convergence implies K−convergence, (ii) IK−convergence im-
plies I−convergence, (iii) I−convergence implies IK−convergence, and (iv) KI−convergence
implies IK−convergence.

1 Introduction

The main objective of this paper is to deal with various properties of IK−convergence which is
a generalization of I∗−convergence.

In 2000 the idea of ideal convergence was first introduced by Kostrkyo and Salat[11]. They
studied various fundamental properties of I and I∗−convergence and found that their idea
is a generalization of so many important convergence concepts introduced earlier. Based on
I−convergence several generalizations was made by researchers and several analytical and topo-
logical properties has been investigated (see [6],[7],[9],[10],[14],[15]) and this area becomes one
of the most active areas of research.

On the other hand in 2011, M. Macaj and M. Sleziak extended the idea of I∗−convergence to
IK−convergence(see [12]) where I and K both are ideals. Later on, several investigations have
been done in this area and some fruitful outcome has been reflected in ([1],[2],[3],[4],[5],[13],[16]).

2 Definitions and Preliminaries

Definition 2.1. A family I ⊂ 2X of subsets of a nonempty set X is said to be an ideal in X if
and only if (i) ∅ ∈ I (ii) A,B ∈ I implies A ∪B ∈ I (Additive) and (iii) A ∈ I, B ⊂ A implies
B ∈ I (Hereditary).

If ∀x ∈ X, {x} ∈ I then I is said to be admissible. Also, I is said to be non-trivial if X /∈ I
and I 6= {∅}.

Some standard examples of ideal are given below:
(i) The set If of all finite subsets of N is an admissible ideal in N.
(ii) The set Id of all subsets of natural numbers having natural density 0 is an admissible ideal in
N.
(iii) The set Ic = {A ⊆ N :

∑
a∈A a

−1 <∞} is an admissible ideal in N.

(iv) Suppose N =
∞⋃
p=1

Dp be a decomposition of N (for i 6= j, Di ∩Dj = ∅). Then the set I of

all subsets of N which intersects finitely many Dp’s forms an ideal in N.
More important examples can be found in [9] and [10].

Definition 2.2. A family F ⊂ 2X of subsets of a nonempty set X is said to be a filter in X if and
only if (i) ∅ /∈ F (ii) M,N ∈ F implies M ∩N ∈ F and (iii) M ∈ F , N ⊃M implies N ∈ F .
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If I is a proper non-trivial ideal in X , then F(I) = {M ⊂ X : ∃A ∈ I s.t M = X \A} is a
filter in X . It is called the filter associated with the ideal I.

Definition 2.3. [11] A sequence x = (xk) is said to be I−convergent to l if and only if for every
ε > 0, the set {k ∈ N : |xk − l| ≥ ε} belongs to I. The real number l is called the I−limit of the
sequence x = (xk). Symbolically, I − limx = l.

Definition 2.4. [11] Let I be an admissible ideal in N. A sequence x = (xk) is said to be
I∗−convergent to l, if there exists a set M = {m1 < m2 < ... < mk < ...} in the associated
filter F(I) such that lim

k
xmk

= l.

Definition 2.5. [5] Let I and K be two ideals on the same set X . Then I is said to have the
additive property with respect toK or the conditionAP (I,K) holds if for every countable family
of mutually disjoint sets (A1, A2, ...) from I there exists a countable family of sets (B1, B2, ...)

in I such that the symmetric differences Aj 4Bj ∈ K for every j ∈ N and
∞⋃
j=1

Bj ∈ I.

In particular, if we consider X = N and K = If then we obtain the condition AP which was
introduced by Kostyrko et al. in [11].

Definition 2.6. [12] Let I and K be two ideals in N. A sequence x = (xk) is said to be
IK−convergent to l if there exists M ∈ F(I) such that the sequence y = (yk) defined by

yk =

{
xk, k ∈M
l, k /∈M

is K−convergent to l.

If we consider K = If then IK−convergence concept coincides with I∗−convergence [11].
Further, if we take K = Id then we get I∗−statistical convergence which was introduced by
Debnath and Rakshit in [6].

