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Abstract: This paper presents the development and analysis of Sextic Polynomial Explicit
Method (SPEM) for the solution of logistic models. The proposed method is derived by means
of interpolating function of polynomial form. The properties of SPEM were analysed and inves-
tigated. Three numerical examples were solved to measure the performance of SPEM in terms of
applicability, accuracy and suitability. The comparative study of the results generated via SPEM
and the well-known Classical Runge-Kutta Method (RK4) in the context of the exact solution is
presented. The results show that SPEM outperforms RK4. Hence, SPEM is found to be accurate
and suitable for the solution of logistic models emanating from real life situation.

1 Introduction

Ordinary differential equations (ODEs) occur in the fields of science and engineering. In real
world applications, many differential equations cannot be solved using the standard analytical
methods. In such situations, approximation to the solution is needed which are obtained using
various numerical algorithms. A great number of numerical methods for determining approxi-
mations to the solution of ODEs have been proposed by researchers. There are two main cate-
gories of numerical integrators, namely one-step methods and multi-step methods. Fatunla [1]
proposed one type of numerical technique by representing the theoretical solution of the initial
value problem (IVP) by (linear or nonlinear) interpolating function. In [2], the authors studied
the numerical accuracy of the Runge-Kutta method of second, third and fourth order for the
numerical solution of differential equations. Fadugba and Falodun [3] developed a new one-
step scheme for the solution of IVPs in ODEs. Analysis of composite Runge-Kutta methods
and new one-step technique for stiff delay differential equations was considered by [4]. Abo-
larin and Akingbade [5] derived the fourth stage inverse polynomial scheme for solving initial
value problems. Shaalini and Emimal [6] studied the numerical solutions of stiff and non-stiff
delay differential equations using Lagrange interpolation. Fadugba [7] developed an improved
numerical integration method via the transcendental function of exponential form for IVPs in
ODEs. Ref. [8 - 13] also studied the numerical solutions of IVPs in ODEs via several developed
methods. In this present work, a new numerical scheme has been developed by representing the
theoretical solution of the IVP by an interpolating polynomial of degree six. It is termed here
as Sextic Polynomial Explicit Method (SPEM). The stability, convergence and consistency of
the proposed method have been discussed. The applicability of this method has been demon-
strated by considering three logistic models. The rest of the paper has been organised as follows:
Section 2 describes SPEM and its properties. Section 3 provides numerical examples of three
nonlinear logistic models. Section 4 explains the concluding remarks.

2 A Proposed Sextic Polynomial Explicit Method

This section presents the problem formulation, derivation of the method and its properties.
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2.1 Problem Formulation

Consider an initial value problem of first order ordinary differential equation of the form

y′ = f(x, y), y(a) = y0, x ∈ [a, b], y ∈ (−∞,∞) (2.1)

The existence and uniqueness of solution of (2.1) has been guaranteed via the Lipschitz condition
on the interval I = [a, b]. The analytical solution of (2.1) at x = xn is given by y(xn).

2.2 Derivation of the Method

Consider the interpolating polynomial of the form

F (x) =
6∑

j=0

βjx
j (2.2)

where β1, β2, β3, β4, β5, β6are undetermined constants. The integration interval of [a, b]is defined
as a = x0 ≤ x ≤ xn = b. The step length is defined as

h =
b− a
N

(2.3)

The mesh point is defined as

xn+1 = x0 + (n+ 1)h, n = 0, 1, 2, ...N − 1 (2.4)

or
xn = x0 + nh, n = 1, 2, ...N (2.5)

Using (2.4) and (2.5), with x0 = 0, yields

xn = nh (2.6)

xn+1 = (n+ 1)h (2.7)

xn+1 − xn = h (2.8)

x2
n+1 − x2

n = (2n+ 1)h2 (2.9)

x3
n+1 − x3

n = (3n2 + 3n+ 1)h3 (2.10)

x4
n+1 − x4

n = (4n3 + 6n2 + 4n+ 1)h4 (2.11)

x5
n+1 − x5

n = (5n4 + 10n3 + 10n2 + 5n+ 1)h5 (2.12)

x6
n+1 − x6

n = (6n5 + 15n4 + 20n3 + 15n2 + 6n+ 1)h6 (2.13)

