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Abstract The notion of skew-simple BE-algebras is introduced and derived an equivalent
assertions for every skew-simple BE-algebra to become semi-simple. The concept of radical of
filters is introduced in a BE-algebra and certain properties of these radicals are derived in terms
of direct products and homomorphisms. The concept of semi-maximal filters is introduced in
BE-algebras. Some equivalent assertions are derived for every semi-maximal filter to become a
maximal filter. Properties of semi-maximal filters are derived in terms of homomorphisms and
congruences.

1 Introduction

The notion of BE-algebras was introduced and extensively studied by H. S. Kim and Y. H. Kim
in [8]. These classes of BE-algebras were introduced as a generalization of the class of BCK-
algebras of K. Iseki and S. Tanaka [7]. Some properties of filters of BE-algebras were studied
by S. S. Ahn and Y. H. Kim in [1] and by B. L. Meng in [9]. In [16], A. Walendziak discussed
some properties of commutative BE-algebras. He also investigated the relationship between
BE-algebras, implicative algebras and J-algebras. In 2012, A. Rezaei, and A. Borumand Saeid
[11], stated and proved the first, second and third isomorphism theorems in self-distributive BE-
algebras. Later, these authors [12] introduced the notion of commutative ideals in a BE-algebra.
In 2013, A. Borumand Saeid, A. Rezaei and R. A. Borzooei [3] extensively studied the properties
of some types of filters inBE-algebras. In [4], Chajda et al., Characterized the complements and
relative complements of the set of all deductive systems as the so-called annihilators of Hilbert
algebras. Later, Halaš[6] introduced the concepts of an annihilator and a relative annihilator
of a given subset of a BCK-algebra. In [5], Z. Ciloglu and Y. Ceven introduced the notion of
bounded BE-algebras and investigated some properties of them. A. Paad [10] introduced the
notion of the radical of ideals in BL-algebras and then characterized the notion of the radical of
ideals by elements of a BL-algebra.

In this work, we derive some significant properties of maximal filters of a bounded BE-
algebra. The notion of skew-simple BE-algebras is introduced and studied its properties. We
prove that the condition of self-distributivity is sufficient to satisfy all the properties of a skew-
simple BE-algebra. It is observed that every semi-simple BE-algebra is a skew-simple BE-
algebra and the converse is not true. However, some equivalent assertions are derived for a skew-
simple BE-algebra to become a semi-simple BE-algebra. The concept of a radicals of a filter
is introduced in bounded BE-algebras. The elements of a radical of a filter are characterized in
self-distributive BE-algebras. Certain properties of these radicals are then derived with respect
to set-intersection, direct products, and homomorphic images.

The concept of semi-maximal filters is introduced, in bounded BE-algebras, in terms of
radical of filters. Some equivalent assertions are derived for every semi-maximal filter of a BE-
algebra to become a maximal filter. Finally, properties of semi-maximal filters are derived with
respect to homomorphism, Cartesian products and congruences.
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2 Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers
[1], [5], [8], [9], [14] and [15] for the ready reference of the reader.

Definition 2.1. [8] An algebra (X, ∗, 1) of type (2, 0) is called a BE-algebra if it satisfies the
following properties:

(1) x ∗ x = 1,
(2) x ∗ 1 = 1,
(3) 1 ∗ x = x,
(4) x ∗ (y ∗ z) = y ∗ (x ∗ z) for all x, y, z ∈ X .

A BE-algebra X is called self-distributive if x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X .
A BE-algebra X is called transitive if y ∗ z ≤ (x ∗ y) ∗ (x ∗ z) for all x, y, z ∈ X . Every
self-distributive BE-algebra is transitive. A BE-algebra (X, ∗, 1) is said to be an implicative
BE-algebra[13] if it satisfies the implicative condition x = (x ∗ y) ∗ x for all x, y ∈ X . We
introduce a relation ≤ on X by x ≤ y if and only if x ∗ y = 1 for all x, y ∈ X .

Theorem 2.2. [9] Let X be a transitive BE-algebra and x, y, z ∈ X . Then

(1) 1 ≤ x implies x = 1,
(2) y ≤ z implies x ∗ y ≤ x ∗ z and z ∗ x ≤ y ∗ x.

Definition 2.3. [8] A non-empty subset F of a BE-algebra X is called a filter of X if, for all
x, y ∈ X , it satisfies the following properties:

(1) 1 ∈ F ,
(2) x ∈ F and x ∗ y ∈ F imply that y ∈ F .

Theorem 2.4. [1] If A is a non-empty subset of a transitive BE-algebra X , then

〈A〉 = {x ∈ X | a1 ∗ (a2 ∗ (· · · ∗ (an ∗ x) · · · )) = 1 for some a1, a2, . . . , an ∈ A}.

Let F be a filter of a BE-algebra X . For any a ∈ X , 〈F ∪ {a}〉 = {x ∈ X | an ∗ x ∈
F for some n ∈ N}. For A = {a}, we will denote 〈{a}〉, briefly by 〈a〉, we call it a principal
filter of X . If X is self-distributive, then 〈a〉 = {x ∈ X | a ∗ x = 1}.

A BE-algebra X is called bounded[5], if there exists an element 0 satisfying 0 ≤ x (or
0∗x = 1) for all x ∈ X . Define a unary operationN on a boundedBE-algebraX by xN = x∗0
for all x ∈ X .

Theorem 2.5. [5] Let X be a bounded BE-algebra and x, y, z ∈ X . Then

(1) 1N = 0 and 0N = 1,
(2) x ≤ xNN ,
(3) x ∗ yN = y ∗ xN .

