Some results on Lorentzian para-Kenmotsu manifolds admitting η -Ricci solitons

Abdul Haseeb and Hassan Almusawa

Communicated by Prof. Zafar Ahsan

MSC 2010 Classifications: 53D15, 53C25, 53C50.

Keywords and phrases: Lorentzian para-Kenmotsu manifold, Einstein manifold, η -Ricci solitons.

The authors are thankful to the referee and the Editor Professor Zafar Ahsan for their valuable suggestions for the improvement of the paper.

Abstract The object of the present paper is to characterize 3-dimensional Lorentzian para-Kenmotsu manifolds admitting η -Ricci solitons. Finally, the existence of η -Ricci soliton on 3-dimensional Lorentzian para-Kenmotsu manifolds has been proved by a concrete example.

1 Introduction

In 1982, Hamilton [14] introduced the notion of Ricci flow to find a canonical metric on a smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian (or a semi Riemannian) manifold defined as follows:

$$\frac{\partial}{\partial t}g_{ij}(t) = -2R_{ij}.$$

A Ricci soliton is a generalization of an Einstein metric. On the manifold M, a Ricci soliton is a triple (g, V, λ) with g a Riemannian (or semi Riemannian) metric, V a vector field, called potential vector field and λ a real scalar such that

$$\pounds_V g + 2S + 2\lambda g = 0, \tag{1.1}$$

where \pounds_V is the Lie derivative operator along the vector field V on M. The Ricci soliton is said to be shrinking, steady and expanding according to λ being negative, zero and positive, respectively. Ricci solitons have been studied by several authors such as [12, 13, 15] and many others.

As a generalization of Ricci soliton, the problem of studying η -Ricci solitons in the context of contact geometry was initiated by Cho and Kimura [10]. η -Ricci solitons has also been studied for Hopf hypersurfaces in complex space forms by Calin and Crasmareanu [9]. An η -Ricci soliton is a tuple (g, V, λ, μ) , where V is a vector field on M, λ and μ are constants, and g is a Riemannian (or a semi Riemannian) metric satisfying the equation

$$\pounds_V g + 2S + 2\lambda g + 2\mu\eta \otimes \eta = 0, \tag{1.2}$$

where λ and μ are real numbers. In particular, if $\mu = 0$, then the notion of η -Ricci soliton (g, V, λ, μ) reduces to the notion of Ricci soliton (g, V, λ) . Recenty, η -Ricci solitons have been studied by various authors such as [3, 5 - 8, 11] and many others.

Motivated by the above studies, in this paper we study η -Ricci soliton on 3-dimensional Lorentzian para-Kenmotsu manifolds satisfying certain curvature conditions. The paper is organized as follows: In Section 2, we give a brief introduction of Lorentzian para-Kenmotsu manifolds. Section 3 deals with the study of η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds. In Section 4, we study η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds admitting Codazzi type of Ricci tensor and cyclic η -recurrent Ricci tensor. η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds admitting Codazzi type of Ricci tensor and cyclic η -recurrent Ricci tensor. η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds satisfying the

curvature conditions $P(\xi, X) \cdot S = 0$, $Q \cdot P = 0$ and $S \cdot R = 0$ have been studied in sections 5, 6 and 7, respectively. Finally, we construct a 3-dimensional example of Lorentzian para-Kenmotsu manifolds which admits an η -Ricci soliton.

2 Preliminaries

An *n*-dimensional differentiable manifold *M* with a structure (ϕ, ξ, η, g) is said to be a Lorentzian almost paracontact metric manifold, if it admits a (1, 1)-tensor field ϕ , a contravariant vector field ξ , a 1-form η and a Lorentzian metric *g* satisfying

$$\eta(\xi) = -1, \tag{2.1}$$

$$\phi^2 X = X + \eta(X)\xi, \qquad (2.2)$$

$$\phi \xi = 0, \quad \eta(\phi X) = 0, \tag{2.3}$$

$$g(\phi X, \phi Y) = g(X, Y) + \eta(X)\eta(Y), \qquad (2.4)$$

$$g(X,\xi) = \eta(X), \tag{2.5}$$

$$\Phi(X,Y) = \Phi(Y,X) = g(X,\phi Y)$$
(2.6)

for any vector fields $X, Y \in \chi(M)$; where $\chi(M)$ is the Lie algebra of vector fields on the manifold M.