Expanding (2.2) at the points xnand xn+1 yields

F (xn) =
6∑

j=0

βjx
j
n (2.14)

and

F (xn+1) =
6∑

j=0

βjx
j
n+1 (2.15)
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respectively. Setting (2.14) and (2.15) into Y (xn) and Y (xn+1), we have that

Y (xn) =
6∑

j=0

βjx
j
n (2.16)

and

Y (xn+1) =
6∑

j=0

βjx
j
n+1 (2.17)

Suppose that
Y (xn+1)− Y (xn) ≡ yn+1 − yn (2.18)

where

Y (xn+1)− Y (xn) =
∑6

j=1 βj

(
xjn+1 − xjn

)
= β1 (xn+1 − xn) + β2

(
x2
n+1 − x2

n

)
+β3

(
x3
n+1 − x3

n

)
+ β4

(
x4
n+1 − x4

n

)
+ β5

(
x5
n+1 − x5

n

)
+β6

(
x6
n+1 − x6

n

) (2.19)

This implies that

yn+1 − yn = β1 (xn+1 − xn) + β2
(
x2
n+1 − x2

n

)
+ β3

(
x3
n+1 − x3

n

)
+β4

(
x4
n+1 − x4

n

)
+ β5

(
x5
n+1 − x5

n

)
+ β6

(
x6
n+1 − x6

n

) (2.20)

Differentiating (2.16), yields

fn =
6∑

j=1

jβjx
j−1
n (2.21)

f (1)n =
6∑

j=2

j(j − 1)βjxj−2
n (2.22)

f (2)n =
6∑

j=3

j(j − 1)(j − 2)βjxj−3
n (2.23)

f (3)n =
6∑

j=4

j(j − 1)(j − 2)(j − 3)βjxj−4
n (2.24)

f (4)n =
6∑

j=5

j(j − 1)(j − 2)(j − 3)(j − 4)βjxj−5
n (2.25)

f (5)n =
6∑

j=6

j(j − 1)(j − 2)(j − 3)(j − 4)(j − 5)βjxj−6
n (2.26)

Solving (2.21)-(2.26) and using (2.6), we obtain

β1 =
1

720

(
720fn − 720nhf (1)n + 360(nh)2f (2)n − 120(nh)3f (3)n + 30(nh)4f (4)n − 6(nh)5f (5)n

)
(2.27)

β2 =
1

720

(
360f (1)n − 360nhf (2)n + 180(nh)2f (3)n − 60(nh)3f (4)n + 15(nh)4f (5)n

)
(2.28)

β3 =
1

720

(
120f (2)n − 120nhf (3)n + 60(nh)2f (4)n − 20(nh)3f (5)n

)
(2.29)

β4 =
1

720

(
30f (3)n − 30nhf (4)n + 15(nh)2f (5)n

)
(2.30)
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β5 =
1

720

(
6f (4)n − 6nhf (5)n

)
(2.31)

β6 =
f
(5)
n

720
(2.32)

Using (2.6)-(2.13), (2.27)-(2.32) in (2.20), yields

yn+1 − yn =
h

720
(B1 +B2 +B3 +B4 +B5 +B6) (2.33)

with

B1 =
(

720fn − 720nhf (1)n + 360(nh)2f (2)n − 120(nh)3f (3)n + 30(nh)4f (4)n − 6(nh)5f (5)n

)
(2.34)

B2 = h(2n+ 1)
(

360f (1)n − 360nhf (2)n + 180(nh)2f (3)n − 60(nh)3f (4)n + 15(nh)4f (5)n

)
(2.35)

B3 = h2(3n2 + 3n+ 1)
(

120f (2)n − 120nhf (3)n + 60(nh)2f (4)n − 20(nh)3f (5)n

)
(2.36)

B4 = h3(4n3 + 6n2 + 4n+ 1)
(

30f (3)n − 30nhf (4)n + 15(nh)2f (5)n

)
(2.37)

B5 = h4(5n4 + 10n3 + 10n2 + 5n+ 1)
(

6f (4)n − 6nhf (5)n

)
(2.38)

B6 = h5(6n5 + 15n4 + 20n3 + 152 + 6n+ 1)f (5)n (2.39)

Equation (2.33) is the newly proposed Sextic Polynomial Explicit Method for the solution of
initial value problems of ordinary differential equations.

