CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS ASSOCIATED WITH q-ANALOGUE OF MITTAG LEFFLER FUNCTIONS

Tamer M. Seoudy
Communicated by Fuad Kittaneh

MSC 2010 Classifications: Primary 30C45; Secondary 30C50.
Keywords and phrases: Multivalent functions, Hadamard product (or Convolution), Subordination, q-Derivative operator, q-analogue of Mittag Leffler function.

The author is thankful to the referees for their valuable comments which helped in improving the paper.

Abstract

The main object of this paper is to investigate convolution properties and coefficient estimates for some subclasses of multivalent functions defined by q-derivative operator in the open unit disc. The results presented here would provide extensions of those given in earlier works.

1 Introduction

Quantum calculus or q-calculus is an ordinary calculus without limit. In recent years, the study of q-theory attracted the researches due to its applications in various branches of mathematics and physics, for example, in the areas of special functions, ordinary fractional calculus, q-difference, q-integral equations and in q-transform analysis (see, for instance, $[1,2,3,9$, $11,14,15,20]$).

For $p \in \mathbb{N}=\{1,2,3, \ldots\}$, let \mathcal{A}_{p} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic and multivalent in open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. In particular, we write $\mathcal{A}(1)=\mathcal{A}$. Let $\mathcal{S}_{p}^{*}(\eta)$ and $\mathcal{C}_{p}(\eta)$ denote the subclasses of multivalent starlike and convex functions of order $\eta(0 \leq \eta<p)$ (see Owa [18], Aouf [5] and Aouf et al. [6] and Srivastava et al. [25]). If $f(z)$ and $g(z)$ are analytic in \mathbb{U}, we say that $f(z)$ is subordinate to $g(z)$, written $f(z) \prec g(z)$ if there exists a Schwarz function ω, which (by definition) is analytic in \mathbb{U} with $\omega(0)=0$ and $|\omega(z)|<1$ for all $z \in \mathbb{U}$, such that $f(z)=g(\omega(z)), z \in \mathbb{U}$. Furthermore, if the function g is univalent in \mathbb{U}, then we have the following equivalence, (see [12, 16]):

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(\mathbb{U}) \subset g(\mathbb{U})
$$

For functions f given by (1.1) and g given by

$$
g(z)=z^{p}+\sum_{k=p+1}^{\infty} b_{k} z^{k}
$$

the Hadamard product or convolution of f and g is defined by

$$
(f * g)(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z)
$$

Also, for $f \in \mathcal{A}_{p}$ given by (1.1) and $0<q<1$, the q-derivative of f is defined by (see Gasper and Rahman [13] and Srivastava et al. [26])

$$
D_{p, q} f(z):= \begin{cases}f^{\prime}(0) & \text { if } z=0, \tag{1.2}\\ \frac{f(q z)-f(z)}{(q-1) z} & \text { if } z \neq 0,\end{cases}
$$

provided that $f^{\prime}(0)$ exists. From (1.2), we deduce that

$$
\begin{equation*}
D_{p, q} f(z)=[p]_{q} z^{p-1}+\sum_{k=p+1}^{\infty}[k]_{q} a_{k} z^{k-1}(z \neq 0), \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
[i]_{q}:=\frac{1-q^{i}}{1-q}=1+q+q^{2}+\ldots+q^{i-1} \tag{1.4}
\end{equation*}
$$

and

$$
\lim _{q \rightarrow 1^{-}} D_{p, q} f(z)=\lim _{q \rightarrow 1^{-}} \frac{f(q z)-f(z)}{(q-1) z}=f^{\prime}(z)
$$

for a function f which is differentiable in a given subset of \mathbb{C}. Further, for $p=1$, we have $D_{q, 1} f(z)=D_{q} f(z)$ (see Seoudy and Aouf [22]).