Note that IId−convergence implies I−statistical convergence (Theorem 3.9 of [6]).

Example 2.7. Consider the decomposition of N given by N =
∞⋃
p=1

Dp where Dp = {2p−1(2s −

1) : s = 1, 2, 3, ..}. Let I be the ideal consisting of all subsets of N which intersects finite
number of Dp’s. Consider the sequence x = (xk) defined by xk = 1

p if k ∈ Dp. Then the
sequence is II−convergent to 0.
Justification: Let M = N \ D1. Then M ∈ F(I) and it is easy to verify that the sequence

y = (yk) defined by yk =

{
xk, k ∈M
0, k /∈M

is I−convergent to 0. Thus II − limx = 0.

Remark 2.8. [1] If I and K are two ideals in N then the set I ∨ K = {A ∪ B : A ∈ I, B ∈ K}
forms an ideal in N. Further if I ∨ K is non-trivial then the dual filter of I ∨ K is denoted and
defined by F(I ∨ K) = {M ∩N : M ∈ F(I), N ∈ F(K)}.

Throughout the paper, unless stated, the symbols I, K, I ∨ K, I1, I2, K1, and K2 stands for
non-trivial admissible ideal in N, and the sequences that we have considered are real sequences.

3 Main Results

Theorem 3.1. Suppose x = (xk) be a sequence such that IK − limx = l. Then l is unique.

Proof. If possible suppose there exists l1, l2 ∈ R, l1 6= l2 such that

IK − limx = l1 and IK − limx = l2.

So there existsM,N ∈ F(I) such that the sequences y = (yk) defined as yk =

{
xk, k ∈M
l1, k /∈M

and z = (zk) defined as zk =

{
xk, k ∈ N
l2, k /∈ N

are K−convergent to l1 and l2, respectively.
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Therefore by Theorem 2.1 of [10], we can say that the sequence y − z = (yk − zk) defined as

yk − zk =


0, k ∈M ∩N
xk − l2, k ∈M \N
l1 − xk, k ∈ N \M
l1 − l2, k ∈M c ∩N c

is K−convergent to l1 − l2. Thus by definition

∀ε > 0, {k ∈ N : |(yk − zk)− (l1 − l2)| ≥ ε} ∈ K. (3.1)

Choose ε = |l1−l2|
2 . Then from Eq. (3.1) we get

{k ∈ N : |(yk − zk)− (l1 − l2)| ≥
|l1 − l2|

2
} ∈ K.

Now as the inclusionM∩N ⊆ {k ∈ N : |(yk−zk)−(l1−l2)| ≥ |l1−l2|
2 } holds, so by hereditary of

K, M ∩N ∈ K which implies N\(M ∩N) ∈ F(K). Again as M,N ∈ F(I), so M ∩N ∈ F(I).
Now N \ (M ∩N) ∈ F(K) and M ∩N ∈ F(I) implies (N \ (M ∩N))∩ (M ∩N) ∈ F(I ∨ K)
i.e ∅ ∈ F(I ∨ K), a contradiction.

Theorem 3.2. Let I, K and I ∨ K be non-trivial ideal in N such that IK − limx = l1 and
IK − lim y = l2. Then-
(i) IK − lim(x+ y) = l1 + l2 (ii) IK − lim(xy) = l1l2.

Proof. (i) Suppose IK − limx = l1 and IK − lim y = l2. Then by definition, there exists

M,N ∈ F(I) such that the sequences u = (uk) defined by uk =

{
xk, k ∈M
l1, k /∈M

and v = (vk)

defined by vk =

{
yk, k ∈ N
l2, k /∈ N

are K−convergent to l1 and l2, respectively. By Theorem 2.1(ii)

of [10], the sequence u + v = (uk + vk) defined by uk + vk =


xk + yk, k ∈M ∩N
xk + l2, k ∈M \N
yk + l1, k ∈ N \M
l1 + l2, k ∈M c ∩N c

is

K−convergent to l1 + l2. In other words

∀ ε > 0, {k ∈ N : |(uk + vk)− (l1 + l2)| ≥ ε} ∈ K. (3.2)

By definition of u+ v we have

{k ∈ N : |(uk + vk)− (l1 + l2)| ≥ ε} ={k ∈M ∩N : |(xk + yk)− (l1 + l2)| ≥ ε}
∪ {k ∈M \N : |xk − l1| ≥ ε}
∪ {k ∈ N \M : |yk − l2| ≥ ε}.

