RADICAL OF FILTERS OF TRANSITIVE BE-ALGEBRAS

V. Venkata Kumar, M. Sambasiva Rao and S. Kalesha Vali

Communicated by Ayman Badawi

MSC 2010 Classifications: 03G25.

Keywords and phrases: Self-distributive BE-algebra, filter, radical of a filter, semi-maximal filter, ideal, skew-simple BE-algebra.

The authors would like to thank the referees for their valuable suggestions and comments that improved the presentation of this article.

Abstract The notion of skew-simple BE-algebras is introduced and derived an equivalent assertions for every skew-simple BE-algebra to become semi-simple. The concept of radical of filters is introduced in a BE-algebra and certain properties of these radicals are derived in terms of direct products and homomorphisms. The concept of semi-maximal filters is introduced in BE-algebras. Some equivalent assertions are derived for every semi-maximal filter to become a maximal filter. Properties of semi-maximal filters are derived in terms of homomorphisms and congruences.

1 Introduction

The notion of *BE*-algebras was introduced and extensively studied by H. S. Kim and Y. H. Kim in [8]. These classes of BE-algebras were introduced as a generalization of the class of BCKalgebras of K. Iseki and S. Tanaka [7]. Some properties of filters of BE-algebras were studied by S. S. Ahn and Y. H. Kim in [1] and by B. L. Meng in [9]. In [16], A. Walendziak discussed some properties of commutative BE-algebras. He also investigated the relationship between BE-algebras, implicative algebras and J-algebras. In 2012, A. Rezaei, and A. Borumand Saeid [11], stated and proved the first, second and third isomorphism theorems in self-distributive *BE*algebras. Later, these authors [12] introduced the notion of commutative ideals in a *BE*-algebra. In 2013, A. Borumand Saeid, A. Rezaei and R. A. Borzooei [3] extensively studied the properties of some types of filters in BE-algebras. In [4], Chajda et al., Characterized the complements and relative complements of the set of all deductive systems as the so-called annihilators of Hilbert algebras. Later, Halaš[6] introduced the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra. In [5], Z. Ciloglu and Y. Ceven introduced the notion of bounded BE-algebras and investigated some properties of them. A. Paad [10] introduced the notion of the radical of ideals in BL-algebras and then characterized the notion of the radical of ideals by elements of a BL-algebra.

In this work, we derive some significant properties of maximal filters of a bounded BE-algebra. The notion of skew-simple BE-algebras is introduced and studied its properties. We prove that the condition of self-distributivity is sufficient to satisfy all the properties of a skew-simple BE-algebra. It is observed that every semi-simple BE-algebra is a skew-simple BE-algebra and the converse is not true. However, some equivalent assertions are derived for a skew-simple BE-algebra to become a semi-simple BE-algebra. The concept of a radicals of a filter is introduced in bounded BE-algebras. The elements of a radical of a filter are characterized in self-distributive BE-algebras. Certain properties of these radicals are then derived with respect to set-intersection, direct products, and homomorphic images.

The concept of semi-maximal filters is introduced, in bounded *BE*-algebras, in terms of radical of filters. Some equivalent assertions are derived for every semi-maximal filter of a *BE*-algebra to become a maximal filter. Finally, properties of semi-maximal filters are derived with respect to homomorphism, Cartesian products and congruences.

2 Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers [1], [5], [8], [9], [14] and [15] for the ready reference of the reader.

Definition 2.1. [8] An algebra (X, *, 1) of type (2, 0) is called a *BE*-algebra if it satisfies the following properties:

(1) x * x = 1, (2) x * 1 = 1, (3) 1 * x = x, (4) x * (y * z) = y * (x * z) for all $x, y, z \in X$.

A *BE*-algebra *X* is called *self-distributive* if x * (y * z) = (x * y) * (x * z) for all $x, y, z \in X$. A *BE*-algebra *X* is called *transitive* if $y * z \le (x * y) * (x * z)$ for all $x, y, z \in X$. Every self-distributive *BE*-algebra is transitive. A *BE*-algebra (X, *, 1) is said to be an *implicative BE*-algebra[13] if it satisfies the implicative condition x = (x * y) * x for all $x, y \in X$. We introduce a relation \le on *X* by $x \le y$ if and only if x * y = 1 for all $x, y \in X$.

Theorem 2.2. [9] Let X be a transitive BE-algebra and $x, y, z \in X$. Then

- (1) $1 \le x$ implies x = 1,
- (2) $y \leq z$ implies $x * y \leq x * z$ and $z * x \leq y * x$.

Definition 2.3. [8] A non-empty subset F of a *BE*-algebra X is called a *filter* of X if, for all $x, y \in X$, it satisfies the following properties:

- (1) $1 \in F$,
- (2) $x \in F$ and $x * y \in F$ imply that $y \in F$.

Theorem 2.4. [1] If A is a non-empty subset of a transitive BE-algebra X, then

 $\langle A \rangle = \{ x \in X \mid a_1 * (a_2 * (\dots * (a_n * x) \dots)) = 1 \text{ for some } a_1, a_2, \dots, a_n \in A \}.$

Let F be a filter of a BE-algebra X. For any $a \in X$, $\langle F \cup \{a\} \rangle = \{x \in X \mid a^n * x \in F \text{ for some } n \in \mathbb{N}\}$. For $A = \{a\}$, we will denote $\langle \{a\} \rangle$, briefly by $\langle a \rangle$, we call it a principal filter of X. If X is self-distributive, then $\langle a \rangle = \{x \in X \mid a * x = 1\}$.

A *BE*-algebra X is called bounded[5], if there exists an element 0 satisfying $0 \le x$ (or 0 * x = 1) for all $x \in X$. Define a unary operation N on a bounded *BE*-algebra X by xN = x * 0 for all $x \in X$.

Theorem 2.5. [5] Let X be a bounded BE-algebra and $x, y, z \in X$. Then

- (1) 1N = 0 and 0N = 1,
- (2) $x \leq xNN$,
- (3) x * yN = y * xN.

Lemma 2.6. [5] Let X be a bounded and transitive BE-algebra. For any $x, y, z \in X$, we have

- (1) $x \le y$ implies $yN \le xN$, (2) $xNNN \le xN$,
- $(2) x N N N \leq x N,$
- $(3) \ x * y \le yN * xN,$
- (4) $(xN * yN)NN \le xN * yN.$

An element x of a bounded BE-algebra X is called dense[15] if xN = 0. Let X and Y be two bounded BE-algebras, then a homomorphism $f: X \to Y$ is called bounded if f(0) = 0. If f is a bounded homomorphism, then it is easily observed that f(xN) = f(x)N for all $x \in X$.

