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Abstract In this article, we deduce some interesting non-trivial trigonometric identities from
Ramanujan theta function identities.

1 Introduction

Ramanujan [9, P. 309], recorded the following beautiful relationship between his theta functions
and trigonometric functions:

Theorem 1. [3, P. 140]: Let f(a,b) be defined in (1.10) below. Let m, n, p, r and k be positive
numbers such that m +n = p + r = k, Then as ¢ tends to 1-,

f(=q™ —q") _sin(*")
f(=av,—q")  sin(57)
This relation can be effectively employed to evaluate various generalized as well as particular
trigonometric sums.

Evaluation of generalized as well as particular trigonometric sums has been one of the in-
teresting and important topics, studied by various mathematicians. It finds its applications in
various branchs of mathematics. For the detailed history of trigonometric sums, one may re-
fer [5], where B. C. Berndt and B. P. Yeap along with giving the history of trigonometric sums,
have generalized the trigonometric sums in different dimensions by establishing some reciprocity
theorems using contour integration techinique. After this, along with A. Zaharesue, Berndt [6],
generalizes several non-trivial trigonometric sums of Z. G. Liu [8], which were particular to level
7. In all these papers, authour mainly use the theory of elliptic functions and the contour integra-
tion. M. Beck, Matthias and Halloran, Mary [1], also deduced several of the trigonometric sums
found in [5], [6], through the method of discrete Fourier analysis. Recently K. N. Harshitha, K.
R. Vasuki and M. V. Yathirajsharma [7], used the theory of theta functions to evaluate generalize
trigonometric functions. This motivated us to write this paper.

The purpose of this paper is to obtain following non-trivial trigonometric sums, which easily
follow from Theorem 1 and Ramanujan’s theta functions identities.

Theorem 2. : The following identities hold :

s1n(27”) sin(%”) sin(%) _
sin(§)  sin(%) + sin(3F) =1, (1.1)
sin(7) sin(%)  sin(3F) B
sin(%)  sin(3F) + sin(%) =2 (1.2)
sin(35)  sin(§)  sin(FF) | sin(3F)  sin(3F) | sin(f)
sin(zfr) s1n(31—’f) sin({5) * sin(‘{l) sm(Sll) + Sm(ﬁll) =-1, (1.3)
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sin(75 sin(%) B sin(%) sin(75) B sin(sl—g) sin({5) _ (1.4)
sin(2%) sin(33)  sin({3) sin(33)  sin(3%) sin(%%)
sin(35) sin(5)  sin({5) sin(35)  sin(35) sin(8Z) 4 (L5)
sin($3) sin(%%)  sin(35)sin(33)  sin(3%) sin({3) ’
sin(8%) sin(2%) sin(3%) B sin(4%) sin(3%) sin(%) _3 (1.6)
sin(3%) sin({5) sin(4F)  sin(3%) sin(3%) sin(% ’ '
2w ks 3n
sm(§) B SIH(E) B sm(g) 0 (17
sin({5)  sin(3%)  sin(%%)
sin(8%) B sin(4%) B sin(82) N sin(3Z) N sin(4Z) B sin(3%) N sin(3Z) B sin({5) _
sin(3Z)  sin(3Z)  sin(3Z)  osin({5)  sin(3Z)  sin(®2)  sin(Z%)  sin(32) ’
(1.8)
and
sin(%) s1n(7l—’77) sin(‘%) sin({5) B sin(z%) sm(zl—g) B s1n(51—77“) sm(%) _ 1 (19)
sin(32) sin(33)  sin(3Z)sin(32)  sin(3%) sin({5)  sin(%%) sin(33)

Identities (1.1) and (1.2) can be found in Liu [8, Corollary 7], identities (1.3)- (1.9) seems to
be new.
In Section 2, we note down the basic definitions and the Ramanujan theta function identities
from which the above trigonometric sums follows. In Section 3, we prove Theorem 2.