If ξ is a killing vector field, the (para) contact structure is called a K-(para) contact. In such a case, we have

$$\nabla_X \xi = \phi X. \tag{2.7}$$

A Lorentzian almost paracontact manifold M is called a Lorentzian para-Sasakian manifold if

$$(\nabla_X \phi)Y = g(X, Y)\xi + \eta(Y)X + 2\eta(X)\eta(Y)\xi$$
(2.8)

for any vector fields X, Y on M.

Definition 2.1. A Lorentzian almost paracontact manifold *M* is called Lorentzian para-Kenmostu manifold if [2, 4]

$$(\nabla_X \phi)Y = -g(\phi X, Y)\xi - \eta(Y)\phi X$$
(2.9)

for any vector fields X, Y on M.

In a Lorentzian para-Kenmostu manifold, we have

$$\nabla_X \xi = -X - \eta(X)\xi, \qquad (2.10)$$

$$(\nabla_X \eta)Y = -g(X,Y) - \eta(X)\eta(Y), \qquad (2.11)$$

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric *g*. Furthermore, in a Lorentzian para-Kenmotsu manifold with respect to the Levi-Civita connection, the following relations hold [2, 4]:

$$g(R(X,Y)Z,\xi) = \eta(R(X,Y)Z) = g(Y,Z)\eta(X) - g(X,Z)\eta(Y),$$
(2.12)

$$R(\xi, X)Y = -R(X, \xi)Y = g(X, Y)\xi - \eta(Y)X,$$
(2.13)

$$R(X,Y)\xi = \eta(Y)X - \eta(X)Y, \qquad (2.14)$$

$$R(\xi, X)\xi = X + \eta(X)\xi, \qquad (2.15)$$

$$S(X,\xi) = (n-1)\eta(X), \ S(\xi,\xi) = -(n-1),$$
 (2.16)

$$Q\xi = (n-1)\xi,$$
 (2.17)

$$S(\phi X, \phi Y) = S(X, Y) + (n-1)\eta(X)\eta(Y)$$
(2.18)

for any vector fields $X, Y, Z \in \chi(M)$; where R is the curvature tensor, S is the Ricci tensor and Q is the Ricci operator.

Definition 2.2. A Lorentzian para-Kenmotsu manifold M is said to be an η -Einstein manifold if its non-vanishing Ricci tensor S of the form

$$S(X,Y) = ag(X,Y) + b\eta(X)\eta(Y), \qquad (2.19)$$

where a and b are smooth functions on M. In particular, if b = 0, then the manifold is said to be an Einstein manifold.

Definition 2.3. The projective curvature tensor P in an n-dimensional Lorentzian para-Kenmotsu manifold is defined by [17]

$$P(X,Y)Z = R(X,Y)Z - \frac{1}{n-1}[S(Y,Z)X - S(X,Z)Y]$$
(2.20)

for any $X, Y, Z \in \chi(M)$.

It is known that every 3-dimensional Kenmotsu manifold is an η -Einstein manifold and its Ricci tensor S is given by [16]

$$S(X,Y) = (\frac{r}{2} + 1)g(X,Y) - (3 + \frac{r}{2})\eta(X)\eta(Y),$$

where r is the scalar curvature of the manifold. In the same way we can easily prove the following:

Proposition 2.4. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. Then, we have

$$R(X,Y)Z = \left(\frac{r}{2} - 2\right)[g(Y,Z)X - g(X,Z)Y] + \left(\frac{r}{2} - 3\right)[\eta(Y)X - \eta(X)Y]\eta(Z)$$
(2.21)
+ $\left(\frac{r}{2} - 3\right)[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)]\xi,$
$$S(X,Y) = \left(\frac{r}{2} - 1\right)g(X,Y) + \left(\frac{r}{2} - 3\right)\eta(X)\eta(Y)$$
(2.22)

for any vectore fields $X, Y, Z \in \chi(M)$.