(3.3)

Clearly M ∩N ∈ F(I). Now consider the sequence w = (wk) defined as

wk =

{
xk + yk, k ∈M ∩N
l1 + l2, k /∈M ∩N

. Then from Eq. (3.2), (3.3) and by definition of w

{k ∈ N : |wk − (l1 + l2)| ≥ ε} ={k ∈M ∩N : |wk − (l1 + l2)| ≥ ε}
∪ {k ∈ (M ∩N)c : |wk − (l1 + l2)| ≥ ε}

={k ∈M ∩N : |(xk + yk)− (l1 + l2)| ≥ ε}
⊆ {k ∈ N : |(uk + vk)− (l1 + l2)| ≥ ε} ∈ K.

(3.4)

From Eq. (3.4), it is clear that w is K−convergent to l1 + l2. Hence x+ y is IK−convergent to
l1 + l2.
(ii) We omitted the proof as it can be obtained by applying similar technique.

Theorem 3.3. Let I∗ − limx = l then IK − limx = l.
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Proof. Let I∗ − limx = l. Then there exists a set M = {m1 < m2 < ... < mk < ...} ∈ F(I)

such that lim
k
xmk

= l. Which implies that the sequence y = (yk) defined as yk =

{
xk, k ∈M
l, k /∈M

is ordinary convergent to l. Now by Theorem 2.1 of [10], we can say that for any ideal K, the
sequence y = (yk) is K−convergent to l. Hence x = (xk) is IK−convergent to l.

Remark 3.4. Converse of the above theorem is not necessarily true. Consider Example 2.7. The
sequence is IK−convergent to 0 for K = I. But it is not I∗−convergent to 0 (Example 2.1 of
[10]).

Theorem 3.5. Let K − limx = l then IK − limx = l.

Proof. Since K − limx = l, so for every ε > 0,

{k ∈ N : |xk − l| ≥ ε} ∈ K. (3.5)

Choose M = N from F(I). Consider the sequence y = (yk) defined by yk = xk, k ∈ M . Then
using Eq. (3.5), we get for every ε > 0, {k ∈ N : |yk− l| ≥ ε} ∈ K i.e y = (yk) is K−convergent
to l. Hence IK − limx = l.

Remark 3.6. Converse of Theorem 3.5 is not necessarily true.

Example 3.7. Consider the ideals Ic = {A ⊆ N :
∑

a∈A a
−1 < ∞} and Id = {A ⊆ N :

d(A) = 0}. Let x = (xk) be the sequence defined as xk =

{
1, k is prime
0, k is not prime

. Then there

exists M = set of all non-prime numbers ∈ F(Id) such that the sequence y = (yk) defined as

yk =

{
xk, k ∈M
0, k /∈M

is the null sequence and therefore Ic−convergent to 0. Hence x = (xk) is

IdIc−convergent to 0.
But we claim that x = (xk) is not Ic−convergent to 0. For if Ic − limx = 0, then for ε = 1

2 , the
set {k ∈ N : |xk − 0| ≥ 1

2} = set of all prime numbers ∈ Ic, a contradiction.

From the above example naturally question arises under what condition a sequence IK−converging
to l will also K−convergent to l. The next theorem is regarding such a condition.

Theorem 3.8. Let I and K be two ideals in N such that I ⊆ K. Let x = (xk) be a real sequence
such that IK − limx = l. Then K − limx = l.

Proof. Let I ⊆ K holds and the sequence x = (xk) is IK−convergent to l. So by definition,

there exists M ∈ F(I) such that the sequence y = (yk) defined as yk =

{
xk, k ∈M
l, k /∈M

is

K−convergent to l, which immediately implies

∀ ε > 0, {k ∈M : |xk − l| ≥ ε} ∈ K. (3.6)

Thus {k ∈ N : |xk − l| ≥ ε} ⊆ {k ∈M : |xk − l| ≥ ε} ∪ (N \M) ∈ K by Eq. (3.6) and since as
per our assumption I ⊆ K. Hence K − limx = l.