Definition 2.7. [5] An element x of a bounded *BE*-algebra X is called an *involutory element* if xNN = x. If every element of a *BE*-algebra X is involutory, then X is called an *involutory BE*-algebra.

Definition 2.8. [15] A non-empty subset *I* of a bounded *BE*-algebra *X* is called an *ideal* of *X* if it satisfies the following conditions for all $x, y \in X$:

- (I1) $0 \in I$,
- (I2) $x \in I$ and $(xN * yN)N \in I$ imply that $y \in I$.

Obviously the single-ton set $\{0\}$ is an ideal of a *BE*-algebra *X*. For, suppose $x \in \{0\}$ and $(xN * yN)N \in \{0\}$ for $x, y \in X$. Then x = 0 and $yNN = (0N * yN)N \in \{0\}$. Hence $y \leq yNN = 0 \in \{0\}$. Thus $\{0\}$ is an ideal of *X*.

Proposition 2.9. [15] Let I be an ideal of a bounded and transitive BE-algebra X. Then we have the following:

- (1) For any $x, y \in X, x \in I$ and $y \leq x$ imply $y \in I$,
- (2) For any $x \in X, x \in I$ if and only if $xNN \in I$.

A filter F of a BE-algebra X is called *proper* if $F \neq X$. A proper filter M of a BE-algebra is called *maximal* if there exists no proper filter Q of X such that $M \subset Q$.

Theorem 2.10. [14] A proper filter M of a transitive BE-algebra X is maximal if and only if for each $x \notin M$, $\langle M \cup \{x\} \rangle = X$.

Lemma 2.11. [2] Let F be a filter of a bounded and transitive BE-algebra X. Then

- (1) *F* is proper if and only if $0 \notin F$.
- (2) each proper filter is contained in a maximal filter.

Theorem 2.12. [2] Every BE-algebra contains at least one maximal filter.

Theorem 2.13. [15] For any filter F of a transitive BE-algebra, the binary relation θ_F on defined on X by

 $(x, y) \in \theta_F$ if and only if $x * y \in F$ and $y * x \in F$ for all $x, y \in X$.

is a congruence on X.

From the above theorem, it is easy to see that the quotient algebra $X/F = \{F_x \mid x \in X\}$ (where F_x is the congruence class of x modulo θ_F) is a bounded *BE*-algebra in which the binary operation * is defined as $F_x * F_y = F_{x*y}$ for $x, y \in X$ and the unary operation N is defined as $(F_x)N = F_{xN}$ for all $x \in X$. Moreover, the quotient algebra X/F contains the greatest element F_1 . Throughout this article, X stands for a bounded *BE*-algebra unless otherwise stated.

3 Properties of maximal filters

In this section, some important properties of maximal filters are given. The concept of skewsimple BE-algebra is introduced in a BE-algebra and proved that every self-distributive BEalgebra is skew-simple. A set of equivalent conditions is given for every skew-simple BEalgebra to become a semi-simple.

Definition 3.1. Let X be a *BE*-algebra and F is any subset of X. Then the set N(F) is defined as $N(F) = \{x \in X \mid xN \in F\}$.

Proposition 3.2. The following implications hold in a transitive BE-algebra X:

- (1) For any filter F of X, $x \in F$ implies $xN \in N(F)$,
- (2) For any ideal I of X, $x \in I$ implies $xN \in N(I)$,
- (3) For any filter F of X, N(F) is an ideal of X,
- (4) For any ideal I of X, N(I) is a filter of X.

Proof. (1) Let F be a filter of X and suppose $x \in F$. Since $x \leq xNN$, we get $xNN \in F$. Hence $xN \in N(F)$.

(2) Let I be an ideal of X and suppose $x \in I$. Since I is an ideal, we get $xNN \in I$. Hence

 $xN \in N(I).$

(3) Let F be a filter of X. Since $0N = 1 \in F$, we get $0 \in N(F)$. Let $x, y \in X$ be such that $x \in N(F)$ and $(xN * yN)N \in N(F)$. Then $xN \in F$ and $(xN * yN)NN \in F$. By Lemma 2.6(4), we get $(xN * yN)NN \leq xN * yN$ and hence $xN * yN \in F$. Since $xN \in F$ and F is a filter, we get $yN \in F$. Thus $y \in N(F)$. Therefore N(F) is an ideal of X.

(4) Let I be an ideal of X. Since $1N = 0 \in I$, we get $1 \in N(I)$. Let $x, y \in X$ be such that $x \in N(I)$ and $x * y \in N(I)$. Then $xN \in I$ and $(x * y)N \in I$. Since $x * y \leq xNN * yNN$, we get $(xNN * yNN)N \leq (x * y)N$. Hence $(xNN * yNN)N \in I$. Since $xN \in I$ and I is an ideal, we get $yN \in I$. Thus $y \in N(I)$. Therefore N(I) is a filter of X.

Theorem 3.3. A proper filter F of a self-distributive BE-algebra X is maximal if and only if it satisfies the following condition:

 $x \notin F$ implies $xN \in F$ for all $x \in X$.

Proof. Let F be a proper filter of X. Assume that F is maximal. Let $x \notin F$. Then $\langle F \cup \{x\} \rangle = X$. Hence $0 \in \langle F \cup \{x\} \rangle$. Since X is self-distributive, we get $xN = x * 0 \in F$.

Conversely, assume that F satisfies the condition. Suppose F is not maximal. Then there exists a proper filter Q of X such that $F \subset Q$. Choose $x \in Q - F$. Then $x \notin F$. By the assumed condition, we get $x * 0 = xN \in F \subset Q$. Since $x \in Q$ and Q is a filter, we get $0 \in Q$ which is contradiction. Therefore F is a maximal filter of X.

Proposition 3.4. The following conditions are hold in a self-distributive BE-algebra X:

- (1) For any maximal filter F of X, N(F) is a maximal ideal of X,
- (2) For any maximal ideal I of X, N(I) is a maximal filter of X.

Proof. (1) Let *F* be a maximal filter of *X*. By Proposition 3.2, we get that N(F) is an ideal of *X*. Clearly *F* is proper filter of *X*. Suppose $1 \in N(F)$. Then $0 = 1N \in F$ which is a contradiction. Hence N(F) is proper ideal of *X*. Let $x \in X$. Suppose $x \notin N(F)$. By the definition of N(F), we get $xN \notin F$. Since *F* is maximal, we get $xNN \in F$. Hence $xN \in N(F)$. Therefore N(F) is a maximal ideal of *X*.