Lemma 2.6. [5] Let X be a bounded and transitive BE-algebra. For any x, y, z ∈ X , we have

(1) x ≤ y implies yN ≤ xN ,
(2) xNNN ≤ xN ,
(3) x ∗ y ≤ yN ∗ xN ,
(4) (xN ∗ yN)NN ≤ xN ∗ yN .

An element x of a bounded BE-algebra X is called dense[15] if xN = 0. Let X and Y be
two bounded BE-algebras, then a homomorphism f : X → Y is called bounded if f(0) = 0. If
f is a bounded homomorphism, then it is easily observed that f(xN) = f(x)N for all x ∈ X .

Definition 2.7. [5] An element x of a bounded BE-algebra X is called an involutory element if
xNN = x. If every element of a BE-algebra X is involutory, then X is called an involutory
BE-algebra.
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Definition 2.8. [15] A non-empty subset I of a bounded BE-algebra X is called an ideal of X
if it satisfies the following conditions for all x, y ∈ X:

(I1) 0 ∈ I ,
(I2) x ∈ I and (xN ∗ yN)N ∈ I imply that y ∈ I .

Obviously the single-ton set {0} is an ideal of a BE-algebra X . For, suppose x ∈ {0} and
(xN ∗ yN)N ∈ {0} for x, y ∈ X . Then x = 0 and yNN = (0N ∗ yN)N ∈ {0}. Hence
y ≤ yNN = 0 ∈ {0}. Thus {0} is an ideal of X .

Proposition 2.9. [15] Let I be an ideal of a bounded and transitive BE-algebra X . Then we
have the following:

(1) For any x, y ∈ X,x ∈ I and y ≤ x imply y ∈ I ,
(2) For any x ∈ X,x ∈ I if and only if xNN ∈ I .

A filter F of a BE-algebra X is called proper if F 6= X . A proper filter M of a BE-algebra
is called maximal if there exists no proper filter Q of X such that M ⊂ Q.

Theorem 2.10. [14] A proper filter M of a transitive BE-algebra X is maximal if and only if
for each x /∈M , 〈M ∪ {x}〉 = X .

Lemma 2.11. [2] Let F be a filter of a bounded and transitive BE-algebra X . Then

(1) F is proper if and only if 0 /∈ F .
(2) each proper filter is contained in a maximal filter.

Theorem 2.12. [2] Every BE-algebra contains at least one maximal filter.

Theorem 2.13. [15] For any filter F of a transitive BE-algebra, the binary relation θF on de-
fined on X by

(x, y) ∈ θF if and only if x ∗ y ∈ F and y ∗ x ∈ F for all x, y ∈ X .

is a congruence on X .

From the above theorem, it is easy to see that the quotient algebra X/F = {Fx | x ∈ X}
(where Fx is the congruence class of x modulo θF ) is a bounded BE-algebra in which the binary
operation ∗ is defined as Fx ∗ Fy = Fx∗y for x, y ∈ X and the unary operation N is defined as
(Fx)N = FxN for all x ∈ X . Moreover, the quotient algebra X/F contains the greatest element
F1. Throughout this article, X stands for a bounded BE-algebra unless otherwise stated.

3 Properties of maximal filters

In this section, some important properties of maximal filters are given. The concept of skew-
simple BE-algebra is introduced in a BE-algebra and proved that every self-distributive BE-
algebra is skew-simple. A set of equivalent conditions is given for every skew-simple BE-
algebra to become a semi-simple.

Definition 3.1. Let X be a BE-algebra and F is any subset of X . Then the set N(F ) is defined
as N(F ) = {x ∈ X | xN ∈ F}.

Proposition 3.2. The following implications hold in a transitive BE-algebra X:

(1) For any filter F of X , x ∈ F implies xN ∈ N(F ),
(2) For any ideal I of X , x ∈ I implies xN ∈ N(I),
(3) For any filter F of X , N(F ) is an ideal of X ,
(4) For any ideal I of X , N(I) is a filter of X .

Proof. (1) Let F be a filter of X and suppose x ∈ F . Since x ≤ xNN , we get xNN ∈ F .
Hence xN ∈ N(F ).
(2) Let I be an ideal of X and suppose x ∈ I . Since I is an ideal, we get xNN ∈ I . Hence
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xN ∈ N(I).
(3) Let F be a filter of X . Since 0N = 1 ∈ F , we get 0 ∈ N(F ). Let x, y ∈ X be such that
x ∈ N(F ) and (xN ∗ yN)N ∈ N(F ). Then xN ∈ F and (xN ∗ yN)NN ∈ F . By Lemma
2.6(4), we get (xN ∗ yN)NN ≤ xN ∗ yN and hence xN ∗ yN ∈ F . Since xN ∈ F and F is a
filter, we get yN ∈ F . Thus y ∈ N(F ). Therefore N(F ) is an ideal of X .
(4) Let I be an ideal of X . Since 1N = 0 ∈ I , we get 1 ∈ N(I). Let x, y ∈ X be such that
x ∈ N(I) and x ∗ y ∈ N(I). Then xN ∈ I and (x ∗ y)N ∈ I . Since x ∗ y ≤ xNN ∗ yNN , we
get (xNN ∗ yNN)N ≤ (x ∗ y)N . Hence (xNN ∗ yNN)N ∈ I . Since xN ∈ I and I is an ideal,
we get yN ∈ I . Thus y ∈ N(I). Therefore N(I) is a filter of X .

Theorem 3.3. A proper filter F of a self-distributive BE-algebra X is maximal if and only if it
satisfies the following condition:

x /∈ F implies xN ∈ F for all x ∈ X.

Proof. Let F be a proper filter of X . Assume that F is maximal. Let x /∈ F . Then 〈F ∪ {x}〉 =
X . Hence 0 ∈ 〈F ∪ {x}〉. Since X is self-distributive, we get xN = x ∗ 0 ∈ F .