Theorem 3.9. If every subsequence of x = (xk) is IK−convergent to l, then x is IK−convergent
to l.

Proof. If possible let us assume the contrary. Then for every M ∈ F(I), the sequence y = (yk)

defined as yk =

{
xk, k ∈M
l, k /∈M

is not K−convergent to l. Thus for every M ∈ F(I) there exists

an εM > 0 such that
A =M ∩ {k ∈ N : |xk − l| ≥ εM} /∈ K.

Since K is admissible, so A is infinite. Let A = {a1 < a2 < .... < ak < ...}. Construct a
subsequence z = (zk) defined as zk = xak

for k ∈ N. Then IK − lim z 6= l, a contradiction to
our hypothesis.
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Theorem 3.10. Let x = (xk) be a sequence such that IK − limx = l. Then every subsequence
of x is IK−convergent to l if and only if both I and K does not contain infinite sets.

Proof. There are two possible cases.
Case-I: When K contain an infinite set.
Suppose A be an infinite set and A ∈ K. Then N \ A ∈ F(K) and N \ A is also infinite. Let
ε > 0 be arbitrary. Choose l1 ∈ R such that l1 6= l. Define a sequence x = (xk) as xk ={
l1, k ∈ A
l, k ∈ N \A

. Then {k ∈ N : |xk − l| ≥ ε} ⊆ A ∈ K which means that x is K−convergent

to l. Therefore by Theorem 3.5, x is IK−convergent to l. But clearly the subsequence (xk)k∈A
of x is IK−convergent to l1 not to l.
Case-II: When K does not contain an infinite set.
If K does not contains an infinite set, then K = If and IK−convergence concept coincides with
I∗−convergence.
Subcase-I: If I contain an infinite set.
Let B be any infinite set such that B ∈ I. Then N \B ∈ F(I) and N \B is also infinite. Define

a sequence x = (xk) as xk =

{
ξ, k ∈ B
l, k ∈ N \B

. Clearly x is I∗−convergent to l. But clearly

the subsequence (xk)k∈B of x is not I∗−convergent to l.
Subcase-II: If I does not contain an infinite set.
In this subcase, IK−convergence coincides with ordinary convergence (as Proposition 3.1 of [1]
is true for IK−convergence) so any subsequence of x is convergent to l.

Remark 3.11. If a sequence is IK−convergent then it may not be I−convergent.

Example 3.12. Let us consider the ideal I which is defined in Example 2.7 and the ideal Ic =
{A ⊆ N :

∑
a∈A a

−1 < ∞}. Let M = {k ∈ N : k = 2p for some non-negative integer p}.

Consider the sequence x = (xk) defined by xk =

{
1, k ∈M
0, k /∈M

. Then it is easy to check that x

is IIc−convergent to 0 but x is not I−convergent to 0.

Theorem 3.13. Let I and K be two ideals in N. Let x = (xk) be any real sequence. Then
IK − limx = l implies I − limx = l if and only if K ⊆ I.

Proof. Let us assume the contrary. Then there exists a set, say A ∈ K \ I. Let l1 and l2 be two

real numbers such that l1 6= l2. Define a sequence x = (xk) as xk =

{
l1, k ∈ A
l2, k ∈ N \A

. Let

ε > 0 be arbitrary. Clearly

{k ∈ N : |xk − l2| ≥ ε} ⊆ A ∈ K

which means that x is K−convergent to l2. Therefore by Theorem 3.5, x is IK−convergent to
l2. By hypothesis x is I−convergent to l2. Therefore for ε = |l1 − l2|, {k ∈ N : |xk − l2| ≥
|l1 − l2|} = A ∈ I, a contradiction. Hence we must have K ⊆ I.

Proof of converse part is straightforward (similar to Theorem 3.1 (ii) of [1]) so omitted.