(2) Let *I* be a maximal ideal of *X*. By Proposition 3.2, we get that N(I) is a filter of *X*. Clearly *I* is proper ideal of *X*. Suppose $0 \in N(I)$. Then $1 = 0N \in I$ which is a contradiction. Hence N(I) is proper filter of *X*. Let $x \in X$. Suppose $x \notin N(I)$. By the definition of N(F), we get $xN \notin I$. Since *I* is maximal, we get $xNN \in I$. Hence $xN \in N(I)$. Therefore N(I) is a maximal filter of *X*.

Definition 3.5. Let X be a bounded *BE*-algebra. Then the *radical* of X, written rad(X), is defined as

$$rad(X) = \cap \{F \mid F \in max(X)\}$$

where max(X) is the collection of all maximal filters of X.

It is clear that rad(X) always exists for a bounded *BE*-algebra. In the contemporary algebra, it is observed that a *BE*-algebra X is called *semi-simple* if $rad(X) = \{1\}$. In [2], authors proved that every involutory *BE*-algebra is semi-simple.

Proposition 3.6. In a transitive *BE*-algebra *X*, we have $D(X) \subseteq rad(X)$, where D(X) is the set of all dense elements of *X*.

Proof. It is enough to prove that D(X) is contained in every maximal filter of X. Let M be a maximal filter of X such that $D(X) \notin M$. Then there exists $x \in D(X)$ such that $x \notin M$. Since M is maximal, we get $\langle M \cup \{x\} \rangle = X$. Hence $0 \in \langle M \cup \{x\} \rangle$. Hence $x^n * 0 \in M$ for some

positive integer n. Hence

$$\begin{array}{rcl} x^n * 0 \in M & \Rightarrow & \underbrace{x * (x * (\cdots (x * 0) \cdots))}_{\text{n times}} \in M \\ \Rightarrow & \underbrace{x * (x * (\cdots (x * (x * 0)) \cdots))}_{\text{n-1 times}} \in M \\ \Rightarrow & \underbrace{x * (x * (\cdots (x * 0) \cdots))}_{\text{n-1 times}} \in M \\ \Rightarrow & \underbrace{x * (x * (\cdots (x * (x * 0))) \cdots)}_{\text{n-2 times}} \in M \\ & & \cdots \\ & & & \cdots \\ & & & & \\ \Rightarrow & x * (x * 0) \in M \\ \Rightarrow & x * 0 \in M. \end{array}$$

which means $xN \in M$. Since $x \in D(X)$, we get $0 = xN \in M$, which is a contradiction. Hence $D(X) \subseteq M$ for all maximal filters M of X. Thus $D(X) \subseteq \cap \{M \mid M \in max(X)\}$. \Box

Since $1 \in D(X)$, the following corollary is a direct consequence of the above.

Corollary 3.7. For any BE-algebra X, we have $\{1\} \subseteq D(X) \subseteq rad(X)$.

Definition 3.8. A bounded *BE*-algebra *X* is called *skew-simple* if rad(X) = D(X).

We first observe the non-trivial example:

Example 3.9. Let $X = \{0, a, b, c, 1\}$. Define an operation * on X as follows:

Clearly (X, *, 0, 1) is a bounded *BE*-algebra and $D(X) = \{c, 1\}$. It is easy to check that $F_1 = \{1\}, F_2 = \{1, a\}, F_3 = \{1, b\}, F_4 = \{1, c\}, F_5 = \{1, a, c\}$ and $F_6 = \{1, b, c\}$ are proper filters of X in which F_5 and F_6 are maximal filters of X. Hence $rad(X) = F_5 \cap F_6 = \{1, c\}$, which shows that rad(X) = D(X). Therefore X is skew-simple.

Proposition 3.10. Every semi-simple BE-algebra is skew-simple.

Proof. Let X be a semi-simple BE-algebra. Then $rad(X) = \{1\}$. By Proposition 3.6, we have $D(X) \subseteq rad(X)$. Now, let $x \in rad(X)$. Then $x \in \{1\}$ and hence $x = 1 \in D(X)$. Thus rad(X) = D(X). Therefore X is a skew-simple BE-algebra.

The converse of the above proposition is not true. That is every skew-simple *BE*-algebra need not be semi-simple. For, consider the following example:

Example 3.11. Let $X = \{0, a, b, 1\}$. Define an operation * on X as follows:

*	1	a	b	0
1	1	a	b	0
a	1	1	b	0
b	1	a	1	0
0	1	1	1	1

Clearly (X, *, 0, 1) is a bounded *BE*-algebra and $D(X) = \{a, b, 1\}$. It is easy to check that $F_1 = \{1\}, F_2 = \{1, a\}, F_3 = \{1, b\}$ and $F_4 = \{1, a, b\}$ are proper filters of X in which F_4 is the only maximal filters of X. Hence $rad(X) = F_4 = \{1, a, b\} = D(X)$. Hence X is a skew-simple *BE*-algebra. Since $rad(X) \neq \{1\}$, we conclude that X is not a skew-simple *BE*-algebra.

In the following theorem, a set of equivalent assertions is derived for every skew-simple BE-algebra to become a semi-simple BE-algebra.

Theorem 3.12. Let X be a skew-simple BE-algebra. Then the following assertions are equivalent:

- (1) X is semi-simple;
- (2) every filter contains D(X);
- (3) X possesses a unique dense element.

Proof. (1) \Rightarrow (2): Assume that X is semi-simple. Then $rad(X) = \{1\}$. Since $D(X) \subseteq rad(X)$, we get $D(X) = \{1\}$. Hence $D(X) = \{1\} \subseteq F$ for every filter F of X.

 $(2) \Rightarrow (3)$: Assume that every filter contains D(X). Hence $D(X) \subseteq \{1\}$. Thus $D(X) = \{1\}$, which means X possesses a unique dense element, precisely 1.

 $(3) \Rightarrow (1)$: Assume that X possesses a unique dense element 1. Hence $D(X) = \{1\}$. Since X is skew-simple, we get $rad(X) = D(X) = \{1\}$. Therefore X is semi-simple.

Theorem 3.13. A bounded BE-algebra X is skew-simple if and only if for each $x \in X$ with $xN \neq 0$, there exists a proper filter F of X such that $\langle F \cup \{x\} \rangle = X$.

Proof. Assume that X is skew-simple. Then rad(X) = D(X). Hence $\bigcap_{F \in Max(X)} F = D(X)$.

Let $x \in X$ and $xN \neq 0$. Hence $x \notin D(X)$. Then there exists a maximal filter F of X such that $x \notin F$ (otherwise, if every maximal filter contains x, then $x \in \bigcap_{F \in max(X)} F = D(X)$). Since F

is maximal, we get $\langle F \cup \{x\} \rangle = X$.