Making use of the q-derivative operator $D_{p, q}(0<q<1, p \in \mathbb{N})$ given by (1.2), we introduce the subclass $\mathcal{S}_{p, q}^{*}(\eta)$ of $p-$ valently q-starlike functions of order η in \mathbb{U} and the subclass $\mathcal{C}_{p, q}(\eta)$ of p-valently q-convex functions of order η in $\mathbb{U}, 0 \leq \eta<[p]_{q}$, as follows:

$$
\mathcal{S}_{p, q}^{*}(\eta)=\left\{f \in \mathcal{A}_{p}: \Re\left\{\frac{z D_{p, q} f(z)}{f(z)}\right\}>\eta\right\},
$$

and

$$
\mathcal{C}_{p, q}(\eta)=\left\{f \in \mathcal{A}_{p}: \Re\left\{\frac{D_{p, q}\left(z D_{p, q} f(z)\right)}{D_{p, q} f(z)}\right\}>\eta\right\},
$$

respectively. It is easy to check that

$$
f \in \mathcal{C}_{p, q}(\eta) \Longleftrightarrow \frac{z D_{p, q} f}{[p]_{q}} \in \mathcal{S}_{q}^{*}(\eta) .
$$

We note also that $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{p, q}^{*}(\eta)=\mathcal{S}_{p}^{*}(\eta)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{C}_{p, q}(\eta)=\mathcal{C}_{p}(\eta)$.
We next introduce the subclasses $\mathcal{S}_{p, q}^{*}[\alpha ; A, B]$ and $\mathcal{C}_{p, q}[\alpha ; A, B]$ as follows.
Definition 1.1. For $0<q<1,0 \leq \eta<[p]_{q},-1 \leqq B<A \leqq 1$ and $p \in \mathbb{N}$, let $\mathcal{S}_{p, q}^{*}[\eta ; A, B]$ and $\mathcal{C}_{p, q}[\eta, A, B]$ be the subclasses of \mathcal{A}_{p} consisting of functions f of the form (1.1) and satisfy the analytic criterion:

$$
\begin{equation*}
\frac{1}{[p]_{q}-\eta}\left(\frac{z D_{p, q} f(z)}{f(z)}-\eta\right) \prec \frac{1+A z}{1+B z}, \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{[p]_{q}-\eta}\left(\frac{D_{p, q}\left(z D_{p, q} f(z)\right)}{D_{p, q} f(z)}-\eta\right) \prec \frac{1+A z}{1+B z}, \tag{1.6}
\end{equation*}
$$

From (1.5) and (1.6), it follows that

$$
\begin{equation*}
f \in \mathcal{C}_{p, q}[\eta ; A, B] \Leftrightarrow \frac{z D_{p, q} f}{[p]_{q}} \in \mathcal{S}_{p, q}^{*}[\eta ; A, B] . \tag{1.7}
\end{equation*}
$$

We remark the following special cases:
(i) $\mathcal{S}_{p, q}^{*}[\eta ; 1,-1]=: \mathcal{S}_{p, q}^{*}(\eta)$ and $\mathcal{C}_{p, q}[\eta ; 1,-1]=: \mathcal{C}_{p, q}(\eta)\left(0 \leq \eta<[p]_{q}\right)$;
(ii) $\mathcal{S}_{1, q}^{*}[0 ; A, B]=: \mathcal{S}_{q}^{*}[A, B]$ and $\mathcal{C}_{1, q}[0 ; A, B]=: \mathcal{C}_{q}[A, B]$ (see $\left.[22,23]\right)$;
(iii) $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{p, q}^{*}[\eta ; 1,-1]=: \mathcal{S}_{p}^{*}(\eta)$ and $\lim _{q \rightarrow 1^{-}} \mathcal{C}_{p, q}[\eta ; 1,-1]=: \mathcal{C}_{p}(\eta)(0 \leqq \eta<p)$ (see [18] and [5]);
(iv) $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{p, q}^{*}[0 ; A, B]=\mathcal{S}_{p}[A, B]$ and $\lim _{q \rightarrow 1^{-}} \mathcal{C}_{p, q}[0 ; A, B]=\mathcal{C}_{p}[A, B]$ (see [21, with $\lambda=0$ and $\phi(z)=\frac{1+A z}{1+B z}$] and [4]);
(v) $\lim _{q \rightarrow 1^{-}} \mathcal{S}_{1, q}^{*}[0 ; A, B]=\mathcal{S}[A, B]$ and $\lim _{q \rightarrow 1^{-}} \mathcal{C}_{1, q}[0 ; A, B]=\mathcal{C}[A, B]$ (see [7]).