Conversely, assume that F satisfies the condition. Suppose F is not maximal. Then there
exists a proper filter Q of X such that F ⊂ Q. Choose x ∈ Q−F . Then x /∈ F . By the assumed
condition, we get x ∗ 0 = xN ∈ F ⊂ Q. Since x ∈ Q and Q is a filter, we get 0 ∈ Q which is
contradiction. Therefore F is a maximal filter of X .

Proposition 3.4. The following conditions are hold in a self-distributive BE-algebra X:

(1) For any maximal filter F of X , N(F ) is a maximal ideal of X ,
(2) For any maximal ideal I of X , N(I) is a maximal filter of X .

Proof. (1) Let F be a maximal filter ofX . By Proposition 3.2, we get thatN(F ) is an ideal ofX .
Clearly F is proper filter of X . Suppose 1 ∈ N(F ). Then 0 = 1N ∈ F which is a contradiction.
Hence N(F ) is proper ideal of X . Let x ∈ X . Suppose x /∈ N(F ). By the definition of N(F ),
we get xN /∈ F . Since F is maximal, we get xNN ∈ F . Hence xN ∈ N(F ). Therefore N(F )
is a maximal ideal of X .
(2) Let I be a maximal ideal of X . By Proposition 3.2, we get that N(I) is a filter of X . Clearly
I is proper ideal of X . Suppose 0 ∈ N(I). Then 1 = 0N ∈ I which is a contradiction. Hence
N(I) is proper filter of X . Let x ∈ X . Suppose x /∈ N(I). By the definition of N(F ), we
get xN /∈ I . Since I is maximal, we get xNN ∈ I . Hence xN ∈ N(I). Therefore N(I) is a
maximal filter of X .

Definition 3.5. Let X be a bounded BE-algebra. Then the radical of X , written rad(X), is
defined as

rad(X) = ∩{F | F ∈ max(X)}

where max(X) is the collection of all maximal filters of X .

It is clear that rad(X) always exists for a bounded BE-algebra. In the contemporary algebra,
it is observed that aBE-algebraX is called semi-simple if rad(X) = {1}. In [2], authors proved
that every involutory BE-algebra is semi-simple.

Proposition 3.6. In a transitive BE-algebra X , we have D(X) ⊆ rad(X), where D(X) is the
set of all dense elements of X .

Proof. It is enough to prove that D(X) is contained in every maximal filter of X . Let M be a
maximal filter of X such that D(X) *M . Then there exists x ∈ D(X) such that x /∈M . Since
M is maximal, we get 〈M ∪ {x}〉 = X . Hence 0 ∈ 〈M ∪ {x}〉. Hence xn ∗ 0 ∈ M for some
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positive integer n. Hence

xn ∗ 0 ∈M ⇒ x ∗ (x ∗ (· · · (x︸ ︷︷ ︸
n times

∗0) · · · )) ∈M

⇒ x ∗ (x ∗ (· · · (x︸ ︷︷ ︸
n-1 times

∗(x ∗ 0)) · · · )) ∈M

⇒ x ∗ (x ∗ (· · · (x︸ ︷︷ ︸
n-1 times

∗0) · · · )) ∈M

⇒ x ∗ (x ∗ (· · · (x︸ ︷︷ ︸
n-2 times

∗(x ∗ 0))) · · · ) ∈M

· · ·
· · ·

⇒ x ∗ (x ∗ 0) ∈M
⇒ x ∗ 0 ∈M.

which means xN ∈M . Since x ∈ D(X), we get 0 = xN ∈M , which is a contradiction. Hence
D(X) ⊆M for all maximal filters M of X . Thus D(X) ⊆ ∩{M |M ∈ max(X)}.

Since 1 ∈ D(X), the following corollary is a direct consequence of the above.

Corollary 3.7. For any BE-algebra X , we have {1} ⊆ D(X) ⊆ rad(X).

Definition 3.8. A bounded BE-algebra X is called skew-simple if rad(X) = D(X).

We first observe the non-trivial example:

Example 3.9. Let X = {0, a, b, c, 1}. Define an operation ∗ on X as follows:

∗ 1 a b c 0
1 1 a b c 0
a 1 1 b c b

b 1 a 1 c a

c 1 a b 1 0
0 1 1 1 1 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra and D(X) = {c, 1}. It is easy to check that F1 =
{1}, F2 = {1, a}, F3 = {1, b}, F4 = {1, c}, F5 = {1, a, c} and F6 = {1, b, c} are proper filters
of X in which F5 and F6 are maximal filters of X . Hence rad(X) = F5 ∩ F6 = {1, c}, which
shows that rad(X) = D(X). Therefore X is skew-simple.

Proposition 3.10. Every semi-simple BE-algebra is skew-simple.

Proof. Let X be a semi-simple BE-algebra. Then rad(X) = {1}. By Proposition 3.6, we have
D(X) ⊆ rad(X). Now, let x ∈ rad(X). Then x ∈ {1} and hence x = 1 ∈ D(X). Thus
rad(X) = D(X). Therefore X is a skew-simple BE-algebra.

The converse of the above proposition is not true. That is every skew-simple BE-algebra
need not be semi-simple. For, consider the following example:

Example 3.11. Let X = {0, a, b, 1}. Define an operation ∗ on X as follows:

∗ 1 a b 0
1 1 a b 0
a 1 1 b 0
b 1 a 1 0
0 1 1 1 1
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Clearly (X, ∗, 0, 1) is a bounded BE-algebra and D(X) = {a, b, 1}. It is easy to check that
F1 = {1}, F2 = {1, a}, F3 = {1, b} and F4 = {1, a, b} are proper filters of X in which F4 is the
only maximal filters of X . Hence rad(X) = F4 = {1, a, b} = D(X). Hence X is a skew-simple
BE-algebra. Since rad(X) 6= {1}, we conclude that X is not a skew-simple BE-algebra.