Conversely, assume the condition. Suppose $rad(X) \neq D(X)$. Choose $x \in rad(X)$ with $x \notin D(X)$. By the assumed condition, there exists a proper filter F of X such that $\langle F \cup \{x\} \rangle = X$. Hence $x \notin F$. Consider $\mathfrak{T} = \{G \mid G \text{ is a filter of } X, x \notin G \text{ and } F \subseteq G\}$. Clearly $F \in \mathfrak{T}$ and $\mathfrak{T} \neq \emptyset$. Clearly, \mathfrak{T} is a partially ordered set, with the set inclusion, in which every chain has an upper bound. By the Zorn's lemma, \mathfrak{T} has a maximal element say F_0 . Then $x \notin F_0$ and $F \subseteq F_0$. Suppose there exists a proper filter M of X such that $F \subseteq F_0 \subset M \subseteq X$. By the maximality of M, we get $x \in M$. Hence $X = \langle F \cup \{x\} \rangle \subset \langle M \cup \{x\} \rangle = M$. Thus F_0 is a maximal filter of X and $x \notin F_0$, which is a contradiction. Therefore rad(X) = D(X), which means that X is skew-simple.

Theorem 3.14. Let X be a self-distributive BE-algebra. For every $x \in X$ with $xN \neq 0$, there exists a maximal filter F of X such that $x \notin F$.

Proof. Let $x \in X$ and $xN \neq 0$. We first claim that $\langle xN \rangle$ is a proper filter of X. Suppose $0 \in \langle xN \rangle$. Since X is self-distributive, we get xNN = xN * 0 = 1. Hence $xN \leq xNNN = 0$. Thus xN = 0, which is a contradiction. Hence $\langle xN \rangle$ is a proper filter of X. Then there exists a maximal filter F of X such that $\langle xN \rangle \subseteq F$. Suppose $x \in F$. Then $x * 0 = xN \in \langle xN \rangle \subseteq F$. Since $x \in F$, we get $0 \in F$ which is a contradiction. Hence F is a maximal filter of X such that $x \notin F$.

Theorem 3.15. Let X be a self-distributive BE-algebra. Then $D(X) = \bigcap_{M \in max(X)} M$.

Proof. Clearly $D(X) \subseteq rad(X)$. Conversely, suppose that $x \notin D(X)$. Then $xN \neq 0$. By the above theorem, there exists a maximal filter M such that $x \notin M$. Hence $x \notin \bigcap_{M \in max(X)} M$. \Box

Corollary 3.16. *Every self-distributive BE-algebra is skew-simple.*

4 Radical of filters in *BE*-algebras

In this section, the notion of radical of a filter of a BE-algebra is introduced. Some properties of these radicals are studied in bounded BE-algebras.

Definition 4.1. Let F be a proper filter of a *BE*-algebra X. The intersection of all maximal filters of X that contain F is called the radical of F and is denoted by rad(F). That is

$$rad(F) = \cap \{M \mid M \in Max(X) \text{ such that } F \subseteq M\}$$

Note that rad(F) is a filter of X and $F \subseteq rad(F)$.

Proposition 4.2. Let M be maximal filter of a BE-algebra X. Then rad(M) = M.

Proof. By Definition 4.1, the proof is clear.

Example 4.3. Let $X = \{0, a, b, c, d, 1\}$. Define an operation * on X as follows:

*	0	a	b	c	d	1
0	1	1	1	1	1	1
a	0	1	b	b	d	1
b	0	a	1	a	d	1
c	0	1	1	1	d	1
d	d	1	1	1	1	1
1	0	a	b	c	d	1

Clearly (X, *, 0, 1) is a bounded *BE*-algebra. Clearly $F = \{1\}, G = \{1, a\}, H = \{1, b\}$ and $I = \{1, a, b, c\}$ are proper filters of X. Note that $rad(F) = \{1, a, b, c\}, rad(G) = \{1, a, b, c\}, rad(H) = \{1, a, b, c\}$ and $rad(I) = \{1, a, b, c\} = I$.

In the following theorem, we characterize the elements of rad(F) of a bounded *BE*-algebra *X*, where *F* is a proper filter of *X*.

Theorem 4.4. Let F be a proper filter of a self-distributive BE-algebra X. Then

$$rad(F) = \{ x \in X \mid xN * x \in F \}.$$

Proof. Given that F is a proper filter of X. Put $\mathcal{K} = \{x \in X \mid xN * x \in F\}$. Let $x \in \mathcal{K}$. Suppose $x \notin rad(F)$. Then there exists a maximal filter M of X such that $F \subseteq M$ and $x \notin M$. Since M is maximal, by Theorem 3.3, we get $xN \in M$. Since $x \in \mathcal{K}$, we get $xN * x \in F \subseteq M$. Since $xN \in M$ and M is a filter, we get $x \in M$ which is a contradiction. Hence $x \in rad(F)$. Therefore $\mathcal{K} \subseteq rad(F)$.

Conversely, let $x \in rad(F)$. By the definition of rad(F), we get $x \in M$ for each maximal filter M of X with $F \subseteq M$. Suppose $xN * x \notin F$. Then there exists a maximal filter M' of X such that $F \subseteq M'$ and $xN * x \notin M'$. Since $F \subseteq M'$ and $x \in rad(F)$, we get $x \in M'$. Since $x \in M'$, then by the property of filters, we get $xN * x \in M'$ which is a contradiction. Hence $xN * x \in F$, which means $x \in K$. Therefore $rad(F) \subseteq K$ and hence $rad(F) = K = \{x \in X \mid xN * x \in F\}$.

Proposition 4.5. Let F be a filter of a self-distributive BE-algebra X. Then F is a proper filter of X if and only if rad(F) is a proper filter of X.

Proof. It follows form Definition 4.1 and Theorem 4.4.

Lemma 4.6. Let F and G be proper filters of a self-distributive BE-algebra X. Then

(1) $F \subseteq G$ implies $rad(F) \subseteq rad(G)$. Moreover, if X is an implicative BE-algebra, then $rad(F) \subseteq rad(G)$ implies $F \subseteq G$.

(2) rad(rad(F)) = rad(F).

(3) rad(F) = X if and only if F = X.