3 η -Ricci solitions on 3-dimensional Lorentzian para-Kenmotsu manifolds

Suppose that a 3-dimensional Lorentzian para-Kenmotsu manifold admits an η -Ricci soliton (g, ξ, λ, μ) . Then (1.2) implies

$$(\pounds_{\xi}g)(Y,Z) + 2S(Y,Z) + 2\lambda g(Y,Z) + 2\mu \eta(Y)\eta(Z) = 0.$$
(3.1)

In a 3-dimensional Lorentzian para-Kenmotsu manifold, we have

$$(\pounds_{\xi}g)(Y,Z) = g(\nabla_{Y}\xi,Z) + g(Y,\nabla_{Z}\xi) = -2[g(Y,Z) + \eta(Y)\eta(Z)].$$
(3.2)

By using (3.2) in (3.1), we get

$$S(Y,Z) = (1 - \lambda)g(Y,Z) + (1 - \mu)\eta(Y)\eta(Z).$$
(3.3)

From the last equation, it follows that

$$S(Y,\xi) = (\mu - \lambda)\eta(Y), \qquad (3.4)$$

$$QY = (1 - \lambda)Y + (1 - \mu)\eta(Y)\xi,$$
(3.5)

$$Q\xi = (\mu - \lambda)\xi. \tag{3.6}$$

Comparing (3.3) with (2.21) we find $\frac{r}{2} - 1 = 1 - \lambda$ and $\frac{r}{2} - 3 = 1 - \mu$, therefore from these two relations we obtain $\mu - \lambda = 2$. Thus we have the following:

Theorem 3.1. Let *M* be a 3-dimensional Lorentzian para-Kenmotsu manifold. If *M* admits an η -Ricci soliton (g, ξ, λ, μ) , then $\mu - \lambda = 2$.

4 η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifold with Codazzi type of Ricci tensor and cyclic η -recurrent Ricci tensor

Definition 4.1. A 3-dimensional Lorentzian para-Kenmotsu manifold is said to have Codazzi type of Ricci tensor if its Ricci tensor S of type (0, 2) is non zero and satisfies following condition [1]

$$(\nabla_X S)(Y,Z) = (\nabla_Y S)(X,Z)$$

for all $X, Y, Z \in \chi(M)$.

Taking covariant derivative of (3.3) and making use of (2.11), we find

$$(\nabla_X S)(Y,Z) = (\mu - 1)[g(X,Y)\eta(Z) + g(X,Z)\eta(Y) + 2\eta(X)\eta(Y)\eta(Z)].$$
(4.1)

If the Ricci tensor S is of Codazzi type, then

$$(\nabla_X S)(Y, Z) = (\nabla_Y S)(X, Z). \tag{4.2}$$

In view of (4.1), (4.2) takes the form

$$(\mu - 1)[g(X, Z)\eta(Y) - g(Y, Z)\eta(X)] = 0$$

from which it follows that $\mu = 1$ and hence from Theorem 3.1, we find $\lambda = -1$. Thus we have the following:

Theorem 4.2. Let (g, ξ, λ, μ) be an η -Ricci soliton in a 3-dimensional Lorentzian para-Kenmotsu manifold. If M has Codazzi type of Ricci tensor, then $\lambda = -1$ and $\mu = 1$.

Definition 4.3. A 3-dimensional Lorentzian para-Kenmotsu manifold is said to have cyclic η -recurrent Ricci tensor, if

$$(\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y)$$

$$= \eta(X)S(Y,Z) + \eta(Y)S(Z,X) + \eta(Z)S(X,Y)$$

$$(4.3)$$

for all $X, Y, Z \in \chi(M)$.

By the cyclic permutations of X, Y and Z in (4.1), we write two more following equations:

$$(\nabla_Y S)(Z, X) = (\mu - 1)[g(Y, Z)\eta(X) + g(Y, X)\eta(Z) + 2\eta(X)\eta(Y)\eta(Z)],$$
(4.4)

and

$$(\nabla_Z S)(X,Y) = (\mu - 1)[g(Z,X)\eta(Y) + g(Z,Y)\eta(X) + 2\eta(X)\eta(Y)\eta(Z)].$$
(4.5)

By using (4.1), (4.4) and (4.5) in (4.3), we obtain

 $(2\mu + \lambda - 3)[g(X, Y)\eta(Z) + g(Y, Z)\eta(X) + g(Z, X)\eta(Y)] + 9(\mu - 1)\eta(X)\eta(Y)\eta(Z) = 0$ which by putting $Y = Z = \xi$ and making use of (2.1) and (2.5) gives $\mu - \lambda = 0$. Thus we can state:

Theorem 4.4. Let (g, ξ, λ, μ) be an η -Ricci soliton on a 3-dimensional Lorentzian para-Kenmotsu manifold. If M has cyclic η -recurrent Ricci tensor, then $\mu - \lambda = 0$.

