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Abstract The object of the present paper is to characterize 3-dimensional Lorentzian para-
Kenmotsu manifolds admitting η-Ricci solitons. Finally, the existence of η−Ricci soliton on
3-dimensional Lorentzian para-Kenmotsu manifolds has been proved by a concrete example.

1 Introduction

In 1982, Hamilton [14] introduced the notion of Ricci flow to find a canonical metric on a
smooth manifold. The Ricci flow is an evolution equation for metrics on a Riemannian (or a
semi Riemannian) manifold defined as follows:

∂

∂t
gij(t) = −2Rij .

A Ricci soliton is a generalization of an Einstein metric. On the manifold M , a Ricci soliton
is a triple (g, V, λ) with g a Riemannian (or semi Riemannian) metric, V a vector field, called
potential vector field and λ a real scalar such that

£V g + 2S + 2λg = 0, (1.1)

where £V is the Lie derivative operator along the vector field V on M . The Ricci soliton is
said to be shrinking, steady and expanding according to λ being negative, zero and positive,
respectively. Ricci solitons have been studied by several authors such as [12, 13, 15] and many
others.

As a generalization of Ricci soliton, the problem of studying η-Ricci solitons in the context of
contact geometry was initiated by Cho and Kimura [10]. η-Ricci solitons has also been studied
for Hopf hypersurfaces in complex space forms by Calin and Crasmareanu [9]. An η−Ricci
soliton is a tuple (g, V, λ, µ), where V is a vector field on M , λ and µ are constants, and g is a
Riemannian (or a semi Riemannian) metric satisfying the equation

£V g + 2S + 2λg + 2µη ⊗ η = 0, (1.2)

where λ and µ are real numbers. In particular, if µ = 0, then the notion of η-Ricci soliton
(g, V, λ, µ) reduces to the notion of Ricci soliton (g, V, λ). Recenty, η−Ricci solitons have been
studied by various authors such as [3, 5− 8, 11] and many others.

Motivated by the above studies, in this paper we study η−Ricci soliton on 3-dimensional
Lorentzian para-Kenmotsu manifolds satisfying certain curvature conditions. The paper is or-
ganized as follows: In Section 2, we give a brief introduction of Lorentzian para-Kenmotsu
manifolds. Section 3 deals with the study of η−Ricci solitons on 3-dimensional Lorentzian
para-Kenmotsu manifolds. In Section 4, we study η−Ricci solitons on 3-dimensional Lorentzian
para-Kenmotsu manifolds admitting Codazzi type of Ricci tensor and cyclic η−recurrent Ricci
tensor. η−Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds satisfying the
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curvature conditions P (ξ,X) ·S = 0, Q ·P = 0 and S ·R = 0 have been studied in sections 5, 6
and 7, respectively. Finally, we construct a 3-dimensional example of Lorentzian para-Kenmotsu
manifolds which admits an η−Ricci soliton.

2 Preliminaries

An n-dimensional differentiable manifoldM with a structure (φ, ξ, η, g) is said to be a Lorentzian
almost paracontact metric manifold, if it admits a (1, 1)-tensor field φ, a contravariant vector field
ξ, a 1-form η and a Lorentzian metric g satisfying

η(ξ) = −1, (2.1)

φ2X = X + η(X)ξ, (2.2)

φξ = 0, η(φX) = 0, (2.3)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.4)

g(X, ξ) = η(X), (2.5)

Φ(X,Y ) = Φ(Y,X) = g(X,φY ) (2.6)

for any vector fields X,Y ∈ χ(M); where χ(M) is the Lie algebra of vector fields on the
manifold M .
If ξ is a killing vector field, the (para) contact structure is called a K-(para) contact. In such a
case, we have

∇Xξ = φX. (2.7)

A Lorentzian almost paracontact manifold M is called a Lorentzian para-Sasakian manifold if

(∇Xφ)Y = g(X,Y )ξ + η(Y )X + 2η(X)η(Y )ξ (2.8)

for any vector fields X,Y on M.

Definition 2.1. A Lorentzian almost paracontact manifoldM is called Lorentzian para-Kenmostu
manifold if [2, 4]

(∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX (2.9)

for any vector fields X,Y on M.