Proof. (1) Suppose $F \subseteq G$ and $x \in rad(F)$. Then $xN * x \in F \subseteq G$, which means $x \in rad(G)$. Therefore $rad(F) \subseteq rad(G)$. Now, let X be an implicative BE-algebra. Suppose $rad(F) \subseteq rad(G)$. Let $x \in F$. Since $F \subseteq rad(F)$, we get $x \in rad(F) \subseteq rad(G)$. Hence, by Theorem 4.4, we get $xN * x \in G$. Thus $(x*0) * x \in G$. Since X is implicative, we get $x \in G$. Therefore $F \subseteq G$. (2) Since $F \subseteq rad(F)$, by (1), we get $rad(F) \subseteq rad(rad(F))$. Conversely, let $x \in rad(rad(F))$. Then $x \in M$ for any maximal filter M such that $rad(F) \subseteq M$. Let M' be an any maximal filter of X such that $F \subseteq M'$. Then by (1), we get $rad(F) \subseteq rad(M') = M'$ because of M' is maximal. Hence $x \in M'$. That is $x \in M'$ for each maximal filter M' such that $F \subseteq M'$. By the definition of rad(F), it yields $x \in rad(F)$. Therefore $rad(rad(F)) \subseteq rad(F)$. (3) It follows form Proposition 4.5.

Proposition 4.7. Let $\{F_{\alpha}\}_{\alpha \in \Delta}$ be a family of filters of a self-distributive BE-algebra X. Then

$$rad(\bigcap_{\alpha\in\Delta}F_{\alpha}) = \bigcap_{\alpha\in\Delta}rad(F_{\alpha}).$$

Proof. It is clear that $\bigcap_{\alpha \in \Delta} F_{\alpha} \subseteq F_{\alpha}$ for each $\alpha \in \Delta$. By Lemma 4.6, we get $rad(\bigcap_{\alpha \in \Delta} F_{\alpha}) \subseteq rad(F_{\alpha})$ for each $\alpha \in \Delta$. Hence $rad(\bigcap_{\alpha \in \Delta} F_{\alpha}) \subseteq \bigcap_{\alpha \in \Delta} rad(F_{\alpha})$. Conversely, let $x \in \bigcap_{\alpha \in \Delta} rad(F_{\alpha})$. Then $x \in rad(F_{\alpha})$ for each $\alpha \in \Delta$. Hence $xN * x \in F_{\alpha}$ for each $\alpha \in \Delta$. Thus $xN * x \in \bigcap_{\alpha \in \Delta} F_{\alpha}$. Hence $x \in rad(\bigcap_{\alpha \in \Delta} F_{\alpha})$ and so $\bigcap_{\alpha \in \Delta} rad(F_{\alpha}) \subseteq rad(\bigcap_{\alpha \in \Delta} F_{\alpha})$. Therefore $\bigcap_{\alpha \in \Delta} rad(F_{\alpha}) = rad(\bigcap_{\alpha \in \Delta} F_{\alpha})$.

Let $I_n = \{1, 2, ..., n\}$ and $\{X_i = (X_i, *, 0, 1) \mid i \in I_n\}$ be a finite family of bounded *BE*-algebras. Define the direct product of bounded *BE*-algebras $X_1, X_2, ..., X_n$ as an algebraic structure

$$\left(\prod_{i=1}^{n} X_{i}, \circledast, (0_{1}, 0_{2}, \dots, 0_{n}), (1_{1}, 1_{2}, \dots, 1_{n})\right)$$

where $\prod_{i=1}^{n} X_i = \{(a_i) = (a_1, a_2, \dots, a_n) \mid a_i \in X_i \text{ and } i \in I_n\}$ and whose operations are defined as

$$(x_i) \circledast (y_i) = (x_i \ast y_i)$$

for any $(x_i), (y_i) \in \prod_{i=1}^n X_i$ and $(x_i)N = (x_iN)$. Then clearly the direct product is a bounded *RE* algebra with largest element (1) and the smallest element (0). Note that $\prod_{i=1}^n X_i$ is safe

BE-algebra with largest element (1_i) and the smallest element (0_i) . Note that $\prod_{i=1}^n X_i$ is self-distributive whenever each X_i is self-distributive.

Proposition 4.8. Let $\{F_i\}_{i \in I_n}$, where $I_n = \{1, 2, ..., n\}$, be a finite family of filters of a selfdistributive BE-algebra X. Then

$$rad\left(\prod_{i=1}^{n} F_{i}\right) = \prod_{i=1}^{n} rad(F_{i}).$$

Proof. Let $\{F_i\}_{i \in I_n}$, where $I_n = \{1, 2, ..., n\}$, be a finite family of filters of a self-distributive *BE*-algebra *X*. It is easy to check that $\prod_{i=1}^n F_i$ is a filter of the product algebra X^n . Let $(x_i) \in \prod_{i=1}^n F_i$ where $x_i \in F_i$ for $i \in I_n$. Then

$$\begin{aligned} (x_i) \in rad\Big(\prod_{i=1}^n F_i\Big) & \Leftrightarrow \quad (x_i)N \circledast (x_i) \in \prod_{i=1}^n F_i \\ & \Leftrightarrow \quad (x_iN * x_i) \in \prod_{i=1}^n F_i \\ & \Leftrightarrow \quad x_iN * x_i \in F_i \quad \text{for } i \in I_n \\ & \Leftrightarrow \quad x_i \in rad(F_i) \quad \text{for } i \in I_n \\ & \Leftrightarrow \quad (x_i) \in \prod_{i=1}^n rad(F_i) \end{aligned}$$

Therefore
$$rad\left(\prod_{i=1}^{n} F_i\right) = \prod_{i=1}^{n} rad(F_i).$$

Definition 4.9. [2] Let X and Y be two bounded *BE*-algebras. A mapping $f : X \to Y$ is called a homomorphism from X to Y if it satisfies the following conditions:

- (1) f(x * y) = f(x) * f(y),
- $(2) \quad f(xN) = f(x)N,$
- (3) f(0) = 0, for all $x, y \in X$.

Clearly $ker(f) = \{x \in X \mid f(x) = 1\}$ is a filter of X. Moreover, the set $Dker(f) = \{x \in X \mid f(x) = 0\}$ is called *dual kernel* of the *BE*-homomorphism f.

Proposition 4.10. Let X and Y be two bounded BE-algebras and $f : X \to Y$ be a BE-homomorphism. Then Dker(f) = N(ker(f)).

Proof. Clearly Dker(f) is an ideal of X. Let $x \in Dker(f)$. Then f(x) = 0. Thus f(xN) = (f(x))N = 0N = 1. So, $xN \in ker(f)$. Hence $x \in N(ker(f))$. Conversely, Let $x \in N(ker(f))$. Then $xN \in ker(f)$. Thus f(xN) = 1. Now, f(xNN) = (f(xN))N = 1N = 0. Since $x \leq xNN$, we get $f(x) \leq f(xNN)$. So f(x) = 0. Hence $x \in Dker(f)$. Therefore Dker(f) = N(ker(f)).