The q-shifted factorials, for any complex number α, are defined by

$$
\begin{equation*}
(\alpha ; q)_{0}:=1 ; \quad(\alpha ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-\alpha q^{k}\right), n \in \mathbb{N} \tag{1.8}
\end{equation*}
$$

The definition (1.8) remains meaningful for $n=\infty$ as a convergent infinite product

$$
(\alpha ; q)_{\infty}=\prod_{j=0}^{\infty}\left(1-\alpha q^{j}\right) \text { for }|q|<1
$$

Furthermore, in terms of the basic (or $q-$) Gamma function $\Gamma_{q}(z)$ defined by

$$
\begin{equation*}
\Gamma_{q}(z):=\frac{(q ; q)_{\infty}(1-q)^{1-z}}{\left(q^{z} ; q\right)_{\infty}} \quad(0<q<1 ; z \in \mathbb{C}) \tag{1.9}
\end{equation*}
$$

so that

$$
\lim _{q \rightarrow 1^{-}}\left\{\Gamma_{q}(z)\right\}=\Gamma(z)
$$

for the familiar Gamma function $\Gamma(z)$, we find from (1.8) that

$$
\left(q^{\alpha} ; q\right)_{n}=\frac{\Gamma_{q}(\alpha+n)}{\Gamma_{q}(\alpha)}(1-q)^{n} \quad(n \in \mathbb{N} ; \alpha \in \mathbb{C})
$$

We note that

$$
\lim _{q \rightarrow 1^{-}} \frac{\left(q^{\alpha} ; q\right)_{n}}{(1-q)^{n}}=(\alpha)_{n}
$$

where

$$
(\alpha)_{n}=\left\{\begin{array}{lll}
1, & \text { if } \quad n=0 \\
\alpha(\alpha+1)(\alpha+2) \ldots(\alpha+n-1), & \text { if } \quad n \in \mathbb{N}
\end{array}\right.
$$

For $0<q<1, \alpha, \beta, \gamma \in \mathbb{C}, \Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>0$, consider the q-analogue of Mittag Leffler defined by (see [24], [8] and [10])

$$
E_{\alpha, \beta}^{\gamma}(z ; q)=\sum_{k=0}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k}}{(q ; q)_{k}} \frac{z^{k}}{\Gamma_{q}(\alpha k+\beta)}
$$

As $q \rightarrow 1^{-}$, the operator $E_{\alpha, \beta}^{\gamma}(z ; q)$ reduces to $E_{\alpha, \beta}^{\gamma}(z)$ introduced by Prabhakar [19]. Now, let us define

$$
\mathbb{E}_{\alpha, \beta}^{\gamma, p}(z ; q):=z^{p} \Gamma_{q}(\beta) E_{\alpha, \beta}^{\gamma}(z ; q)=z^{p}+\sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} z^{k}
$$

We remark that:
(i) $\mathbb{E}_{1,1}^{1, p}(z ; q)=z^{p} e_{q}(z)$;
(ii) $\mathbb{E}_{1,2}^{1, p}(z ; q)=z^{p-1}\left(e_{q}(z)-1\right)$;
where $e_{q}(z)$ is one of the q-analogues of the exponential function e^{z} given by

$$
e_{q}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma_{q}(k+1)}=\sum_{k=0}^{\infty} \frac{(1-q)^{k} z^{k}}{(q ; q)_{k}}=\frac{1}{(z ; q)_{\infty}}
$$