In a Lorentzian para-Kenmostu manifold, we have

∇Xξ = −X − η(X)ξ, (2.10)

(∇Xη)Y = −g(X,Y )− η(X)η(Y ), (2.11)

where ∇ is the Levi-Civita connection with respect to the Lorentzian metric g.
Furthermore, in a Lorentzian para-Kenmotsu manifold with respect to the Levi-Civita connec-
tion, the following relations hold [2, 4]:

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ), (2.12)

R(ξ,X)Y = −R(X, ξ)Y = g(X,Y )ξ − η(Y )X, (2.13)

R(X,Y )ξ = η(Y )X − η(X)Y, (2.14)
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R(ξ,X)ξ = X + η(X)ξ, (2.15)

S(X, ξ) = (n− 1)η(X), S(ξ, ξ) = −(n− 1), (2.16)

Qξ = (n− 1)ξ, (2.17)

S(φX, φY ) = S(X,Y ) + (n− 1)η(X)η(Y ) (2.18)

for any vector fields X,Y, Z ∈ χ(M); where R is the curvature tensor, S is the Ricci tensor and
Q is the Ricci operator.

Definition 2.2. A Lorentzian para-Kenmotsu manifold M is said to be an η-Einstein manifold if
its non-vanishing Ricci tensor S of the form

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ), (2.19)

where a and b are smooth functions on M . In particular, if b = 0, then the manifold is said to be
an Einstein manifold.

Definition 2.3. The projective curvature tensor P in an n-dimensional Lorentzian para-Kenmotsu
manifold is defined by [17]

P (X,Y )Z = R(X,Y )Z − 1
n− 1

[S(Y,Z)X − S(X,Z)Y ] (2.20)

for any X,Y, Z ∈ χ(M).

It is known that every 3-dimensional Kenmotsu manifold is an η-Einstein manifold and its Ricci
tensor S is given by [16]

S(X,Y ) = (
r

2
+ 1)g(X,Y )− (3 +

r

2
)η(X)η(Y ),

where r is the scalar curvature of the manifold. In the same way we can easily prove the follow-
ing:

Proposition 2.4. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. Then, we have

R(X,Y )Z = (
r

2
− 2)[g(Y,Z)X − g(X,Z)Y ] + (

r

2
− 3)[η(Y )X − η(X)Y ]η(Z) (2.21)

+(
r

2
− 3)[g(Y,Z)η(X)− g(X,Z)η(Y )]ξ,

S(X,Y ) = (
r

2
− 1)g(X,Y ) + (

r

2
− 3)η(X)η(Y ) (2.22)

for any vectore fields X,Y, Z ∈ χ(M).

3 η-Ricci solitions on 3-dimensional Lorentzian para-Kenmotsu manifolds

Suppose that a 3-dimensional Lorentzian para-Kenmotsu manifold admits an η-Ricci soliton
(g, ξ, λ, µ). Then (1.2) implies

(£ξg)(Y,Z) + 2S(Y,Z) + 2λg(Y,Z) + 2µη(Y )η(Z) = 0. (3.1)

In a 3-dimensional Lorentzian para-Kenmotsu manifold, we have

(£ξg)(Y,Z) = g(∇Y ξ, Z) + g(Y,∇Zξ) = −2[g(Y,Z) + η(Y )η(Z)]. (3.2)
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By using (3.2) in (3.1), we get

S(Y,Z) = (1− λ)g(Y, Z) + (1− µ)η(Y )η(Z). (3.3)

From the last equation, it follows that

S(Y, ξ) = (µ− λ)η(Y ), (3.4)

QY = (1− λ)Y + (1− µ)η(Y )ξ, (3.5)

Qξ = (µ− λ)ξ. (3.6)
Comparing (3.3) with (2.21) we find r

2 − 1 = 1− λ and r
2 − 3 = 1−µ, therefore from these two

relations we obtain µ− λ = 2. Thus we have the following:

Theorem 3.1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. If M admits an
η−Ricci soliton (g, ξ, λ, µ), then µ− λ = 2.

4 η−Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifold
with Codazzi type of Ricci tensor and cyclic η−recurrent Ricci tensor

Definition 4.1. A 3-dimensional Lorentzian para-Kenmotsu manifold is said to have Codazzi
type of Ricci tensor if its Ricci tensor S of type (0, 2) is non zero and satisfies following condition
[1]

(∇XS)(Y,Z) = (∇Y S)(X,Z)
for all X,Y, Z ∈ χ(M).