Proposition 4.11. Let X and Y be two bounded BE-algebras where X is self-distributive. Suppose $\psi : X \to Y$ be a BE-homomorphism. Then

$$rad(Dker(\psi)) = \psi^{-1}(rad(\{0\}))$$

Proof. By Theorem 4.4, we get $x \in rad(Dker(\psi))$ if and only if $xN * x \in Dker(\psi)$ if and only if $\psi(xN * x) = 0$ if and only if $\psi(xN) * \psi(x) = 0$ if and only if $(\psi(x))N * \psi(x) = 0$ if and only if $\psi(x) \in rad(\{0\})$ if and only if $x \in \psi^{-1}(rad(\{0\}))$.

Proposition 4.12. Let X and Y be two bounded BE-algebras where X is self-distributive. Suppose that $\psi : X \to Y$ be a BE-homomorphism. If F_1 is a filter of X and F_2 is a filter of Y. Then we have

(1)
$$rad(\psi^{-1}(F_2)) = \psi^{-1}(rad(F_2))$$

(2) If ψ is a BE-isomorphism, then $rad(\psi(F_1)) = \psi(rad(F_1))$.

Proof. (1). Since F_2 is a filter of Y, it is easy to check that $\psi^{-1}(F_2)$ is a filter of X. Let $x \in X$. Then by Theorem 4.4, we get

$$x \in rad(\psi^{-1}(F_2)) \implies xN * x \in \psi^{-1}(F_2)$$

$$\implies \psi(xN * x) \in F_2$$

$$\implies \psi(xN) * \psi(x) \in F_2$$

$$\implies (\psi(x))N * \psi(x) \in F_2$$

$$\implies \psi(x) \in rad(F_2)$$

$$\implies x \in \psi^{-1}(rad(F_2))$$

Hence $rad(\psi^{-1}(F_2)) \subseteq \psi^{-1}(rad(F_2))$ and $\psi^{-1}(rad(F_2)) \subseteq rad(\psi^{-1}(F_2))$. (2). Let F_1 be a filter of X and ψ be a *BE*-isomorphism. Then $\psi(F_1)$ is a filter of Y. Now, let

(2). Let F_1 be a filter of X and ψ be a *BE*-isomorphism. Then $\psi(F_1)$ is a filter of Y. Now, let $y \in \psi(rad(F_1))$. Then there exists $x \in rad(F_1)$, such that $y = \psi(x)$. Now

$$\begin{aligned} x \in rad(F_1) &\Rightarrow xN * x \in F_1 \\ &\Rightarrow \psi(xN * x) \in \psi(F_1) \\ &\Rightarrow \psi(xN) * \psi(x) \in \psi(F_1) \\ &\Rightarrow (\psi(x))N * \psi(x) \in \psi(F_1) \\ &\Rightarrow \psi(x) \in rad(\psi(F_1)) \end{aligned}$$

which means $y = \psi(x) \in rad(\psi(F_1))$. Therefore $\psi(rad(F_1)) \subseteq rad(\psi(F_1))$.

Conversely, let $y \in rad(\psi(F_1))$. Then by Theorem 4.4, we get $yN * y \in \psi(F_1)$. Since ψ is a *BE*-epimorphism, there exists $x \in F_1$ such that $\psi(x) = yN * y$. Thus

$$(\psi^{-1}(y))N * \psi^{-1}(y) = \psi^{-1}(yN) * \psi^{-1}(y) = \psi^{-1}(yN * y) = x \in F_1$$

Thus, by Theorem 4.4, we get $\psi^{-1}(y) \in rad(F_1)$. Hence $y \in \psi(rad(F_1))$. Therefore, $rad(\psi(F_1)) \subseteq \psi(rad(F_1))$ and so $rad(\psi(F_1)) = \psi(rad(F_1))$. \Box

5 Semi-maximal filters of *BE*-algebras

In this section, we introduce the concept of semi-maximal filters in *BE*-algebras through the radical of a filter. Some equivalent assertions are derived for every filter of a *BE*-algebra to become semi-maximal. Finally, properties of semi-maximal filters are derived with respect to homomorphism, Cartesian products and congruences.

Definition 5.1. A proper filter F of a bounded BE-algebra X is called a *semi-maximal filter* of X if rad(F) = F.

Example 5.2. Let $X = \{0, a, b, c, 1\}$. Define an operation * on X as follows:

*	0	a	b	c	1
0	1	1	1	1	1
a	0	1	b	c	1
b	0	a	1	c	1
c	0	1	b	1	1
1	0	a	b	c	1

Clearly (X, *, 0, 1) is a bounded *BE*-algebra. Clearly $F = \{1\}$, $G = \{1, a\}$, $H = \{1, b\}$, $I = \{1, a, b\}$, $J = \{1, a, c\}$ and $K = \{1, a, b, c\}$ are proper filters of *X*. Note that $rad(F) = \{1, a, b, c\} \neq F$, $rad(G) = \{1, a, b, c\} \neq G$, $rad(H) = \{1, a, b, c\} \neq H$, $rad(I) = \{1, a, b, c\} \neq I$, $rad(J) = \{1, a, b, c\} \neq J$ and $rad(K) = \{1, a, b, c\} = K$. Therefore *K* is a semi-maximal filter and *F*, *G*, *H*, *I*, *J* are not semi-maximal.

Proposition 5.3. Every maximal filter of a self-distributive BE-algebra is semi-maximal.

Proof. Let X be a self-distributive BE-algebra and M a maximal filter of X. Clearly $M \subseteq rad(M)$. Conversely, let $x \in rad(M)$. Then $xN * x \in M$. Suppose $x \notin M$. By Theorem 3.3, we ge $xN \in M$. Since $xN * x \in M$ and M is a filter, we get $x \in M$ which is a contradiction. Hence $x \in M$. Thus $rad(M) \subseteq M$ which yields rad(M) = M. Therefore M is semi-maximal. \Box

The converse of the above proposition is not true. For, consider the following:

Example 5.4. Let $X = \{0, a, b, c, 1\}$. Define an operation * on X as follows:

*	0	a	b	c	1
0	1	1	1	1	1
a	b	1	b	1	1
b	a	a	1	1	1
c	0	a	b	1	1
1	0	a	b	c	1

Clearly (X, *, 0, 1) is a bounded *BE*-algebra. It can be easily verified that $F_1 = \{1, c\}$; $F_2 = \{1, a, c\}$ and $F_3 = \{1, b, c\}$ are proper filters of X. Moreover, we can see that F_2 and F_3 are maximal filters of X such $F_1 \subset F_2$ and $F_1 \subset F_3$. Now

$$rad(F_1) = F_2 \cap F_3 = \{1, c\} = F_1.$$

Hence F_1 is a semi-maximal filter of X but not maximal because of $F_1 \subset F_2, F_3$.

In the following theorem, we derive a set of equivalent assertions for a semi-maximal filter of a *BE*-algebra to become maximal.