5 η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds satisfying $P(\xi, X) \cdot S = 0$

Suppose that a 3-dimensional Lorentzian para-Kenmotsu manifold admitting an η -Ricci soliton (g, ξ, λ, μ) satisfies $P(\xi, X) \cdot S = 0$. Then we have

$$S(P(\xi, X)Y, Z) + S(Y, P(\xi, X)Z) = 0$$
(5.1)

which in view of (3.3) becomes

$$(1-\lambda)[g(P(\xi,X)Y,Z) + g(Y,P(\xi,X)Z)] + (1-\mu)[\eta(P(\xi,X)Y)\eta(Z)$$
(5.2)

$$+\eta(Y)\eta(P(\xi,X)Z)] = 0.$$

From (2.1), (2.5), 2.13), (2.20), (3.3), and (3.4), we find

$$P(\xi, X)Y = (1 + \frac{\lambda - 1}{2})g(X, Y)\xi - (1 + \frac{\lambda - \mu}{2})\eta(Y)X + \frac{\mu - 1}{2}\eta(X)\eta(Y)\xi,$$
(5.3)

$$\eta(P(\xi, X)Y) = -(1 + \frac{\lambda - 1}{2})g(X, Y) - (1 + \frac{\lambda - \mu}{2})\eta(X)\eta(Y).$$
(5.4)

In view of (5.3) and (5.4), (5.2) takes the form

$$(1-\lambda)[(\frac{\mu-1}{2})(g(X,Y)\eta(Z) + g(X,Z)\eta(Y)) + (\mu-1)\eta(X)\eta(Y)\eta(Z)] - \frac{(1-\mu)(1+\lambda)}{2}[g(X,Y)\eta(Z) + g(X,Z)\eta(Y) + 2\eta(X)\eta(Y)\eta(Z)] = 0$$

from which it follows that

$$(\mu - 1)[g(X, Y)\eta(Z) + g(X, Z)\eta(Y) + 2\eta(X)\eta(Y)\eta(Z)] = 0.$$
(5.5)

Taking $Z = \xi$ and using (2.1), (2.4) and (2.5), (5.5) reduces to

$$(\mu - 1)g(\phi X, \phi Y) = 0$$
 (5.6)

from which we obtain $\mu = 1$ and hence from Theorem 3.1, we find $\lambda = -1$. By using these values of μ and λ in (3.3) we get S(Y,Z) = 2g(Y,Z), from which we obtain r = 6. In a 3-dimensional semi-Riemannian manifold, we have

$$R(X,Y)Z = g(Y,Z)QX - g(X,Z)QY + S(Y,Z)X - S(X,Z)Y$$

$$-\frac{r}{2}(g(Y,Z)X - g(X,Z)Y).$$
(5.7)

By using above values of S, Q and r in (5.7), we get

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y.$$
(5.8)

Thus we have the following:

Theorem 5.1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. If M satisfies the curvature condition $P(\xi, X) \cdot S = 0$, then M admits an η -Ricci soliton of type (g, V, -1, 1) and is locally isometric to the unit sphere $S^3(1)$.