In the following theorem, a set of equivalent assertions is derived for every skew-simple
BE-algebra to become a semi-simple BE-algebra.

Theorem 3.12. Let X be a skew-simple BE-algebra. Then the following assertions are equiva-
lent:

(1) X is semi-simple;
(2) every filter contains D(X);
(3) X possesses a unique dense element.

Proof. (1)⇒ (2): Assume thatX is semi-simple. Then rad(X) = {1}. SinceD(X) ⊆ rad(X),
we get D(X) = {1}. Hence D(X) = {1} ⊆ F for every filter F of X .
(2) ⇒ (3): Assume that every filter contains D(X). Hence D(X) ⊆ {1}. Thus D(X) = {1},
which means X possesses a unique dense element, precisely 1.
(3) ⇒ (1): Assume that X possesses a unique dense element 1. Hence D(X) = {1}. Since X
is skew-simple, we get rad(X) = D(X) = {1}. Therefore X is semi-simple.

Theorem 3.13. A bounded BE-algebra X is skew-simple if and only if for each x ∈ X with
xN 6= 0, there exists a proper filter F of X such that 〈F ∪ {x}〉 = X .

Proof. Assume that X is skew-simple. Then rad(X) = D(X). Hence
⋂

F∈Max(X)

F = D(X).

Let x ∈ X and xN 6= 0. Hence x /∈ D(X). Then there exists a maximal filter F of X such that
x /∈ F (otherwise, if every maximal filter contains x, then x ∈

⋂
F∈max(X)

F = D(X)). Since F

is maximal, we get 〈F ∪ {x}〉 = X .
Conversely, assume the condition. Suppose rad(X) 6= D(X). Choose x ∈ rad(X) with x /∈

D(X). By the assumed condition, there exists a proper filter F of X such that 〈F ∪ {x}〉 = X .
Hence x /∈ F . Consider T = {G | G is a filter of X,x /∈ G and F ⊆ G}. Clearly F ∈ T and
T 6= ∅. Clearly, T is a partially ordered set, with the set inclusion, in which every chain has an
upper bound. By the Zorn’s lemma, T has a maximal element say F0. Then x /∈ F0 and F ⊆ F0.
Suppose there exists a proper filter M of X such that F ⊆ F0 ⊂ M ⊆ X . By the maximality
of M , we get x ∈ M . Hence X = 〈F ∪ {x}〉 ⊂ 〈M ∪ {x}〉 = M . Thus F0 is a maximal filter
of X and x /∈ F0, which is a contradiction. Therefore rad(X) = D(X), which means that X is
skew-simple.

Theorem 3.14. Let X be a self-distributive BE-algebra. For every x ∈ X with xN 6= 0, there
exists a maximal filter F of X such that x /∈ F .

Proof. Let x ∈ X and xN 6= 0. We first claim that 〈xN〉 is a proper filter of X . Suppose
0 ∈ 〈xN〉. Since X is self-distributive, we get xNN = xN ∗ 0 = 1. Hence xN ≤ xNNN = 0.
Thus xN = 0, which is a contradiction. Hence 〈xN〉 is a proper filter of X . Then there exists a
maximal filter F of X such that 〈xN〉 ⊆ F . Suppose x ∈ F . Then x ∗ 0 = xN ∈ 〈xN〉 ⊆ F .
Since x ∈ F , we get 0 ∈ F which is a contradiction. Hence F is a maximal filter of X such that
x /∈ F .

Theorem 3.15. Let X be a self-distributive BE-algebra. Then D(X) =
⋂

M∈max(X)

M .

Proof. Clearly D(X) ⊆ rad(X). Conversely, suppose that x /∈ D(X). Then xN 6= 0. By the
above theorem, there exists a maximal filter M such that x /∈M . Hence x /∈

⋂
M∈max(X)

M .

Corollary 3.16. Every self-distributive BE-algebra is skew-simple.
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4 Radical of filters in BE-algebras

In this section, the notion of radical of a filter of a BE-algebra is introduced. Some properties of
these radicals are studied in bounded BE-algebras.

Definition 4.1. Let F be a proper filter of a BE-algebra X . The intersection of all maximal
filters of X that contain F is called the radical of F and is denoted by rad(F ). That is

rad(F ) = ∩{M |M ∈Max(X) such that F ⊆M}

Note that rad(F ) is a filter of X and F ⊆ rad(F ).

Proposition 4.2. Let M be maximal filter of a BE-algebra X . Then rad(M) =M .

Proof. By Definition 4.1, the proof is clear.

Example 4.3. Let X = {0, a, b, c, d, 1}. Define an operation ∗ on X as follows:

∗ 0 a b c d 1
0 1 1 1 1 1 1
a 0 1 b b d 1
b 0 a 1 a d 1
c 0 1 1 1 d 1
d d 1 1 1 1 1
1 0 a b c d 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. Clearly F = {1}, G = {1, a}, H = {1, b} and
I = {1, a, b, c} are proper filters of X . Note that rad(F ) = {1, a, b, c}, rad(G) = {1, a, b, c},
rad(H) = {1, a, b, c} and rad(I) = {1, a, b, c} = I .

In the following theorem, we characterize the elements of rad(F ) of a bounded BE-algebra
X , where F is a proper filter of X .

Theorem 4.4. Let F be a proper filter of a self-distributive BE-algebra X . Then

rad(F ) = {x ∈ X | xN ∗ x ∈ F}.