Theorem 5.5. Let F be a semi-maximal filter of a self-distributive BE-algebra X. Then the following assertions are equivalent:

- (1) F is maximal;
- (2) rad(F) is maximal;
- (3) for any $x \in X$, $x \notin rad(F)$ implies $xN \in F$.

Proof. (1) \Rightarrow (2): Assume that F is a maximal filter of X. Since F semi-maximal, we get rad(F) = F. Since F is maximal, it yields that rad(F) is a maximal filter of X.

 $(2) \Rightarrow (3)$: Let $x \in X$. Suppose $x \notin rad(F)$. Since rad(F) is maximal, by Theorem 3.3, we get $xN \in rad(F)$. Since F is semi-maximal, we get $xN \in F$.

(3) \Rightarrow (1): Let $x \notin F$. Since F is semi-maximal, we get rad(F) = F. Hence $x \notin rad(F)$. By (3), we get $xN \in F$. Therefore F is maximal.

Proposition 5.6. Let $\{F_{\alpha}\}_{\alpha \in \Delta}$ be a family of semi-maximal filters of a self-distributive BEalgebra X. Then $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is a semi-maximal filter of X.

Proof. Since F_{α} is a semi-maximal filters of X for each $\alpha \in \Delta$, we get $rad(F_{\alpha}) = F_{\alpha}$ for all $\alpha \in \Delta$. Since X is self-distributive, by Proposition 4.7, we get

$$rad(\bigcap_{\alpha\in\Delta}F_{\alpha})=\bigcap_{\alpha\in\Delta}rad(F_{\alpha})=\bigcap_{\alpha\in\Delta}F_{\alpha}.$$

Therefore $\bigcap_{\alpha \in \Delta} F_{\alpha}$ is a semi-maximal filter of X.

Proposition 5.7. Let $\{F_i\}_{i \in I_n}$, where $I_n = \{1, 2, ..., n\}$, be a finite family of semi-maximal filters of a self-distributive BE-algebra X. Then $\prod_{i=1}^n F_i$ is a semi-maximal filter of X.

Proof. Since F_i is a semi-maximal filters of X for each $i \in I_n$, we get $rad(F_i) = F_i$ for all $i \in I_n$. Since X is self-distributive, by Proposition 4.8, we get

$$rad\left(\prod_{i=1}^{n} F_i\right) = \prod_{i=1}^{n} rad(F_i).$$

Therefore $\prod_{i=1}^{n} F_i$ is a semi-maximal filter of X.

Proposition 5.8. Let X and Y be two self-distributive BE-algebras, and $f : X \to Y$ be a BE-homomorphism. If F and G are proper filters of X and Y respectively, then

(1) If G is semi-maximal filter of Y, then $f^{-1}(G)$ is semi-maximal of X.

(2) If $\{1\}$ is semi-maximal of X, then ker(f) is semi-maximal of X.

(3) If f is BE-isomorphism and F is a semi-maximal filter of X, then f(F) is a semi-maximal filter of Y.

Proof. (1). Clearly $f^{-1}(G)$ is a filter of X and hence $f^{-1}(G) \subseteq rad(f^{-1}(G))$. Suppose G is semi-maximal of Y. Then rad(G) = G. Let $x \in X$ be such that $x \in rad(f^{-1}(G))$. Then $xN * x \in f^{-1}(G)$. Then $f(x)N * f(x) = f(xN * x) \in G$. Hence $f(x) \in rad(G) = G$, which means $x \in f^{-1}(G)$. Thus $rad(f^{-1}(G)) \subseteq f^{-1}(G)$. Therefore $f^{-1}(G)$ is a semi-maximal filter of X.

(2). Assume that {1} is a semi-maximal filter of X. Then $rad(\{1\}) = \{1\}$. Clearly ker(f) is a filter of X and hence $ker(f) \subseteq rad(ker(f))$. Again, let $x \in X$ be such that $x \in rad(ker(f))$. Then $xN * x \in ker(f)$. Hence $f(x)N * f(x) = f(xN * x) = 1 \in \{1\}$, which gives $f(x) \in rad(\{1\}) = \{1\}$. Hence f(x) = 1. Thus $x \in ker(f)$, which concludes that $rad(ker(f)) \subseteq ker(f)$. Hence rad(ker(f)) = ker(f). Therefore ker(f) is a semi-maximal filter of X.

(3). Let F be a semi-maximal filter of X. Since f is BE-isomorphism, we get f(F) is a filter of Y. Since F is semi-maximal, we get rad(F) = F. By Proposition 4.12(2), we get rad(f(F)) = f(rad(F)) = f(F). Hence f(F) is a semi-maximal filter of Y.

Proposition 5.9. Let F be a proper filter of a self-distributive BE-algebra X. Then $rad(\{1\}/F) = rad(F)/F$.

Proof. Let F be a proper filter of X. By Theorem 4.4, we get

$$rad(\{1\}/F) = \{F_x \in X/F \mid (F_x)N * F_x \in \{1\}/F\} \\ = \{F_x \in X/F \mid F_{xN*x} \in \{1\}/F\} \\ = \{F_x \in X/F \mid (xN*x,1) \in \theta_F\} \\ = \{F_x \in X/F \mid xN*x \in F\} \\ = \{F_x \in X/F \mid x \in rad(F)\} \\ = rad(F)/F.$$

Theorem 5.10. Let F be a proper filter of a self-distributive BE-algebra X. Then rad(F) the smallest semi-maximal filter of X such that $F \subseteq rad(F)$.

Proof. Since rad(rad(F)) = rad(F), we have rad(F) is a semi-maximal filter of X. Now, let G be a semi-maximal filter of X such that $F \subseteq G$. Then $rad(F) \subseteq rad(G) = G$. Thus rad(F) the smallest semi-maximal filter of X such that $F \subseteq rad(F)$.

Lemma 5.11. Let F be a proper filter of a self-distributive BE-algebra X and θ_F be the congruence on X. Then

- (1) $\{1\}/F$ is a filter of X/F where $\{1\}/F = \{F_x \mid (x, 1) \in \theta_F\}$.
- (2) $F_x \in rad(F)/F$ implies $x \in rad(F)$.
- (3) rad(F)/F is a semi-maximal filter of X/F.

Proof. (1) Clearly $F_1 \in \{1\}/F$. Let $F_x, F_x * F_y \in \{1\}/F$. Then $F_{x*y} \in \{1\}/F$. Hence $(x, 1) \in \theta_F$ and $(x * y, 1) \in \theta_F$. Thus $x = 1 * x \in F$ and $x * y = 1 * (x * y) \in F$. Since F is a filter, we get $y \in F$. Thus $1 * y = y \in F$ and $y * 1 = 1 \in F$. Hence $(y, 1) \in \theta_F$, which gives $F_y \in \{1\}/F$. Therefore $\{1\}/F$ is a filter of X/F.