Using the Hadamard product (or convolution), we define the linear operator $\mathbb{E}_{\alpha, \beta}^{\gamma, p}: \mathcal{A}_{p} \rightarrow \mathcal{A}_{p}$ by (see [8] and [10])

$$
\begin{equation*}
\mathbb{H}_{\alpha, \beta}^{\gamma, p} f(z)=\mathbb{E}_{\alpha, \beta}^{\gamma, p}(z ; q) * f(z)=z^{p}+\sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} a_{k} z^{k}, z \in \mathbb{U} \tag{1.10}
\end{equation*}
$$

Definition 1.2. For $0<q<1, \alpha, \beta, \gamma \in \mathbb{C}, \Re(\alpha)>0, \Re(\beta)>0, \Re(\gamma)>0,-1 \leq B<A \leq 1$ and $0 \leq \eta<[p]_{q}$, let

$$
\mathcal{S}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]:=\left\{f \in \mathcal{A}_{p}: \mathbb{H}_{\alpha, \beta}^{\gamma, p} f \in \mathcal{S}_{p, q}^{*}[\eta ; A, B]\right\},
$$

and

$$
\mathcal{C}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]:=\left\{f \in \mathcal{A}_{p}: \mathbb{H}_{\alpha, \beta}^{\gamma, p} f \in \mathcal{C}_{p, q}[\eta ; A, B]\right\}
$$

It is easy to check that

$$
f \in \mathcal{C}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B] \Leftrightarrow \frac{z D_{p, q} f}{[p]_{q}} \in \mathcal{S}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]
$$

Seoudy and Aouf in [22] (and Mostafa et al. in [17]) introduced some subclasses of q-starlike (meromorphic) and q-convex (meromorphic) functions involving q-derivative operator, they obtained convolution properties and coefficient estimates for functions belonging to these classes. In this paper, we investigate convolution properties two subclasses $\mathcal{S}_{p, q}^{*}[\eta ; A, B]$ and $\mathcal{K}_{p, q}[\eta ; A, B]$. Also, we obtain coefficient estimates for the subclasses $\mathcal{S}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$ and $\mathcal{C}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$.

2 Main Results

Unless otherwise mentioned, we assume throughout this paper that $0<q<1, \Re(\alpha)>0$, $\Re(\beta)>0, \Re(\gamma)>0,-1 \leqq B<A \leqq 1, \mathbb{U}^{*}=\mathbb{U} \backslash\{0\}$ and $0 \leq \eta<[p]_{q}$.

Theorem 2.1. If $f \in \mathcal{A}_{p}$, then $f \in \mathcal{S}_{p, q}^{*}[\eta ; A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z^{p}}\left[f(z) * \frac{z^{p}-C z^{p+1}}{(1-z)(1-q z)}\right] \neq 0 \quad\left(z \in \mathbb{U}^{*} ; \theta \in[0,2 \pi)\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
C=q+\frac{q^{p}\left(e^{-i \theta}+B\right)}{(A-B)\left([p]_{q}-\eta\right)} \tag{2.2}
\end{equation*}
$$

Proof. For any function $f \in \mathcal{A}_{p}$, we can verify that

$$
\begin{equation*}
f(z)=f(z) * \frac{z^{p}}{1-z} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
z D_{p, q} f(z)=f(z) * \frac{[p]_{q} z^{p}+\left(1-[p]_{q}\right) z^{p+1}}{(1-z)(1-q z)} . \tag{2.4}
\end{equation*}
$$

First, in order to prove that (2.1) holds, we will write (1.5) by using the principle of subordination between analytic functions, that is,

$$
\frac{z D_{p, q} f(z)}{f(z)}=\frac{[p]_{q}+\left\{[p]_{q} B+(A-B)\left([p]_{q}-\eta\right)\right\} w(z)}{1+B w(z)}
$$

where w is a Schwarz function, hence

$$
\begin{equation*}
\frac{1}{z^{p}}\left[z D_{p, q} f(z)\left(1+B e^{i \theta}\right)-\left([p]_{q}+\left\{[p]_{q} B+(A-B)\left([p]_{q}-\eta\right)\right\} e^{i \theta}\right) f(z)\right] \neq 0 \tag{2.5}
\end{equation*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$. Since the convolution operator satisfy the distributivity $f *$ $(g+h)=f * g+f * h$ for any functions $f, g, h \in \mathcal{A}_{p}$, and from (2.3) and (2.4), the relation (2.5) may be written as