Proof. Given that F is a proper filter of X . Put K = {x ∈ X | xN ∗x ∈ F}. Let x ∈ K. Suppose
x /∈ rad(F ). Then there exists a maximal filter M of X such that F ⊆ M and x /∈ M . Since
M is maximal, by Theorem 3.3, we get xN ∈ M . Since x ∈ K, we get xN ∗ x ∈ F ⊆ M .
Since xN ∈ M and M is a filter, we get x ∈ M which is a contradiction. Hence x ∈ rad(F ).
Therefore K ⊆ rad(F ).

Conversely, let x ∈ rad(F ). By the definition of rad(F ), we get x ∈ M for each maximal
filter M of X with F ⊆ M . Suppose xN ∗ x /∈ F . Then there exists a maximal filter M ′ of X
such that F ⊆ M ′ and xN ∗ x /∈ M ′. Since F ⊆ M ′ and x ∈ rad(F ), we get x ∈ M ′. Since
x ∈ M ′, then by the property of filters, we get xN ∗ x ∈ M ′ which is a contradiction. Hence
xN ∗ x ∈ F , which means x ∈ K. Therefore rad(F ) ⊆ K and hence rad(F ) = K = {x ∈
X | xN ∗ x ∈ F}.

Proposition 4.5. Let F be a filter of a self-distributive BE-algebra X . Then F is a proper filter
of X if and only if rad(F ) is a proper filter of X .

Proof. It follows form Definition 4.1 and Theorem 4.4.

Lemma 4.6. Let F and G be proper filters of a self-distributive BE-algebra X . Then

(1) F ⊆ G implies rad(F ) ⊆ rad(G). Moreover, if X is an implicative BE-algebra, then
rad(F ) ⊆ rad(G) implies F ⊆ G.

(2) rad(rad(F )) = rad(F ).
(3) rad(F ) = X if and only if F = X .
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Proof. (1) Suppose F ⊆ G and x ∈ rad(F ). Then xN ∗ x ∈ F ⊆ G, which means x ∈ rad(G).
Therefore rad(F ) ⊆ rad(G). Now, let X be an implicative BE-algebra. Suppose rad(F ) ⊆
rad(G). Let x ∈ F . Since F ⊆ rad(F ), we get x ∈ rad(F ) ⊆ rad(G). Hence, by Theorem 4.4,
we get xN ∗x ∈ G. Thus (x∗0)∗x ∈ G. SinceX is implicative, we get x ∈ G. Therefore F ⊆ G.
(2) Since F ⊆ rad(F ), by (1), we get rad(F ) ⊆ rad(rad(F )). Conversely, let x ∈ rad(rad(F )).
Then x ∈M for any maximal filter M such that rad(F ) ⊆M . Let M ′ be an any maximal filter
of X such that F ⊆ M ′. Then by (1), we get rad(F ) ⊆ rad(M ′) = M ′ because of M ′ is
maximal. Hence x ∈ M ′. That is x ∈ M ′ for each maximal filter M ′ such that F ⊆ M ′. By the
definition of rad(F ), it yields x ∈ rad(F ). Therefore rad(rad(F )) ⊆ rad(F ).
(3) It follows form Proposition 4.5.

Proposition 4.7. Let {Fα}α∈∆ be a family of filters of a self-distributive BE-algebra X . Then

rad(
⋂
α∈∆

Fα) =
⋂
α∈∆

rad(Fα).

Proof. It is clear that
⋂
α∈∆

Fα ⊆ Fα for each α ∈ ∆. By Lemma 4.6, we get rad(
⋂
α∈∆

Fα) ⊆

rad(Fα) for each α ∈ ∆. Hence rad(
⋂
α∈∆

Fα) ⊆
⋂
α∈∆

rad(Fα). Conversely, let x ∈
⋂
α∈∆

rad(Fα).

Then x ∈ rad(Fα) for each α ∈ ∆. Hence xN ∗ x ∈ Fα for each α ∈ ∆. Thus xN ∗ x ∈⋂
α∈∆

Fα. Hence x ∈ rad(
⋂
α∈∆

Fα) and so
⋂
α∈∆

rad(Fα) ⊆ rad(
⋂
α∈∆

Fα). Therefore
⋂
α∈∆

rad(Fα) =

rad(
⋂
α∈∆

Fα).

Let In = {1, 2, . . . , n} and {Xi = (Xi, ∗, 0, 1) | i ∈ In} be a finite family of bounded BE-
algebras. Define the direct product of bounded BE-algebras X1, X2, . . . , Xn as an algebraic
structure ( n∏

i=1
Xi,~, (01, 02, . . . , 0n), (11, 12, . . . , 1n)

)
where

n∏
i=1

Xi = {(ai) = (a1, a2, . . . , an) | ai ∈ Xi and i ∈ In} and whose operations are defined

as

(xi)~ (yi) = (xi ∗ yi)

for any (xi), (yi) ∈
n∏
i=1

Xi and (xi)N = (xiN). Then clearly the direct product is a bounded

BE-algebra with largest element (1i) and the smallest element (0i). Note that
n∏
i=1

Xi is self-

distributive whenever each Xi is self-distributive.

Proposition 4.8. Let {Fi}i∈In , where In = {1, 2, . . . , n}, be a finite family of filters of a self-
distributive BE-algebra X . Then

rad
( n∏
i=1

Fi

)
=

n∏
i=1

rad(Fi).

Proof. Let {Fi}i∈In , where In = {1, 2, . . . , n}, be a finite family of filters of a self-distributive
BE-algebra X . It is easy to check that

∏n
i=1 Fi is a filter of the product algebra Xn. Let

(xi) ∈
∏n
i=1 Fi where xi ∈ Fi for i ∈ In. Then

(xi) ∈ rad
( n∏
i=1

Fi

)
⇔ (xi)N ~ (xi) ∈

n∏
i=1

Fi

⇔ (xiN ∗ xi) ∈
n∏
i=1

Fi

⇔ xiN ∗ xi ∈ Fi for i ∈ In
⇔ xi ∈ rad(Fi) for i ∈ In

⇔ (xi) ∈
n∏
i=1

rad(Fi)
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Therefore rad
( n∏
i=1

Fi

)
=

n∏
i=1

rad(Fi).