Taking covariant derivative of (3.3) and making use of (2.11), we find

(∇XS)(Y,Z) = (µ− 1)[g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)]. (4.1)

If the Ricci tensor S is of Codazzi type, then

(∇XS)(Y,Z) = (∇Y S)(X,Z). (4.2)

In view of (4.1), (4.2) takes the form

(µ− 1)[g(X,Z)η(Y )− g(Y,Z)η(X)] = 0

from which it follows that µ = 1 and hence from Theorem 3.1, we find λ = −1. Thus we have
the following:

Theorem 4.2. Let (g, ξ, λ, µ) be an η−Ricci soliton in a 3-dimensional Lorentzian para-Kenmotsu
manifold. If M has Codazzi type of Ricci tensor, then λ = −1 and µ = 1.

Definition 4.3. A 3-dimensional Lorentzian para-Kenmotsu manifold is said to have cyclic η−recurrent
Ricci tensor, if

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) (4.3)
= η(X)S(Y,Z) + η(Y )S(Z,X) + η(Z)S(X,Y )

for all X,Y, Z ∈ χ(M).

By the cyclic permutations of X , Y and Z in (4.1), we write two more following equations:

(∇Y S)(Z,X) = (µ− 1)[g(Y,Z)η(X) + g(Y,X)η(Z) + 2η(X)η(Y )η(Z)], (4.4)

and
(∇ZS)(X,Y ) = (µ− 1)[g(Z,X)η(Y ) + g(Z, Y )η(X) + 2η(X)η(Y )η(Z)]. (4.5)

By using (4.1), (4.4) and (4.5) in (4.3), we obtain

(2µ+ λ− 3)[g(X,Y )η(Z) + g(Y, Z)η(X) + g(Z,X)η(Y )] + 9(µ− 1)η(X)η(Y )η(Z) = 0

which by putting Y = Z = ξ and making use of (2.1) and (2.5) gives µ − λ = 0. Thus we can
state:

Theorem 4.4. Let (g, ξ, λ, µ) be an η−Ricci soliton on a 3-dimensional Lorentzian para-Kenmotsu
manifold. If M has cyclic η−recurrent Ricci tensor, then µ− λ = 0.
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5 η−Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds
satisfying P (ξ,X) · S = 0

Suppose that a 3-dimensional Lorentzian para-Kenmotsu manifold admitting an η−Ricci soliton
(g, ξ, λ, µ) satisfies P (ξ,X) · S = 0. Then we have

S(P (ξ,X)Y, Z) + S(Y, P (ξ,X)Z) = 0 (5.1)

which in view of (3.3) becomes

(1− λ)[g(P (ξ,X)Y, Z) + g(Y, P (ξ,X)Z)] + (1− µ)[η(P (ξ,X)Y )η(Z) (5.2)

+η(Y )η(P (ξ,X)Z)] = 0.

From (2.1), (2.5), 2.13), (2.20), (3.3), and (3.4), we find

P (ξ,X)Y = (1 +
λ− 1

2
)g(X,Y )ξ − (1 +

λ− µ
2

)η(Y )X +
µ− 1

2
η(X)η(Y )ξ, (5.3)

η(P (ξ,X)Y ) = −(1 +
λ− 1

2
)g(X,Y )− (1 +

λ− µ
2

)η(X)η(Y ). (5.4)

In view of (5.3) and (5.4), (5.2) takes the form

(1− λ)[(µ− 1
2

)(g(X,Y )η(Z) + g(X,Z)η(Y )) + (µ− 1)η(X)η(Y )η(Z)]

−(1− µ)(1 + λ)

2
[g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)] = 0

from which it follows that

(µ− 1)[g(X,Y )η(Z) + g(X,Z)η(Y ) + 2η(X)η(Y )η(Z)] = 0. (5.5)

Taking Z = ξ and using (2.1), (2.4) and (2.5), (5.5) reduces to

(µ− 1)g(φX, φY ) = 0 (5.6)

from which we obtain µ = 1 and hence from Theorem 3.1, we find λ = −1. By using these
values of µ and λ in (3.3) we get S(Y,Z) = 2g(Y, Z), from which we obtain r = 6. In a
3-dimensional semi-Riemannian manifold, we have

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y (5.7)

− r
2
(g(Y, Z)X − g(X,Z)Y ).