$$
\frac{1}{z^{p}}\left[\left(1+B e^{i \theta}\right)\left(f(z) *\left[\frac{[p]_{q} z^{p}+\left(1-[p]_{q}\right) z^{p+1}}{(1-z)(1-q z)}\right]\right)\right.
$$

$$
\left.-\left([p]_{q}+\left\{[p]_{q} B+(A-B)\left([p]_{q}-\eta\right)\right\} e^{i \theta}\right)\left(f(z) * \frac{z^{p}}{1-z}\right)\right] \neq 0
$$

which is equivalent to

$$
\frac{1}{z^{p}}\left[f(z) * \frac{\left.z^{p}-\left[q+\frac{q^{p}\left(e^{-i \theta}+B\right)}{(A-B)\left([p]_{q}-\eta\right)}\right] z^{p+1}\right]}{(1-z)(1-q z)}\right] \neq 0, z \in \mathbb{U}^{*}, \theta \in[0,2 \pi)
$$

that is (2.1).
Reversely, suppose that $f \in \mathcal{A}_{p}$ satisfy the condition (2.1). Like it was previously shown, the assumption (2.1) is equivalent to (2.4), that is,

$$
\begin{equation*}
\frac{z D_{p, q} f(z)}{f(z)} \neq \frac{[p]_{q}+\left\{[p]_{q} B+(A-B)\left([p]_{q}-\eta\right)\right\} e^{i \theta}}{1+B e^{i \theta}} \quad\left(z \in \mathbb{U}^{*} ; \theta \in[0,2 \pi)\right) \tag{2.6}
\end{equation*}
$$

Denoting

$$
\varphi(z)=\frac{z D_{p, q} f(z)}{f(z)} \quad \text { and } \quad \psi(z)=\frac{[p]_{q}+\left\{[p]_{q} B+(A-B)\left([p]_{q}-\eta\right)\right\} z}{1+B z}
$$

the relation (2.6) could be written as $\varphi(\mathbb{U}) \cap \psi(\partial \mathbb{U})=\emptyset$. Therefore, the simply connected domain $\varphi(\mathbb{U})$ is included in a connected component of $\mathbb{C} \backslash \psi(\partial \mathbb{U})$. From this fact, using that $\varphi(0)=\psi(0)=[p]_{q}$ together with the univalence of the function ψ, it follows that $\varphi(z) \prec \psi(z)$, that is $f \in \mathcal{S}_{p, q}^{*}[\eta ; A, B]$.

Remark 2.2. Putting $q \rightarrow 1^{-}, \eta=0$ and $e^{i \theta}=x$ in Theorem 2.1, we obtain the result of Sarkar et al. [21, Theorem 2.1 with $\lambda=0$ and $\phi(z)=\frac{1+A z}{1+B z}$];

Remark 2.3. Putting $\eta=0$ and $p=1$ in Theorem 2.1, we obtain the result of Seoudy and Aouf [22, Theorem 1].

Theorem 2.4. If $f \in \mathcal{A}_{p}$, then $f \in \mathcal{C}_{p, q}[\eta ; A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z^{p}}\left[f(z) * \frac{[p]_{q} z^{p}-\left\{[p]_{q}-(q+1)+C\left(1+q[p]_{q}\right)\right\} z^{p+1}+q\left([p]_{q}-1\right) C z^{p+2}}{(1-z)(1-q z)\left(1-q^{2} z\right)}\right] \neq 0 \tag{2.7}
\end{equation*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$, where C is given by (2.2).
Proof. From (1.7) it follows that $f \in \mathcal{C}_{p, q}[\eta ; A, B]$ if and only if $\Phi(z):=\frac{z D_{p, q} f}{[p]_{q}} \in \mathcal{S}_{p, q}^{*}[\eta ; A, B]$. Then, according to Theorem 2.1, the function $\Phi(z)$ belongs to $\mathcal{S}_{p, q}^{*}[\eta ; A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z^{p}}[\Phi(z) * g(z)] \neq 0, \text { for all } z \in \mathbb{U}^{*} \text { and } \theta \in[0,2 \pi) \tag{2.8}
\end{equation*}
$$