Definition 4.9. [2] Let X and Y be two bounded BE-algebras. A mapping f : X → Y is called
a homomorphism from X to Y if it satisfies the following conditions:

(1) f(x ∗ y) = f(x) ∗ f(y),
(2) f(xN) = f(x)N ,
(3) f(0) = 0, for all x, y ∈ X .

Clearly ker(f) = {x ∈ X | f(x) = 1} is a filter of X . Moreover, the set Dker(f) = {x ∈
X | f(x) = 0} is called dual kernel of the BE-homomorphism f .

Proposition 4.10. Let X and Y be two bounded BE-algebras and f : X → Y be a BE-
homomorphism. Then Dker(f) = N(ker(f)).

Proof. Clearly Dker(f) is an ideal of X . Let x ∈ Dker(f). Then f(x) = 0. Thus f(xN) =
(f(x))N = 0N = 1. So, xN ∈ ker(f). Hence x ∈ N(ker(f)). Conversely, Let x ∈
N(ker(f)). Then xN ∈ ker(f). Thus f(xN) = 1. Now, f(xNN) = (f(xN))N = 1N = 0.
Since x ≤ xNN , we get f(x) ≤ f(xNN). So f(x) = 0. Hence x ∈ Dker(f). Therefore
Dker(f) = N(ker(f)).

Proposition 4.11. Let X and Y be two bounded BE-algebras where X is self-distributive. Sup-
pose ψ : X → Y be a BE-homomorphism. Then

rad(Dker(ψ)) = ψ−1(rad({0}))

Proof. By Theorem 4.4, we get x ∈ rad(Dker(ψ)) if and only if xN ∗x ∈ Dker(ψ) if and only
if ψ(xN ∗x) = 0 if and only if ψ(xN) ∗ψ(x) = 0 if and only if (ψ(x))N ∗ψ(x) = 0 if and only
if ψ(x) ∈ rad({0}) if and only if x ∈ ψ−1(rad({0})).

Proposition 4.12. Let X and Y be two bounded BE-algebras where X is self-distributive. Sup-
pose that ψ : X → Y be a BE-homomorphism. If F1 is a filter of X and F2 is a filter of Y . Then
we have

(1) rad(ψ−1(F2)) = ψ−1(rad(F2)),
(2) If ψ is a BE-isomorphism, then rad(ψ(F1)) = ψ(rad(F1)).

Proof. (1). Since F2 is a filter of Y , it is easy to check that ψ−1(F2) is a filter of X . Let x ∈ X .
Then by Theorem 4.4, we get

x ∈ rad(ψ−1(F2)) ⇒ xN ∗ x ∈ ψ−1(F2)

⇒ ψ(xN ∗ x) ∈ F2

⇒ ψ(xN) ∗ ψ(x) ∈ F2

⇒ (ψ(x))N ∗ ψ(x) ∈ F2

⇒ ψ(x) ∈ rad(F2)

⇒ x ∈ ψ−1(rad(F2))

Hence rad(ψ−1(F2)) ⊆ ψ−1(rad(F2)) and ψ−1(rad(F2)) ⊆ rad(ψ−1(F2)).
(2). Let F1 be a filter of X and ψ be a BE-isomorphism. Then ψ(F1) is a filter of Y . Now, let
y ∈ ψ(rad(F1)). Then there exists x ∈ rad(F1), such that y = ψ(x). Now

x ∈ rad(F1) ⇒ xN ∗ x ∈ F1

⇒ ψ(xN ∗ x) ∈ ψ(F1)

⇒ ψ(xN) ∗ ψ(x) ∈ ψ(F1)

⇒ (ψ(x))N ∗ ψ(x) ∈ ψ(F1)

⇒ ψ(x) ∈ rad(ψ(F1))

which means y = ψ(x) ∈ rad(ψ(F1)). Therefore ψ(rad(F1)) ⊆ rad(ψ(F1)).
Conversely, let y ∈ rad(ψ(F1)). Then by Theorem 4.4, we get yN ∗ y ∈ ψ(F1). Since ψ is a

BE-epimorphism, there exists x ∈ F1 such that ψ(x) = yN ∗ y. Thus
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(ψ−1(y))N ∗ ψ−1(y) = ψ−1(yN) ∗ ψ−1(y) = ψ−1(yN ∗ y) = x ∈ F1.

Thus, by Theorem 4.4, we get ψ−1(y) ∈ rad(F1). Hence y ∈ ψ(rad(F1)). Therefore, rad(ψ(F1)) ⊆
ψ(rad(F1)) and so rad(ψ(F1)) = ψ(rad(F1)).

5 Semi-maximal filters of BE-algebras

In this section, we introduce the concept of semi-maximal filters in BE-algebras through the
radical of a filter. Some equivalent assertions are derived for every filter of a BE-algebra to
become semi-maximal. Finally, properties of semi-maximal filters are derived with respect to
homomorphism, Cartesian products and congruences.

Definition 5.1. A proper filter F of a bounded BE-algebra X is called a semi-maximal filter of
X if rad(F ) = F .