2.3 Properties of the scheme

The properties of the method are discussed as follows:
2.3.1 Order and Consistency of the Method
According to [14], a numerical method is said to be consistent if it has at least order p =1. To
determine the order of the method and to show the consistency property of the method, we follow
the procedures of [14] and [15]. Substituting (2.34)-(2.39) into (2.33) and simplifying further,
yields

yn+1 − yn
h

= fn +
h

2
f (1)n +

h2

6
f (2)n +

h3

24
f (3)n +

h4

120
f (4)n +

h5

720
f (5)n (2.40)

Taking the limit as h→ 0, we get

yn+1 − yn
h

= fn = f(xn, yn) (2.41)

Hence, the method given by (2.33) is consistent. By virtue of the Taylor series, it is found that
the method is of order 6. Also, the local truncation error for this method is obtained as O(h7).
2.3.2 Linear Stability Analysis of the Method
Consider the linear test equation of the form

y′ = λy, y(x0) = y0 (2.42)

where λ is a constant. Then

fn = λyn, f
(1)
n = λ2yn, f

(2)
n = λ3yn, f

(3)
n = λ4yn, f

(4)
n = λ5yn, f

(5)
n = λ6yn (2.43)
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Thus, (2.33) becomes

yn+1

yn
=

(
1 + λh+

(λh)
2

2
+

(λh)
3

6
+

(λh)
4

24
+

(λh)
5

120
+

(λh)
6

720

)
(2.44)

Setting z = λh, then (2.44) becomes

yn+1

yn
=

(
1 + z +

z2

2
+
z3

6
+
z4

24
+

z5

120
+

z6

720

)
(2.45)

The stability polynomial of this new method is given by

p(z) =
6∑

k=0

zk

Γ(k + 1)
(2.46)

The linear stability region of SPEM is obtained and given in the following figure.

Figure 1. Linear stability region of SPEM

2.3.3 Zero Stability of the Method
A linear explicit multistep method of k = 1 is said to be zero stable if the zeros of the first
characteristic polynomial

p(r) =
1∑

j=1

αjr
j (2.47)

satisfy the Dahlquist root conditions:

(i) all zeros r satisfy |r| ≤ 1

(ii) multiple zeros satisfy |r| < 1

The characteristic polynomial for SPEM is given by

p(r) = r − 1 (2.48)

To get the zero(s), setting p(r) = 0
This implies that

r − 1 = 0, r = 1 (2.49)

Since the zero of the first characteristic polynomial of SPEM satisfies the above root conditions,
hence, it is concluded that SPEM is zero stable.
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2.3.4 Convergence of the Method
From the order of accuracy of the method, it is clearly seen that the method is of order six. Also
the method is zero stable and consistent. The necessary and sufficient conditions for a numerical
method to be convergent are zero stability and consistency. Since these conditions are satisfied,
we can conclude that SPEM is convergent

3 Numerical Examples and Results

The performance of the SPEM is tested on the following logistics models.
Example 1: Consider a non-linear logistic model for the bacteria growth rate of the form

dc

dt
= kc (1− 0.0125c) , c(0) = 4, k = 5 (3.1)

The exact solution is obtained as

c(t) =
80

1 + 19 exp(−5t)
(3.2)

The results generated via SPEM and RK4 are presented in Tables 1 and 2.