6 η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds satisfying $Q \cdot P = 0$

In this section we suppose that a 3-dimensional Lorentzian para-Kenmotsu manifold admitting an η -Ricci soliton satisfies $Q \cdot P = 0$. Then we have

$$Q(P(X,Y)Z) - P(QX,Y)Z - P(X,QY)Z - P(X,Y)QZ = 0$$
(6.1)

for all $X, Y, Z \in \chi(M)$. In view of (2.20), (6.1) takes the form

$$Q(R(X,Y)Z) - R(QX,Y)Z - R(X,QY)Z - R(X,Y)QZ$$

 $+(1-\lambda)(S(Y,Z)X - S(X,Z)Y) + (1-\mu)(\mu-\lambda)(\eta(Y)\eta(Z)X - \eta(X)\eta(Z)Y) = 0.$ The inner product of last equation with ξ leads to

$$\eta(Q(R(X,Y)Z)) - \eta(R(QX,Y)Z) - \eta(R(X,QY)Z) - \eta(R(X,Y)QZ)$$

$$+ (1 - \lambda)(S(Y,Z)\eta(X) - S(X,Z)\eta(Y)) = 0.$$
(6.2)

Putting $Y = \xi$ in (6.2) and using (3.4), we have

$$\eta(Q(R(X,\xi)Z)) - \eta(R(QX,\xi)Z) - \eta(R(X,Q\xi)Z) - \eta(R(X,\xi)QZ)$$

$$+ (1-\lambda)(S(X,Z) + (\mu - \lambda)\eta(X)\eta(Z)) = 0.$$
(6.3)

From (2.1), (2.5), (2.13), (3.5) and (3.6), we find

$$\eta(Q(R(X,\xi)Z)) = \eta(R(X,Q\xi)Z) = (\mu - \lambda)[g(X,Z) + \eta(X)\eta(Z)],$$
(6.4)

$$\eta(R(QX,\xi)Z) = \eta(R(X,\xi)QZ) = S(X,Z) + (\mu - \lambda)\eta(X)\eta(Z).$$

From (6.3) and (6.4), we obtain

$$(1+\lambda)(S(X,Z) + (\mu - \lambda)\eta(X)\eta(Z)) = 0.$$

It follows that $\lambda = -1$. Thus, likewise in the Section 5, we have the following:

Theorem 6.1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. If M satisfies the curvature condition $Q \cdot P = 0$, then M admits an η -Ricci soliton of type (g, V, -1, 1) and is locally isometric to the unit sphere $S^3(1)$.

7 η -Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds satisfying the curvature condition $S \cdot R = 0$

In this section we consider a 3-dimensional Lorentzian para-Kenmotsu manifold satisfying the curvature condition

 $(S(X,Y) \cdot R)(U,V)W = 0$

for any vector fields $X, Y, U, V, W \in \chi(M)$. This implies that

$$(X \wedge_S Y)R(U, V)W + R((X \wedge_S Y)U, V)W$$
(7.1)

$$+R(U,(X\wedge_S Y)V)W+R(U,V)(X\wedge_S Y)W=0.$$

We define endomorphisms $X \wedge_A Y$ by

$$(X \wedge_A Y)U = A(Y, U)X - A(X, U)Y, \tag{7.2}$$

where A is a symmetric (0, 2)-tensor. By virtue of (7.2), (7.1) takes the form

$$S(Y, R(U, V)W)X - S(X, R(U, V)W)Y + S(Y, U)R(X, V)W$$
(7.3)

$$-S(X, U)R(Y, V)W + S(Y, V)R(U, X)W - S(X, V)R(U, Y)W +S(Y, W)R(U, V)X - S(X, W)R(U, V)Y = 0.$$

Taking $U = W = \xi$ in (7.3), then using (2.14)-(2.16), we find

$$2S(Y,V)X - 2S(X,V)Y + 4\eta(Y)\eta(V)X$$
$$-4\eta(X)\eta(V)Y + \eta(X)S(Y,V)\xi - \eta(Y)S(X,V)\xi$$
$$+2g(V,X)\eta(Y)\xi - 2g(V,Y)\eta(X)\xi = 0.$$

Replacing X by ξ in the last equation and using (2.1), (2.5) and (2.16), we find

$$S(Y,V)\xi + 2g(V,Y)\xi + 4\eta(Y)\eta(V)\xi = 0$$

which by taking inner product with ξ yields

$$S(Y,V) = -2g(V,Y) - 4\eta(Y)\eta(V).$$
(7.4)

By making use of (7.4) in (3.1), we have

$$g(\nabla_Y \xi, V) + g(Y, \nabla_V \xi) + 2(\lambda - 1)g(Y, V) + 2(\mu - 4)\eta(Y)\eta(V) = 0.$$
(7.5)