Example 5.2. Let X = {0, a, b, c, 1}. Define an operation ∗ on X as follows:

∗ 0 a b c 1
0 1 1 1 1 1
a 0 1 b c 1
b 0 a 1 c 1
c 0 1 b 1 1
1 0 a b c 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. Clearly F = {1}, G = {1, a}, H = {1, b},
I = {1, a, b}, J = {1, a, c} and K = {1, a, b, c} are proper filters of X . Note that rad(F ) =
{1, a, b, c} 6= F , rad(G) = {1, a, b, c} 6= G, rad(H) = {1, a, b, c} 6= H , rad(I) = {1, a, b, c} 6=
I , rad(J) = {1, a, b, c} 6= J and rad(K) = {1, a, b, c} = K. Therefore K is a semi-maximal
filter and F,G,H, I, J are not semi-maximal.

Proposition 5.3. Every maximal filter of a self-distributive BE-algebra is semi-maximal.

Proof. Let X be a self-distributive BE-algebra and M a maximal filter of X . Clearly M ⊆
rad(M). Conversely, let x ∈ rad(M). Then xN ∗x ∈M . Suppose x /∈M . By Theorem 3.3, we
ge xN ∈M . Since xN ∗x ∈M and M is a filter, we get x ∈M which is a contradiction. Hence
x ∈M . Thus rad(M) ⊆M which yields rad(M) =M . Therefore M is semi-maximal.

The converse of the above proposition is not true. For, consider the following:

Example 5.4. Let X = {0, a, b, c, 1}. Define an operation ∗ on X as follows:

∗ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b a a 1 1 1
c 0 a b 1 1
1 0 a b c 1

Clearly (X, ∗, 0, 1) is a bounded BE-algebra. It can be easily verified that F1 = {1, c}; F2 =
{1, a, c} and F3 = {1, b, c} are proper filters of X . Moreover, we can see that F2 and F3 are
maximal filters of X such F1 ⊂ F2 and F1 ⊂ F3. Now

rad(F1) = F2 ∩ F3 = {1, c} = F1.

Hence F1 is a semi-maximal filter of X but not maximal because of F1 ⊂ F2, F3.

In the following theorem, we derive a set of equivalent assertions for a semi-maximal filter
of a BE-algebra to become maximal.
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Theorem 5.5. Let F be a semi-maximal filter of a self-distributive BE-algebra X . Then the
following assertions are equivalent:

(1) F is maximal;
(2) rad(F ) is maximal;
(3) for any x ∈ X , x /∈ rad(F ) implies xN ∈ F .

Proof. (1) ⇒ (2): Assume that F is a maximal filter of X . Since F semi-maximal, we get
rad(F ) = F . Since F is maximal, it yields that rad(F ) is a maximal filter of X .
(2)⇒ (3): Let x ∈ X . Suppose x /∈ rad(F ). Since rad(F ) is maximal, by Theorem 3.3, we get
xN ∈ rad(F ). Since F is semi-maximal, we get xN ∈ F .
(3) ⇒ (1): Let x /∈ F . Since F is semi-maximal, we get rad(F ) = F . Hence x /∈ rad(F ). By
(3), we get xN ∈ F . Therefore F is maximal.

Proposition 5.6. Let {Fα}α∈∆ be a family of semi-maximal filters of a self-distributive BE-
algebra X . Then

⋂
α∈∆

Fα is a semi-maximal filter of X .

Proof. Since Fα is a semi-maximal filters of X for each α ∈ ∆, we get rad(Fα) = Fα for all
α ∈ ∆. Since X is self-distributive, by Proposition 4.7, we get

rad(
⋂
α∈∆

Fα) =
⋂
α∈∆

rad(Fα) =
⋂
α∈∆

Fα.

Therefore
⋂
α∈∆

Fα is a semi-maximal filter of X .

Proposition 5.7. Let {Fi}i∈In , where In = {1, 2, . . . , n}, be a finite family of semi-maximal

filters of a self-distributive BE-algebra X . Then
n∏
i=1

Fi is a semi-maximal filter of X .

Proof. Since Fi is a semi-maximal filters of X for each i ∈ In, we get rad(Fi) = Fi for all
i ∈ In. Since X is self-distributive, by Proposition 4.8, we get

rad
( n∏
i=1

Fi

)
=

n∏
i=1

rad(Fi).

Therefore
n∏
i=1

Fi is a semi-maximal filter of X .

Proposition 5.8. Let X and Y be two self-distributive BE-algebras, and f : X → Y be a BE-
homomorphism. If F and G are proper filters of X and Y respectively, then

(1) If G is semi-maximal filter of Y , then f−1(G) is semi-maximal of X .
(2) If {1} is semi-maximal of X , then ker(f) is semi-maximal of X .
(3) If f isBE-isomorphism and F is a semi-maximal filter ofX , then f(F ) is a semi-maximal

filter of Y .

Proof. (1). Clearly f−1(G) is a filter of X and hence f−1(G) ⊆ rad(f−1(G)). Suppose G is
semi-maximal of Y . Then rad(G) = G. Let x ∈ X be such that x ∈ rad(f−1(G)). Then
xN ∗ x ∈ f−1(G). Then f(x)N ∗ f(x) = f(xN ∗ x) ∈ G. Hence f(x) ∈ rad(G) = G, which
means x ∈ f−1(G). Thus rad(f−1(G)) ⊆ f−1(G). Therefore f−1(G) is a semi-maximal filter
of X .
(2). Assume that {1} is a semi-maximal filter of X . Then rad({1}) = {1}. Clearly ker(f) is a
filter of X and hence ker(f) ⊆ rad(ker(f)). Again, let x ∈ X be such that x ∈ rad(ker(f)).
Then xN ∗ x ∈ ker(f). Hence f(x)N ∗ f(x) = f(xN ∗ x) = 1 ∈ {1}, which gives f(x) ∈
rad({1}) = {1}. Hence f(x) = 1. Thus x ∈ ker(f), which concludes that rad(ker(f)) ⊆
ker(f). Hence rad(ker(f)) = ker(f). Therefore ker(f) is a semi-maximal filter of X .
(3). Let F be a semi-maximal filter of X . Since f is BE-isomorphism, we get f(F ) is a
filter of Y . Since F is semi-maximal, we get rad(F ) = F . By Proposition 4.12(2), we get
rad(f(F )) = f(rad(F )) = f(F ). Hence f(F ) is a semi-maximal filter of Y .