Remark 3.14. If a sequence is I−convergent then it may not be IK−convergent. Consider the
ideal I and the sequence x = (xk) defined in Example 2.7. Then it is proven in Example 2.1 of
[10] that IIf − limx 6= 0 although I − limx = 0.

Theorem 3.15. Let I and K be two ideals in N. Then I − limx = l implies IK − limx = l if
and only if the condition AP (I,K) holds.

Proof. The proof is similar to the proof of Theorem 3.4 and 3.5 in [1].

Remark 3.16. If a sequence is KI−convergent then it may not be IK−convergent. Consider
Example 2.7. Clearly, x is If

I−convergent to 0 but not IIf−convergent to 0.
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Theorem 3.17. Let I and K be two ideals in N. Then KI − limx = l implies IK − limx = l if
I ⊆ K.

Proof. Proof is trivial so omitted.

Theorem 3.18. Let I, K, I1, I2, K1, K2 are ideals in N. Then-
(i) If IK1 − limx = l = IK2 − limx then IK1∨K2 − limx = l.
(ii) If IK1 − limx = l = IK2 − limx then (I1 ∨ I2)K − limx = l.

Proof. (i) Since IK1 − limx = l and IK2 − limx = l, so there exists M,N ∈ F(I) such that

∀ ε, δ > 0, {k ∈M : |xk − l| ≥ ε} ∈ K1 and {k ∈ N : |xk − l| ≥ δ} ∈ K2.

By the hereditary property of K1 and K2, we have

∀ ε, δ > 0, {k ∈M ∩N : |xk − l| ≥ ε} ∈ K1 and {k ∈M ∩N : |xk − l| ≥ δ} ∈ K2. (3.7)

Let η > 0 be arbitrary. Then from Eq. (3.7), choosing ε = δ = η we get

{k ∈M ∩N : |xk − l| ≥ η} ∈ K1 ∨ K2.

Now as M ∩ N ∈ F(I), so the sequence w = (wk) defined as wk =

{
xk, k ∈M ∩N
l, k /∈M ∩N

is

K1 ∨ K2−convergent to l. Hence (I1 ∨ I2)K − limx = l.
(ii) Since IK1 − limx = l and IK2 − limx = l, so there exists M ∈ F(I1) and N ∈ F(I2) such
that

∀ ε, δ > 0, {k ∈M : |xk − l| ≥ ε} ∈ K and {k ∈ N : |xk − l| ≥ δ} ∈ K.

By hereditary property of K, we have

∀ ε, δ > 0, {k ∈M ∩N : xk ≥ l+ ε} ∈ K and {k ∈M ∩N : xk ≤ l − δ} ∈ K.

Which implies

∀ ε, δ > 0, {k ∈M ∩N : xk ≥ l+ ε or xk ≤ l − δ} ∈ K. (3.8)

Let η > 0 be arbitrary. Choosing ε = δ = η we get from Eq. (3.8),

∀ η > 0, {k ∈M ∩N : |xk − l| ≥ η} ∈ K.

As M ∩N ∈ F(I1 ∨ I2), so we can conclude that (I1 ∨ I2)K − limx = l.

Theorem 3.19. For any sequence x = (xk) if IK−limx = l = KI−limx then- (i) (I ∨ K)I∨K−
limx = l and (ii) I ∨ K − limx = l.

Proof. (i) From the given conditions, there exist M ∈ F(I) and N ∈ F(K) such that

∀ε, δ > 0, {k ∈M : |xk − l| ≥ ε} ∈ K and {k ∈ N : |xk − l| ≥ δ} ∈ I

which implies

∀ε, δ > 0, {k ∈M : |xk − l| ≥ ε} ∪ {k ∈ N : |xk − l| ≥ δ} ∈ I ∨ K.

Let η > 0 be given. Then choosing ε = δ = η we get

∀η > 0, {k ∈M ∩N : |xk − l| ≥ η} ⊆ {k ∈M ∪N : |xk − l| ≥ η} ∈ I ∨ K.

Now it is a routine work to prove that (I ∨ K)I∨K − limx = l.
(ii) The proof is parallel to that of Proposition 3.1 in [1].
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