By using above values of S, Q and r in (5.7), we get

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y. (5.8)

Thus we have the following:

Theorem 5.1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. If M satisfies the
curvature condition P (ξ,X) ·S = 0, then M admits an η−Ricci soliton of type (g, V,−1, 1) and
is locally isometric to the unit sphere S3(1).

6 η−Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds
satisfyingQ · P = 0

In this section we suppose that a 3-dimensional Lorentzian para-Kenmotsu manifold admitting
an η−Ricci soliton satisfies Q · P = 0. Then we have

Q(P (X,Y )Z)− P (QX,Y )Z − P (X,QY )Z − P (X,Y )QZ = 0 (6.1)
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for all X,Y, Z ∈ χ(M). In view of (2.20), (6.1) takes the form

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ

+(1− λ)(S(Y,Z)X − S(X,Z)Y ) + (1− µ)(µ− λ)(η(Y )η(Z)X − η(X)η(Z)Y ) = 0.

The inner product of last equation with ξ leads to

η(Q(R(X,Y )Z))− η(R(QX,Y )Z)− η(R(X,QY )Z)− η(R(X,Y )QZ) (6.2)

+(1− λ)(S(Y,Z)η(X)− S(X,Z)η(Y )) = 0.

Putting Y = ξ in (6.2) and using (3.4), we have

η(Q(R(X, ξ)Z))− η(R(QX, ξ)Z)− η(R(X,Qξ)Z)− η(R(X, ξ)QZ) (6.3)

+(1− λ)(S(X,Z) + (µ− λ)η(X)η(Z)) = 0.

From (2.1), (2.5), (2.13), (3.5) and (3.6), we find

η(Q(R(X, ξ)Z)) = η(R(X,Qξ)Z) = (µ− λ)[g(X,Z) + η(X)η(Z)], (6.4)

η(R(QX, ξ)Z) = η(R(X, ξ)QZ) = S(X,Z) + (µ− λ)η(X)η(Z).

From (6.3) and (6.4), we obtain

(1 + λ)(S(X,Z) + (µ− λ)η(X)η(Z)) = 0.

It follows that λ = −1. Thus, likewise in the Section 5, we have the following:

Theorem 6.1. Let M be a 3-dimensional Lorentzian para-Kenmotsu manifold. If M satisfies the
curvature condition Q · P = 0, then M admits an η−Ricci soliton of type (g, V,−1, 1) and is
locally isometric to the unit sphere S3(1).

7 η−Ricci solitons on 3-dimensional Lorentzian para-Kenmotsu manifolds
satisfying the curvature condition S ·R = 0

In this section we consider a 3-dimensional Lorentzian para-Kenmotsu manifold satisfying the
curvature condition

(S(X,Y ) ·R)(U, V )W = 0

for any vector fields X,Y, U, V,W ∈ χ(M). This implies that

(X∧SY )R(U, V )W +R((X∧SY )U, V )W (7.1)

+R(U, (X∧SY )V )W +R(U, V )(X∧SY )W = 0.

We define endomorphisms X ∧A Y by

(X ∧A Y )U = A(Y,U)X −A(X,U)Y, (7.2)

where A is a symmetric (0, 2)-tensor. By virtue of (7.2), (7.1) takes the form

S(Y,R(U, V )W )X − S(X,R(U, V )W )Y + S(Y,U)R(X,V )W (7.3)

−S(X,U)R(Y, V )W + S(Y, V )R(U,X)W − S(X,V )R(U, Y )W

+S(Y,W )R(U, V )X − S(X,W )R(U, V )Y = 0.

Taking U =W = ξ in (7.3), then using (2.14)-(2.16), we find

2S(Y, V )X − 2S(X,V )Y + 4η(Y )η(V )X

−4η(X)η(V )Y + η(X)S(Y, V )ξ − η(Y )S(X,V )ξ

+2g(V,X)η(Y )ξ − 2g(V, Y )η(X)ξ = 0.
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Replacing X by ξ in the last equation and using (2.1), (2.5) and (2.16), we find

S(Y, V )ξ + 2g(V, Y )ξ + 4η(Y )η(V )ξ = 0

which by taking inner product with ξ yields

S(Y, V ) = −2g(V, Y )− 4η(Y )η(V ). (7.4)

By making use of (7.4) in (3.1), we have

g(∇Y ξ, V ) + g(Y,∇V ξ) + 2(λ− 1)g(Y, V ) + 2(µ− 4)η(Y )η(V ) = 0. (7.5)

Putting Y = V = ξ in (7.5) and using (2.1) and (2.5), we find

g(∇ξξ, V ) + µ− λ− 2 = 0.