2 Preliminaries

For complex numbers a and ¢ with |¢| < 1, define as usual
(a: @)oo = [T (1 - ag®).

k=0

Ramanujan’s theta function f(a, ) is defined as

flab)= 3 a"F T = (—asab)c(~biab)oc(ab,ab)ue,  ab] < 1.

n=—oo

and

f—)=f(—¢,-) = D (-D"¢ 7 =(¢:¢)ee-

In the scattered places of his second notebook, Ramanujan has recorded the following iden-
tities :

2 1 + % =
7 f(=q¢,—4¢®) a7 f(—¢* —¢°) R q7 f(—q

f=¢,-¢) f(=¢,—¢") f-a,-¢®)  f(=q7)
_ ~t 1, (2.1)
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(
. % . % 3 _ % 2 — % %
L A G (). e

fl=q%) _ f(=d"=d")  f(=4"—q) (= —=d") (=2 —d%)
a5 f(—qB3)  qTf(—¢% —q")  gB (=3, —q'%)  ¢Bf(—q,—q2)  q¢Tf(—¢* —¢°)

q’,—q
O ) f(=¢" =) f(=¢*.=d) S —a") 5/ ~4")
02 (=4%)  qBf(—¢? —a") ¢B f(—=a> —q"°)  ¢Ff(=q,—¢"?) (=’ —d")

4 _ (= —d") (= —d") _ aT f(—a—d"?) S’ —d)
af?(—q") f=¢*—=¢°)  f(=¢® —q") f(*q2 *Q“) g% f(—3, —q')
f( 7, - Q) aB f(~q,—q")’ @2

fz(*Q) _ f(=db-d) fd—d") f(=d —dY)
T T e —a) 4 f—a—a2) a8 ()

fa* —a") s f(=a’,—4") 15 f(=a,—¢")
_ 3 3 2.6
) TS —d) 20
f(=¢ ")  f(=d.—¢") [f(=¢’,—4¢") o, @7

f(=a.—¢") ~ f(=¢*,—¢"")  f(—¢5 —°)

f(=q") _ f(=¢°—q") G ) IO Gl 0 B Gl e )
Cal (0% df(—at =) T f(—q,—q'9)

at f(=4") gV f(—aP —q')
f(=d",—4") 3 f(=—42) | uf(=—q")  xf(-q,—¢")
+q%f(_q5,_q12) = qﬁ,—q”)Jrq f(=q,— 10)+q f(=¢%,—¢°)’ (25)
and
(=% —q")  J(=q".=d") | foah—d®) mT(= q,—q‘6) % —)  f(=¢* —d)
aF (= =) a7 F(—%, —q12)  qP f(—2 —¢%) [ =) B f(—*, —¢") 7 f(=q,—q")

B0 =) wfa—a) o
—q T qu)q (=g, =410 .29

Identities (2.1)-(2.2) can be found in [9, p. 300], identities (2.3)-(2.6) can be found in [9, p.
2441, identity (2.7) can be found in [9, p. 326], identities (2.8)-(2.9) can be found in [9, p. 247].

Proofs of the above identities can be found in [2].
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3 Main results

To prove our main results, we require the following limits

lim fa) lim (09w _ lim r (1—q™)
1= Cf(=q®) =17 P07, 07) am1m 22
m#Akx49
keN
S gy~ i e gy e 1L a=am=o
77L77£TIL67><169
kEN
N ) - (0,9)3 -
lim = lim S—— = lim 1—¢™
= af(—q%) o= q(gB gt g L (1=a")
mekx13
keN
and
: f(=q) , (4. 9) : =
e q2F(—?®) T oot q2(g?, )0 T 4ol 1_—[1 (1—4¢")
k%289
keEN

3.1)

(3.2)

(3.3)

(3.4)

Proof of (2.1)- (2.9): Using (3.1)- (3.4) and Theorem 1, taking lim,_,,- on both sides of each
of the identities (2.1)-(2.9), we correspondingly obtain the trigonometric identities in Theorem 2.
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