where

$$
g(z)=\frac{z^{p}-C z^{p+1}}{(1-z)(1-q z)} .
$$

But (2.8) is equivalent to

$$
\frac{1}{z^{p}}\left[\frac{1}{[p]_{q}}\left(f(z) * z D_{p, q} g(z)\right)\right] \neq 0
$$

that is,

$$
\frac{1}{[p]_{q} z^{p}}\left[f(z) * z D_{p, q} g(z)\right] \neq 0 \Leftrightarrow \frac{1}{z^{p}}\left[f(z) * z D_{p, q} g(z)\right] \neq 0
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$. Using the fact that

$$
z D_{p, q} g(z)=\frac{[p]_{q} z^{p}-\left\{[p]_{q}-(q+1)+C\left(1+q[p]_{q}\right)\right\} z^{p+1}+q\left([p]_{q}-1\right) C z^{p+2}}{(1-z)(1-q z)\left(1-q^{2} z\right)},
$$

it is easy to check that (2.8) is equivalent to (2.7).
Remark 2.5. For $q \rightarrow 1^{-}, \eta=0$ and $e^{i \theta}=x$ in Theorem 2.4, we obtain the result of Sarkar et al. [21, Theorem 2.3 with $\lambda=0$ and $\phi(z)=\frac{1+A z}{1+B z}$;
Remark 2.6. For $\eta=0$ and $p=1$ in Theorem 2.4, we obtain the result of Seoudy and Aouf [22, Theorem 5].
Theorem 2.7. If $f \in \mathcal{A}_{p}$, then $f \in \mathcal{S}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$ if and only if

$$
\begin{align*}
& 1+\sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} \tag{2.9}\\
& \times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}-[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)\left(e^{-i \theta}+B\right)\right\}}{\left.(A-B)(p p]_{q}-\eta\right)} a_{k} z^{k-p} \neq 0,
\end{align*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$.
Proof. If $f \in \mathcal{A}_{p}$, then from Definition 1.2 and according to Theorem 2.1, we have $f \in$ $\mathcal{S}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z^{p}}\left[\left(\mathbb{H}_{\alpha, \beta}^{\gamma, p} f\right)(z) * \frac{z^{p}-C z^{p+1}}{(1-z)(1-q z)}\right] \neq 0, \text { for all } z \in \mathbb{U}^{*} \text { and all } \theta \in[0,2 \pi), \tag{2.10}
\end{equation*}
$$

where C is given by (2.2). Since

$$
\frac{z^{p}}{(1-z)(1-q z)}=z^{p}+\sum_{k=p+1}^{\infty}[k-p+1]_{q} z^{k}, \frac{z^{p+1}}{(1-z)(1-q z)}=\sum_{k=p+1}^{\infty}[k-p]_{q} z^{k} .
$$

After some computations, we get

$$
\frac{z^{p}-C z^{p+1}}{(1-z)(1-q z)}=z^{p}+\sum_{k=p+1}^{\infty}\left([k-p+1]_{q}-[k-p]_{q} C\right) z^{k},
$$

then we may deduce that (2.10) is equivalent to (2.9), and the proof of Theorem 2.7 is completed.
Theorem 2.8. If $f \in \mathcal{A}_{p}$, then $f \in \mathcal{C}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$ if and only if

$$
\begin{align*}
& 1+\sum_{k=p+1}^{\infty} \frac{[k]_{q}}{[p]_{q}} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} \tag{2.11}\\
& \times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}-[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)\left(e^{-i \theta}+B\right)\right\}}{\left.(A-B)(p p]_{q}-\eta\right)} a_{k} z^{k-p} \neq 0,
\end{align*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$.
Proof. If $f \in \mathcal{A}_{p}$, then from Definition 1.2 and Theorem 2.4, we have that $f \in \mathcal{C}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$ if and only if