Putting $Y = V = \xi$ in (7.5) and using (2.1) and (2.5), we find

$$g(\nabla_{\xi}\xi, V) + \mu - \lambda - 2 = 0.$$

Since $g(\nabla_{\xi}\xi, V) = 0$, so we get $\mu - \lambda = 2$. Now by using $\mu = 2 + \lambda$ in (7.5), we have

$$g(\nabla_Y \xi, V) + g(Y, \nabla_V \xi) + 2(\lambda - 2)(g(Y, V) + \eta(Y)\eta(V)) = 0.$$
(7.6)

Taking $Y = \xi$ in (7.6) and using (2.1), (2.5) and (2.10), we get $g(\nabla_{\xi}\xi, V) = 0$ for any vector field V on M and hence we have $\nabla_{\xi}\xi = 0$, that is, ξ is a geodesic vector field. Thus we have the following:

Theorem 7.1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold admiting an η -Ricci soliton (g, ξ, λ, μ) . If M satisfies the curvature condition $S \cdot R = 0$, then 1. $\mu - \lambda = 2$, 2. ξ is a geodesic vector field.

Example. We consider the 3-dimensional manifold $M = \{(x, y, z) \in R^3 : z > 0\}$, where (x, y, z) are the standard coordinates of R^3 . Let e_1, e_2 and e_3 be the vector fields on M given by

$$e_1 = z \frac{\partial}{\partial x}, \ e_2 = z \frac{\partial}{\partial y}, \ e_3 = z \frac{\partial}{\partial z} = \xi,$$

which are linearly independent at each point of M. Let g be the Lorentzian metric defined by

$$g(e_1, e_1) = 1, \ g(e_2, e_2) = 1, \ g(e_3, e_3) = -1, \ g(e_1, e_2) = g(e_1, e_3) = g(e_2, e_3) = 0.$$

Let η be the 1-form defined by $\eta(X) = g(X, e_3) = g(X, \xi)$ for all $X \in \chi(M)$, and let ϕ be the (1, 1)-tensor field defined by

$$\phi e_1 = -e_1, \ \phi e_2 = -e_2, \ \phi e_3 = 0.$$

By using linearity of ϕ and g, we have

$$\eta(\xi) = g(\xi,\xi) = -1, \ \phi^2 X = X + \eta(X)\xi \ \text{and} \ g(\phi X,\phi Y) = g(X,Y) + \eta(X)\eta(Y)$$

for all $X, Y \in \chi(M)$. Thus for $e_3 = \xi$, the structure (ϕ, ξ, η, g) defines a Lorentzian almost paracontact metric structure on M.

Also we have

$$[e_1, e_2] = 0, \ [e_2, e_1] = 0, \ [e_1, e_3] = -e_1, \ [e_3, e_1] = e_1, \ [e_2, e_3] = -e_2, \ [e_3, e_2] = e_2.$$

The Levi-Civita connection ∇ of the Lorentzian metric g is given by

$$2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(Z, X) - Zg(X, Y) - g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y]),$$

which is known as Koszul's formula. Using Koszul's formula, we can easily calculate

$$\nabla_{e_1}e_1 = -e_3, \ \nabla_{e_1}e_2 = 0, \ \nabla_{e_1}e_3 = -e_1, \ \nabla_{e_2}e_1 = 0,$$
 (7.7)

$$abla_{e_2}e_2 = -e_3, \ \nabla_{e_2}e_3 = -e_2, \ \nabla_{e_3}e_1 = 0, \ \nabla_{e_3}e_2 = 0, \ \nabla_{e_3}e_3 = 0.$$

Also, one can easily verify that

$$\nabla_X \xi = -X - \eta(X)\xi$$
 and $(\nabla_X \phi)Y = -g(\phi X, Y)\xi - \eta(Y)\phi X$

Therefore, the manifold is a Lorentzian para-Kenmotsu manifold. It is known that

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$
(7.8)