Proposition 5.9. Let F be a proper filter of a self-distributiveBE-algebraX . Then rad({1}/F ) =
rad(F )/F .
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Proof. Let F be a proper filter of X . By Theorem 4.4, we get

rad({1}/F ) = {Fx ∈ X/F | (Fx)N ∗ Fx ∈ {1}/F}
= {Fx ∈ X/F | FxN∗x ∈ {1}/F}
= {Fx ∈ X/F | (xN ∗ x, 1) ∈ θF }
= {Fx ∈ X/F | xN ∗ x ∈ F}
= {Fx ∈ X/F | x ∈ rad(F )}
= rad(F )/F.

Theorem 5.10. Let F be a proper filter of a self-distributive BE-algebra X . Then rad(F ) the
smallest semi-maximal filter of X such that F ⊆ rad(F ).

Proof. Since rad(rad(F )) = rad(F ), we have rad(F ) is a semi-maximal filter of X . Now, let
G be a semi-maximal filter of X such that F ⊆ G. Then rad(F ) ⊆ rad(G) = G. Thus rad(F )
the smallest semi-maximal filter of X such that F ⊆ rad(F ).

Lemma 5.11. Let F be a proper filter of a self-distributive BE-algebra X and θF be the con-
gruence on X . Then

(1) {1}/F is a filter of X/F where {1}/F = {Fx | (x, 1) ∈ θF }.
(2) Fx ∈ rad(F )/F implies x ∈ rad(F ).
(3) rad(F )/F is a semi-maximal filter of X/F .

Proof. (1) Clearly F1 ∈ {1}/F . Let Fx, Fx ∗ Fy ∈ {1}/F . Then Fx∗y ∈ {1}/F . Hence
(x, 1) ∈ θF and (x ∗ y, 1) ∈ θF . Thus x = 1 ∗ x ∈ F and x ∗ y = 1 ∗ (x ∗ y) ∈ F . Since F is a
filter, we get y ∈ F . Thus 1 ∗ y = y ∈ F and y ∗ 1 = 1 ∈ F . Hence (y, 1) ∈ θF , which gives
Fy ∈ {1}/F . Therefore {1}/F is a filter of X/F .
(2). Let x ∈ X and Fx ∈ rad(F )/F . Then Fx = Fa for some a ∈ rad(F ). Hence (x, a) ∈ θF ,
which provides a∗x ∈ F ⊆ rad(F ). Since a ∈ rad(F ) and rad(F ) is a filter, we get x ∈ rad(F ).
(3) Since 1 ∈ F ⊆ rad(F ), we get F1 ∈ rad(F )/F . Let Fx, Fx ∗Fy ∈ rad(F )/F . Then Fx∗y ∈
rad(F )/F . By (2), we get x ∈ rad(F ) and x ∗ y ∈ rad(F ). Since rad(F ) is a filter of X , we
get y ∈ rad(F ). Hence Fy ∈ rad(F )/F . Therefore rad(F )/F is a filter of X/F . We now show
that rad(F )/F is semi-maximal in X/F . Clearly rad(F )/F ⊆ rad(rad(F )/F ). Conversely, let
Fx ∈ rad(rad(F )/F ). Then by Theorem 4.4, we get FxN∗x = FxN ∗ Fx ∈ rad(F )/F . Then
by (2), we get xN ∗ x ∈ rad(F ). So by Theorem 4.4, we get x ∈ rad(rad(F )) = rad(F ).
Hence Fx ∈ rad(F )/F . Therefore rad(rad(F )/F ) ⊆ rad(F )/F , which gives rad(F )/F is
semi-maximal of X/F .

Theorem 5.12. Let X be a self-distributive BE-algebra and F be a proper filter of X . Then F
is a semi-maximal filter ofX if and only if {1}/F is a semi-maximal filter of the quotient algebra
X/F .

Proof. Assume that F is a semi-maximal filter of X . Then rad(F ) = F . By Lemma 5.11(1),
we have {1}/F is a filter of X/F . Clearly {1}/F ⊆ rad({1}/F ). Let Fx ∈ rad({1}/F ). Then
FxN∗x = FxN ∗ Fx ∈ {1}/F . Now

FxN∗x ∈ {1}/F ⇒ (xN ∗ x, 1) ∈ θF
⇒ 1 ∗ (xN ∗ x) ∈ F
⇒ xN ∗ x ∈ F
⇒ x ∈ rad(F ) = F

which gives 1 ∗ x ∈ F . Since F is a filter, we get x ∗ 1 = 1 ∈ F . Hence (x, 1) ∈ θF , which
means Fx ∈ {1}/F . Therefore rad({1}/F ) = {1}/F .

Conversely, assume that {1}/F is a semi-maximal filter ofX/F . Then rad({1}/F ) = {1}/F .
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Clearly F ⊆ rad(F ). Again, let x ∈ rad(F ). Then xN ∗ x ∈ F . Since 1 ∈ F , we get
(xN ∗ x, 1) ∈ θF . Hence

FxN∗x ∈ {1}/F ⇒ (Fx)N ∗ Fx ∈ {1}/F
⇒ Fx ∈ rad({1}/F )
⇒ Fx ∈ {1}/F

which gives (x, 1) ∈ θF . Hence x = 1∗x ∈ F . Thus rad(F ) ⊆ F . Therefore F is semi-maximal
of X .
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