Example 2: Consider a non-linear logistic model

du

dt
= u(1− u), u(0) = 0.4 (3.3)

The exact solution is obtained as

u(t) =
0.4 exp(t)

1 + 0.4(exp(t)− 1)
(3.4)

The results generated via SPEM and RK4 are shown in Tables 3 and 4.

Example 3: Consider a non-linear logistic model

du

dt
= u(a− bu), u(0) = u0 (3.5)

The exact solution is obtained as

u(t) =
au0 exp(at)

a+ bu0(exp(at)− 1)
(3.6)

where a is the coefficient for the virus transmission mechanism and b is the coefficient for the
effectiveness of the government restrictions (quarantine rule). The results generated via SPEM
and RK4 are displayed in Tables 5, 6 and 7.

Table 1. Final absolute relative error generated via SPEM and RK4 for Problem 1
h SPEM RK4
0.1 0.000050703451 0.006096554432
0.01 0.000000000046 0.000000668329
0.001 0.000000000000 0.000000000068
0.0001 0.000000000000 0.000000000000
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Table 2. Comparative results analyses of SPEM, RK4 and exact solution for Problem 1 with h =
0.1

‘TN’ ‘CN’SPEM ‘CN’RK4 ‘CTN’EXACT ‘EN’SPEM ‘EN’RK4

0.0 4.0000000000000 4.0000000000000 4.0000000000000 0.000000000000 0.000000000000
0.1 6.3877041904300 6.3869308532960 6.3876934521450 0.000010738285 0.000762598848
0.2 10.012905523178 10.010782619961 10.012879839867 0.000025683311 0.002097219906
0.3 15.268732237921 15.264702526237 15.268711060481 0.000021177440 0.004008534244
0.4 22.400329045712 22.394184281537 22.400364973206 0.000035927494 0.006180691669
0.5 31.254602812292 31.246730899601 31.254700733190 0.000097920898 0.007969833589
0.6 41.110901769627 41.102181767458 41.110934640935 0.000032871308 0.008752873477
0.7 50.834079405603 50.825520453662 50.833986027699 0.000093377904 0.008465574037
0.8 59.347386587158 59.339647124272 59.347306972859 0.000079614299 0.007659848587
0.9 66.057222691939 66.050387768979 66.057237226231 0.000014534292 0.006849457252
1.0 70.920615221808 70.914569370827 70.920665925259 0.000050703451 0.006096554432

Table 3. Final absolute relative error generated via SPEM and RK4 for Problem 2
h SPEM RK4
0.1 0.000000000143 0.000000014610
0.01 0.000000000000 0.000000000001
0.001 0.000000000000 0.000000000000
0.0001 0.000000000000 0.000000000000

Table 4. Comparative results analyses of SPEM, RK4 and exact solution for Problem 2 with h =
0.1

‘TN’ ‘UN’SPEM ‘UN’RK4 ‘UTN’EXACT ‘EN’SPEM ‘EN’RK4

0.0 0.400000000000 0.400000000000 0.400000000000 0.000000000000 0.000000000000
0.1 0.424222038729 0.424222037019 0.424222038718 0.000000000011 0.000000001700
0.2 0.448813669556 0.448813666287 0.448813669530 0.000000000026 0.000000003244
0.3 0.473658134962 0.473658130255 0.473658134918 0.000000000044 0.000000004663
0.4 0.498633726438 0.498633720377 0.498633726374 0.000000000065 0.000000005996
0.5 0.523616137863 0.523616130491 0.523616137777 0.000000000086 0.000000007286
0.6 0.548480927451 0.548480918768 0.548480927346 0.000000000105 0.000000008577
0.7 0.573105985409 0.573105975371 0.573105985287 0.000000000122 0.000000009917
0.8 0.597373904008 0.597373892527 0.597373903873 0.000000000134 0.000000011346
0.9 0.621174153740 0.621174140697 0.621174153598 0.000000000142 0.000000012901
1.0 0.644404982788 0.644404968035 0.644404982645 0.000000000143 0.000000014610
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Table 5. Comparative results analyses of SPEM, RK4 and exact solution for Problem 3 with h =
0.1