With the help of the above results we find the components of the Ricci tensor as follows:

$$R(e_1, e_2)e_1 = -e_2, \quad R(e_1, e_3)e_1 = -e_3, \quad R(e_2, e_3)e_1 = 0,$$

$$R(e_1, e_2)e_2 = e_1, \quad R(e_1, e_3)e_2 = 0, \quad R(e_2, e_3)e_2 = -e_3,$$

$$R(e_1, e_2)e_3 = 0, \quad R(e_1, e_3)e_3 = -e_1, \quad R(e_2, e_3)e_3 = -e_2$$
(7.9)

from which it is clear that

$$R(X,Y)Z = g(Y,Z)X - g(X,Z)Y.$$

Thus the manifold (M, ϕ, ξ, η, g) is a Lorentzian para-Kenmotsu manifold of constant curvature 1 and hence is locally isometric to the unit sphere $S^3(1)$. From (7.9), we calculate the Ricci tensors as follows:

$$S(e_1, e_1) = S(e_2, e_2) = 2, \quad S(e_3, e_3) = -2.$$
 (7.10)

Therefore, $r = \sum_{i=1}^{3} \epsilon_i S(e_i, e_i) = 6$, where $\epsilon_i = g(e_i, e_i)$. Now from (3.3) and (7.10), we obtain $\lambda = -1$ and $\mu = 1$. Therefore the data (g, ξ, λ, μ) for $\lambda = -1$ and $\mu = 1$ defines an η -Ricci soliton on (M, ϕ, ξ, η, g) .

References

- [1] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259-280.
- [2] A. Haseeb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, *Bol. Soc. Paran. Mat.*, 39 (2021), 201-220.
- [3] A. Haseeb and R. Prasad, η -Ricci solitons on ϵLP -Sasakian manifolds with a quarter-symmetric metric connection, *Honam Math. J.*, **41** (2019), 539-558.
- [4] R. Prasad, A. Haseeb and U. K. Gautam, On φ-semisymmetric LP-Kenmotsu manifolds with a QSNMconnection admitting Ricci solitons, Kragujevac Journal of Math., 45 (2021), 815-827.
- [5] A. Haseeb and U. C. De, η -Ricci solitons in ϵ -Kenmotsu manifolds, J. Geom., **110** (34) (2019), 12 pages.
- [6] A. Singh and S. Kishor, Some types of η-Ricci solitons on Lorentzian para-Sasakian manifolds, Facta Universitatis (NIS), 33 (2018), 217-230.
- [7] A. M. Blaga, η-Ricci solitons in Lorentzian para-Sasakian manifolds, *Filomat*, **30** (2016), 489-496.
- [8] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan Journal of Geometry and Its Applications, 20 (2015), 1-13.
- [9] C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in *f*-Kenmotsu manifolds, Bull. Malays. Math. Soc., 33 (2010), 361-368.
- [10] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, *Tohoku Math. J.*, 61 (2009), 205-212.
- [11] K. De and U. C. De, η-Ricci soliton on Kenmotsu 3-manifolds, Annalele Univ. de Vest Timisora Seria Matematica-Informatica, LVI (2018), 51-63.
- [12] M. Ali, and Z. Ahsan, Ricci solitons and the symmetries of the spacetime manifold of general relativity, *Global J. Advanced Research on Classical and Modern Geometries*, 1 (2012), 75-84.
- [13] M. Turan, U. C. De and A. Yildiz, Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian manifolds, *Filomat*, 26:2 (2012), 363-370.
- [14] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982), 255-306.
- [15] U. C. De, Ricci soliton and gradient Ricci soliton on *P*-Sasakian manifolds, *The Aligarh Bull. of Maths.*, 29 (2010), 29-34.

- [16] U. C. De and G. Pathak, On 3-dimensional Kenmotsu manifold, Indian J. pure appl. Math., 35 (2004), 159-165
- [17] Z. Ahsan, *Tensors: Mathematics of Differential Geometry and Relativity*, PHI Learning Pvt. Ltd., Delhi (December 2017, Second Printing).

Author information

Abdul Haseeb, Department of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.

 $E\text{-mail:} \verb"malikhaseeb800gmail.com", haseeb0jazanu.edu.sa$

Hassan Almusawa, Department of Mathematics, College of Science, Jazan University, Jazan-2097, Kingdom of Saudi Arabia.

E-mail: haalmusawa@jazanu.edu.sa, almusawah@mymail.vcu.edu

Received: November 27, 2020 Accepted: January 7, 2021