(2). Let $x \in X$ and $F_x \in rad(F)/F$. Then $F_x = F_a$ for some $a \in rad(F)$. Hence $(x, a) \in \theta_F$, which provides $a * x \in F \subseteq rad(F)$. Since $a \in rad(F)$ and rad(F) is a filter, we get $x \in rad(F)$. (3) Since $1 \in F \subseteq rad(F)$, we get $F_1 \in rad(F)/F$. Let $F_x, F_x * F_y \in rad(F)/F$. Then $F_{x*y} \in rad(F)/F$. By (2), we get $x \in rad(F)$ and $x * y \in rad(F)$. Since rad(F) is a filter of X, we get $y \in rad(F)$. Hence $F_y \in rad(F)/F$. Therefore rad(F)/F is a filter of X/F. We now show that rad(F)/F is semi-maximal in X/F. Clearly $rad(F)/F \subseteq rad(rad(F)/F)$. Conversely, let $F_x \in rad(rad(F)/F)$. Then by Theorem 4.4, we get $F_{xN*x} = F_xN * F_x \in rad(F)/F$. Then by (2), we get $xN * x \in rad(F)$. So by Theorem 4.4, we get $x \in rad(rad(F)) = rad(F)$. Hence $F_x \in rad(F)/F$. Therefore $rad(rad(F)/F) \subseteq rad(rad(F)/F$, which gives rad(F)/F is semi-maximal of X/F.

Theorem 5.12. Let X be a self-distributive BE-algebra and F be a proper filter of X. Then F is a semi-maximal filter of X if and only if $\{1\}/F$ is a semi-maximal filter of the quotient algebra X/F.

Proof. Assume that F is a semi-maximal filter of X. Then rad(F) = F. By Lemma 5.11(1), we have $\{1\}/F$ is a filter of X/F. Clearly $\{1\}/F \subseteq rad(\{1\}/F)$. Let $F_x \in rad(\{1\}/F)$. Then $F_{xN*x} = F_xN*F_x \in \{1\}/F$. Now

$$F_{xN*x} \in \{1\}/F \quad \Rightarrow \quad (xN*x,1) \in \theta_F$$
$$\Rightarrow \quad 1*(xN*x) \in F$$
$$\Rightarrow \quad xN*x \in F$$
$$\Rightarrow \quad x \in rad(F) = F$$

which gives $1 * x \in F$. Since F is a filter, we get $x * 1 = 1 \in F$. Hence $(x, 1) \in \theta_F$, which means $F_x \in \{1\}/F$. Therefore $rad(\{1\}/F) = \{1\}/F$.

Conversely, assume that $\{1\}/F$ is a semi-maximal filter of X/F. Then $rad(\{1\}/F) = \{1\}/F$.

Clearly $F \subseteq rad(F)$. Again, let $x \in rad(F)$. Then $xN * x \in F$. Since $1 \in F$, we get $(xN * x, 1) \in \theta_F$. Hence

$$F_{xN*x} \in \{1\}/F \quad \Rightarrow \quad (F_x)N*F_x \in \{1\}/F$$
$$\Rightarrow \quad F_x \in rad(\{1\}/F)$$
$$\Rightarrow \quad F_x \in \{1\}/F$$

which gives $(x, 1) \in \theta_F$. Hence $x = 1 * x \in F$. Thus $rad(F) \subseteq F$. Therefore F is semi-maximal of X.

References

- S. S. Ahn, Y. H. Kim and J. M. Ko, Filters in commutative *BE*-algebras, *Commun. Korean Math. Soc.* 27 no. 2, 233–242 (2012).
- [2] R. Borzooei, A. Borumand Saeid, R. Ameri and A. Rezaei, Involutory *BE*-algebras, *Journal of Mathematics and Applications* 37, 13–26 (2014).
- [3] A. Borumand Saeid, A. Rezaei and R. A. Borzooei, Some types of filters in *BE*-algebras, *Math.Comput.Sci.* 7, 341–352 (2013).
- [4] I. Chajda, R. Halaš and Y. B. Jun, Annihilators and deductive systems in commutative Hilbert algebras, *Comment. Math. Univ. Carolin.* 43 no. 3, 407–417 (2002).
- [5] Z. Ciloglu and Y. Ceven, Commutative and bounded BE-algebras, Algebra, 1-5 (2013).
- [6] R. Halaš, Annihilators in BCK-algebras, Czech. Math. J. 53 no. 128, 1001–1007 (2003).
- [7] K. Iseki and S. Tanaka, An introduction to the theory of *BCK*-algebras, *Math. Japon.* **23** no. 1, 1–26 (1979).
- [8] H. S. Kim and Y. H. Kim, On *BE*-algebras, *Sci. Math. Japon. Online* 1299–1302 (2006).
- [9] B. L. Meng, On filters in BE-algebras, Sci. Math. Japon. Online, 105–111 (2010).
- [10] A. Paad, Radical of ideals in BL-algebras, Ann. Fuzzy Math. Inform. 14 no.3, 249–263 (2017).
- [11] A. Rezaei and A. Borumand Saeid, Some results in *BE*-algebras, *Analele Universitatii Oradea Fasc. Matematica* Tom XIX, 33–44 (2012).
- [12] A. Rezaei and A. Borumand Saeid, Commutative ideals in *BE*-algebras, *Kyungpook Math. J.* 52 483–494 (2012).
- [13] A. Rezaei, A. Borumand Saeid and R. A. Borzooei Relation between Hilbert algebras and *BE*-algebras, *Appl. Appl. Math.* 8 no.2, 573—584 (2013).
- [14] M. Sambasiva Rao, Prime filters of commutative BE-algebras, J. Appl. Math. & Informatics 33 no. 5, 579–591 (2015).
- [15] M. Sambasiva Rao, A Course in BE-algebras, Springer Nature (2018),
- [16] A. Walendziak, On commutative BE-algebras, Sci. Math. Japon. Online, 585–588 (2008).

Author information

V. Venkata Kumar, Department of Mathematics, Aditya Engineering College, Surampalem-533437, Andhra Pradesh, India.

E-mail: vvenkat84@gmail.com

M. Sambasiva Rao, Department of Mathematics, MVGR College of Engineering, Vizianagaram-535005, Andhra Pradesh, India.

E-mail: mssraomaths35@rediffmail.com

S. Kalesha Vali, Department of Mathematics, JNTUK University College of Engineering, Vizianagaram-535003, Andhra Pradesh, India. E-mail: valijntuv@gmail.com

Received: December 2, 2020 Accepted: June 3, 2021