$$
\begin{equation*}
\frac{1}{z^{p}}\left[\left(\mathbb{H}_{\alpha, \beta}^{\gamma, p} f\right)(z) * \frac{[p]_{q^{p}} z^{p}-\left\{[p]_{q}-(q+1)+C\left(1+q[p]_{q}\right)\right\} z^{p+1}+q\left([p]_{q}-1\right) C z^{p+2}}{(1-z)(1-q z)\left(1-q^{z} z\right)}\right] \neq 0, \tag{2.12}
\end{equation*}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$, where C is given by (2.2). Since

$$
\begin{gathered}
\frac{[p]_{q} z^{p}-\left\{[p]_{q}-(q+1)+C\left(1+q[p]_{q}\right)\right\} z^{p+1}+q\left([p]_{q}-1\right) C z^{p+2}}{(1-z)(1-q z)\left(1-q^{2} z\right)} \\
=[p]_{q} z^{p}+\sum_{k=p+1}^{\infty}[k]_{q}\left([k-p+1]_{q}-[k-p]_{q} C\right) z^{k}, z \in \mathbb{U} .
\end{gathered}
$$

Now, we may check that (2.12) is equivalent to (2.11) which proves our result.

Unless otherwise mentioned, we assume throughout the remainder part of this section that α, β and γ are real numbers.

Theorem 2.9. If $f \in \mathcal{A}_{p}$ satisfies the inequality

$$
\begin{align*}
& \sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} \tag{2.13}\\
& \times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}+[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)(1+|B|)\right\}}{(A-B)\left([p]_{q}-\eta\right)}\left|a_{k}\right|<1
\end{align*}
$$

then $f \in \mathcal{S}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$.
Proof. If $f \in \mathcal{A}_{p}$ has the form (1.1) and assuming that (2.9) holds, we obtain

$$
\begin{aligned}
& \left\lvert\, 1+\sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)}\right. \\
& \left.\times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}-[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)\left(e^{-i \theta}+B\right)\right\}}{(A-B)\left([p]_{q}-\eta\right)} a_{k} z^{k-p} \right\rvert\, \\
& \geq 1-\left\lvert\, \sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)}\right. \\
& \left.\times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}-[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)\left(e^{-i \theta}+B\right)\right\}}{(A-B)\left([p]_{q}-\eta\right)} a_{k} z^{k-p} \right\rvert\, \\
& \geq 1-\sum_{k=p+1}^{\infty} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} \\
& \times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}+[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)(1+|B|)\right\}}{(A-B)\left([p]_{q}-\eta\right)}\left|a_{k}\right|>0,
\end{aligned}
$$

for all $z \in \mathbb{U}^{*}$ and $\theta \in[0,2 \pi)$. It follows that (2.9) holds, and from Theorem 2.7 we obtain our conclusion.

Using similar arguments to those in the proof of Theorem 2.9, we obtain the following theorem:

Theorem 2.10. If $f \in \mathcal{A}_{p}$ and satisfies the inequality

$$
\begin{aligned}
& \sum_{k=p+1}^{\infty} \frac{[k]_{q}}{[p]_{q}} \frac{\left(q^{\gamma} ; q\right)_{k-p}}{(q ; q)_{k-p}} \frac{\Gamma_{q}(\beta)}{\Gamma_{q}(\alpha(k-p)+\beta)} \\
& \times \frac{(A-B)\left([p]_{q}-\eta\right)[k-p+1]_{q}+[k-p]_{q}\left\{q(A-B)\left([p]_{q}-\eta\right)+\left(1+q[p]_{q}-[p]_{q}\right)(1+|B|)\right\}}{(A-B)\left([p]_{q}-\eta\right)}\left|a_{k}\right|<1
\end{aligned}
$$

then $f \in \mathcal{C}_{p, q, \alpha, \beta}^{\gamma}[\eta ; A, B]$.