‘TN’ ‘UN’SPEM ‘UN’RK4 ‘UTN’EXACT ‘EN’SPEM ‘EN’RK4

0.0 571.000000000000 571.000000000000 571.000000000000 0.000000000000 0.000000000000
0.1 587.094946807399 587.094946728635 587.094946807399 0.000000000000 0.000000078764
0.2 603.640118867513 603.640118705663 603.640118867514 0.000000000000 0.000000161851
0.3 620.647913364301 620.647913114868 620.647913364302 0.000000000001 0.000000249433
0.4 638.131057592256 638.131057250567 638.131057592257 0.000000000001 0.000000341690
0.5 656.102617101494 656.102616662689 656.102617101495 0.000000000001 0.000000438806
0.6 674.576004006246 674.576003465277 674.576004006247 0.000000000002 0.000000540970
0.7 693.564985457754 693.564984809376 693.564985457756 0.000000000002 0.000000648380
0.8 713.083692282365 713.083691521129 713.083692282367 0.000000000001 0.000000761237
0.9 733.146627785476 733.146626905724 733.146627785477 0.000000000002 0.000000879754
1.0 753.768676721770 753.768675717628 753.768676721772 0.000000000002 0.000001004144

Table 6. Comparative results analyses of SPEM, RK4 and exact solution for Problem 3 with h =
0.1 and different values of time, t (days)
t ‘UN’SPEM ‘UN’RK4 ‘UTN’EXACT

0 571.0000000000000 571.0000000000000 571.000000000000
5 2266.103420036719 2266.103405749799 2266.103420036581
10 8457.563886923883 8457.563798505764 8457.563886922031
15 25923.854096541858 25923.853848460403 25923.854096542524
20 52826.493984558489 52826.493719219063 52826.493984553577
25 70994.527830096296 70994.527692920543 70994.527830096500
30 77573.486837016710 77573.486784128749 77573.486837016419
35 79387.635604725554 79387.635586962890 79387.635604725525
40 79848.116894757739 79848.116889236670 79848.116894757666
45 79962.492437872614 79962.492436233428 79962.492437872585
50 79990.747480797407 79990.747480325139 79990.747480797450
55 79997.718158025498 79997.718157892130 79997.718158025382
60 79999.437292604693 79999.437292567658 79999.437292604678
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Table 7. Absolute relative error generated via SPEM and RK4 for Problem 3 with h = 0.1 and
different values of time, t (days)

t ‘EN’SPEM ‘EN’RK4

0 0.000000000000 0.000000000000
5 0.000000000139 0.000014286782
10 0.000000001852 0.000088416267
15 0.000000000666 0.000248082120
20 0.000000004911 0.000265334515
25 0.000000000204 0.000137175957
30 0.000000000291 0.000052887670
35 0.000000000029 0.000017762635
40 0.000000000073 0.000005520997
45 0.000000000029 0.000001639157
50 0.000000000044 0.000000472312
55 0.000000000116 0.000000133252
60 0.000000000015 0.000000037020

4 Concluding Remarks

In this paper, Sextic Polynomial Explicit Method (SPEM) for the solution of logistic models has
been developed. The properties of SPEM in terms of order of accuracy, consistency, linear stabil-
ity, zero stability and convergence were analysed and investigated. To measure the performance
of SPEM, three numerical examples have been solved and the results were compared with the
Classical Runge-Kutta Method (RK4) in the context of the Exact Solution (ES). Furthermore,
by varying the step length, there are six-order decrease in the values of the final absolute relative
errors generated via SPEM as shown in Tables 1 and 3. Moreover, it is also observed from Tables
2, 4, 5 and 6 that SPEM outperformed the well-known RK4. In addition, it is clearly seen from
Table 6 that the results of SPEM followed that of exact solution elegantly for different values of
time, t as this is evident in Table 7. Hence, SPEM is found to be accurate, consistent, stable, zero
stable, convergence and a good sixth order explicit method for the numerical solutions of IVPs
of different characteristics in ODEs.
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