Since g(∇ξξ, V ) = 0, so we get µ− λ = 2. Now by using µ = 2 + λ in (7.5), we have

g(∇Y ξ, V ) + g(Y,∇V ξ) + 2(λ− 2)(g(Y, V ) + η(Y )η(V )) = 0. (7.6)

Taking Y = ξ in (7.6) and using (2.1), (2.5) and (2.10), we get g(∇ξξ, V ) = 0 for any vector
field V on M and hence we have ∇ξξ = 0, that is, ξ is a geodesic vector field. Thus we have the
following:

Theorem 7.1. LetM be a 3-dimensional Lorentzian para-Kenmotsu manifold admiting an η−Ricci
soliton (g, ξ, λ, µ). If M satisfies the curvature condition S ·R = 0, then
1. µ− λ = 2,
2. ξ is a geodesic vector field.

Example. We consider the 3-dimensional manifoldM =
{
(x, y, z) ∈ R3 : z > 0

}
, where (x, y, z)

are the standard coordinates of R3. Let e1, e2 and e3 be the vector fields on M given by

e1 = z
∂

∂x
, e2 = z

∂

∂y
, e3 = z

∂

∂z
= ξ,

which are linearly independent at each point of M . Let g be the Lorentzian metric defined by

g(e1, e1) = 1, g(e2, e2) = 1, g(e3, e3) = −1, g(e1, e2) = g(e1, e3) = g(e2, e3) = 0.

Let η be the 1-form defined by η(X) = g(X, e3) = g(X, ξ) for all X ∈ χ(M), and let φ be the
(1, 1)-tensor field defined by

φe1 = −e1, φe2 = −e2, φe3 = 0.

By using linearity of φ and g, we have

η(ξ) = g(ξ, ξ) = −1, φ2X = X + η(X)ξ and g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for all X,Y ∈ χ(M). Thus for e3 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian almost
paracontact metric structure on M .
Also we have

[e1, e2] = 0, [e2, e1] = 0, [e1, e3] = −e1, [e3, e1] = e1, [e2, e3] = −e2, [e3, e2] = e2.

The Levi-Civita connection ∇ of the Lorentzian metric g is given by

2g(∇XY,Z) = Xg(Y, Z)+Y g(Z,X)−Zg(X,Y )−g(X, [Y,Z])+g(Y, [Z,X])+g(Z, [X,Y ]),

which is known as Koszul’s formula. Using Koszul’s formula, we can easily calculate

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = −e1, ∇e2e1 = 0, (7.7)

∇e2e2 = −e3, ∇e2e3 = −e2, ∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.
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Also, one can easily verify that

∇Xξ = −X − η(X)ξ and (∇Xφ)Y = −g(φX, Y )ξ − η(Y )φX.

Therefore, the manifold is a Lorentzian para-Kenmotsu manifold. It is known that

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (7.8)

With the help of the above results we find the components of the Ricci tensor as follows:

R(e1, e2)e1 = −e2, R(e1, e3)e1 = −e3, R(e2, e3)e1 = 0, (7.9)

R(e1, e2)e2 = e1, R(e1, e3)e2 = 0, R(e2, e3)e2 = −e3,

R(e1, e2)e3 = 0, R(e1, e3)e3 = −e1, R(e2, e3)e3 = −e2

from which it is clear that

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y.

Thus the manifold (M,φ, ξ, η, g) is a Lorentzian para-Kenmotsu manifold of constant curvature
1 and hence is locally isometric to the unit sphere S3(1).
From (7.9), we calculate the Ricci tensors as follows:

S(e1, e1) = S(e2, e2) = 2, S(e3, e3) = −2. (7.10)

Therefore, r =
∑3
i=1 εiS(ei, ei) = 6,where εi = g(ei, ei).Now from (3.3) and (7.10), we obtain

λ = −1 and µ = 1. Therefore the data (g, ξ, λ, µ) for λ = −1 and µ = 1 defines an η−Ricci
soliton on (M,φ, ξ, η, g).
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