References

[1] M.H. Abu-Risha, M.H. Annaby, M.E.H. Ismail and Z.S. Mansour, Linear q-difference equations, Z. Anal. Anwend. 26(4), 481-494 (2007).
[2] D. Albayrak, S.D. Purohit and F. Uçar, On q-analogues of Sumudu transforms, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 21(1), 239-260 (2013).
[3] D. Albayrak, S.D. Purohit and F. Uçar, On q-Sumudu transforms of certain q-polynomials, Filomat 27(2), 411-427 (2013).
[4] M.K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Math. Sci. 10(4), 733-744 (1987).
[5] M.K. Aouf, A generalization of multivalent functions with negative coefficients, J. Korean Math. Soc. 25(1), 53-66 (1988).
[6] M.K. Aouf, H.M. Hossen and H.M. Srivastava, Some families of multivalent functions, Comput. Math. Appl. 39(7-8), 39-48 (2000).
[7] M.K. Aouf and T.M. Seoudy, Classes of analytic functions related to the Dziok-Srivastava operator, Integral Transform. Spec. Funct. 22(6), 423-430 (2011).
[8] M.K. Aouf and T.M. Seoudy, Subclasses of p-valent functions involving a new operator containing the generalized Mittag-Leffler function, Mediterr. J. Math. 15(4), Art. 181, 1-19 (2018).
[9] M.K. Aouf and T.M. Seoudy, Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator, Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 113(2), 1279-1288 (2019).
[10] M.K. Aouf and T.M. Seoudy, Some preserving sandwich results of certain operator containing a generalized Mittag-Leffler function, Bol. Soc. Mat. Mex. 25(3), 577-588 (2019).
[11] G. Bangerezako, Variational calculus on q-non uniform lattices, J. Math. Anal. Appl. 306(1), 161-179 (2005).
[12] T. Bulboacă, Differential Subordinations and Superordinations, New Results, House of Scientific Boook Publ., Cluj-Napoca, (2005).
[13] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, (1990).
[14] V.G. Kac and P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, (2002).
[15] Z.S. I. Mansour, Linear sequential q-difference equations of fractional order, Fract. Calc. Appl. Anal. 12(2) 159-178 (2009).
[16] S.S. Miller and P.T. Mocanu, Differential Subordinations. Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 255, Marcel Dekker Inc., New York, (2000).
[17] A.O. Mostafa, M.K. Aouf, H.M. Zayed and T. Bulboacă, Convolution conditions for subclasses of meromorphic functions of complex order associated with basic Bessel functions, J. Egyptian Math. Soc. 25 286-290 (2017).
[18] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59 385-402 (1985).
[19] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohoma Math. J. 19, 7-15 (1971).
[20] P.M. Rajković, S.D. Marinković and M.S. Stanković, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 311-323 (2007).
[21] N. Sarkar, P. Goswami and T. Bulboacă, Subclasses of spirallike multivalent functions, Math. Comput. Modelling 54 3189-3196 (2011).
[22] T.M. Seoudy and M.K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstract and Applied Analysis Art. ID 846719, 1-7 (2014).
[23] T.M. Seoudy and M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequalities 10(1), 135-145(2016).
[24] S.K. Sharma and R. Jain, On some properties of generalized q-Mittag Leffler function, Math. Aeterna 4, 613-619 (2014).
[25] H.M. Srivastava, M.K. Aouf and S. Owa, Certain classes of multivalent functions of order α and type β, Bull. Soc. Math. Belg., Ser. B 42(1), 31-66 (1990).
[26] H.M. Srivastava, A.O. Mostafa, M.K. Aouf and H.M. Zayed, Basic and fractional q-calculus and associated Fekete-Szegő problem for p-valently q-starlike functions and p-valently q-convex functions of complex order, Miskolc Math. Notes 20(1), 489-509 (2019).

Author information

Tamer M. Seoudy, Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt. Department of Mathematics, Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia. E-mail: tms00@fayoum.edu.eg, tmsaman@uqu.edu.sa

Received: Nomber 17, 2020
Accepted: January 6, 2021

