TRIHARMONIC CURVES IN SOL_{3} SPACE

Bendehiba Senoussi
Communicated by Zafar Ahsan

MSC 2010 Classifications: Primary 53C30; Secondary 53B25.
Keywords and phrases: Triharmonic curves, biharmonic curves, Sol $_{3}$ space, bi $-f$ - harmonic curves.

Abstract

In this paper, we study triharmonic curves and bi $-f$ - harmonic curves in the standard three-dimensional geometry Sol_{3} with the left-invariant metric $g_{S o l_{3}}=d s^{2}=\left(e^{z} d x\right)^{2}+\left(e^{-z} d y\right)^{2}+(d z)^{2}$. We characterize the triharmonic curves in terms of their curvature and torsion.

1 Introduction

Let $\psi: I \rightarrow S o l_{3}$ be a differentiable curve parametrized by arc length and let $\{T, N, B\}$ be the orthonormal moving Frenet frame along the curve ψ in $S o l_{3}$ such that $T=\psi^{\prime}$ is the unit vector field tangent to ψ, N is the unit vector field in the direction $\nabla_{T} T$ normal to ψ (principal normal) and $B=T \wedge N$ (binormal vector). Then we have the following Frenet equations

$$
\left(\begin{array}{c}
\nabla_{T} T \tag{1.1}\\
\nabla_{T} N \\
\nabla_{T} B
\end{array}\right)=\left(\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
T \\
N \\
B
\end{array}\right)
$$

where

$$
k^{2}=g_{S o l_{3}}\left(\nabla_{T} T, \nabla_{T} T\right)
$$

is the curvature of ψ and τ is its torsion.
The planes spanned by $\{T, N\},\{T, B\}$ and $\{N, B\}$ are respectively known as the osculating, the rectifying and the normal plane.

Now curves with position vectors lie in the above defined three planes are respectively called osculating, rectifying and normal curves.
A. A. Shaikh, M. S. Lone and P. R. Ghosh in [13], [14], [15] studied rectifying, osculating and normal curves on a smooth immersed surface in the Euclidean space \mathbb{R}^{3} and obtained their characterizations under isometry of surfaces.
First we should recall some notions and results related to the harmonic and the Polyharmonic (r - harmonic $r \geq 1$) maps between Riemannian manifolds.

Harmonic maps $\psi:(M, g) \rightarrow(N, \tilde{g})$ between Riemannian manifolds are the critical points of the energy functional

$$
E_{1}: C^{\infty}(M, N) \rightarrow \mathbb{R}, \quad E_{1}(\psi)=\frac{1}{2} \int_{M}|\mathrm{~d} \psi|^{2} v_{g}
$$

and is characterized by the vanishing of the first tension field

$$
\tau_{1}(\psi)=-\mathrm{d}^{*} \mathrm{~d} \psi=\operatorname{trace} \nabla \mathrm{d} \psi
$$

where d is the exterior differentiation and d^{*} is the codifferentiation.
We remind that the bienergy of ψ is given by

$$
E_{2}: C^{\infty}(M, N) \rightarrow \mathbb{R}, \quad E_{2}(\psi)=\frac{1}{2} \int_{M}|\tau(\psi)|^{2} v_{g}
$$

and the bitension field $\tau_{2}(\psi)$ has the expression

$$
\tau_{2}(\psi)=-\Delta^{\psi} \tau(\psi)-\operatorname{trace}_{g} R^{N}(\mathrm{~d} \psi, \tau(\psi)) \mathrm{d} \psi
$$

where $\Delta^{\psi}=-\operatorname{trace}\left(\nabla^{\psi}\right)^{2}=-\operatorname{trace}\left(\nabla^{\psi} \nabla^{\psi}-\nabla_{\nabla}^{\psi}\right)$.
A smooth map ψ is biharmonic if it satisfies the following biharmonic equation

$$
\tau_{2}(\psi)=0
$$

Biharmonic maps are the critical points of the bienergy functional E_{2}. We call proper biharmonic the non-harmonic biharmonic maps. Biharmonic curves ψ of a Riemannian manifold are the solutions of the fourth order differential equation

$$
\begin{equation*}
\nabla_{\phi^{\prime}}^{3} \phi^{\prime}-R\left(\phi^{\prime}, \nabla_{\phi^{\prime}} \phi^{\prime}\right) \phi^{\prime}=0 \tag{1.2}
\end{equation*}
$$

Eells and Lemaire [5] proposed the problem to consider the polyharmonic ($r-$ harmonic $r \geq 1$) maps of order r, these are critical points of the r - energy functional defined by

$$
\begin{equation*}
E_{r}(\psi)=\int_{M} e_{r}(\psi) v_{g}, \quad r \geq 1 \tag{1.3}
\end{equation*}
$$

where $e_{r}(\psi)=\frac{1}{2}\left\|\left(\mathrm{~d}+\mathrm{d}^{*}\right)^{r} \psi\right\|^{2}$ for smooth maps ψ.
A map ψ is r - harmonic if it is a critical point of the functional $E_{r}(\psi)$ defined in (1.3).

Every harmonic map is a solution of the polyharmonic map, see [1] for a recent classification result. In [19], S.B. Wang studied the first variation formula of the k - energy E_{k}, whose critical maps are called k - harmonic maps. In [8], S. Maeta showed the second variation formula of the k - energy. Triharmonic curves with constant curvature in space forms were studied by Maeta in [8].

In this paper, we study triharmonic curves and bi $-f$ - harmonic curves in the standard three-dimensional geometry Sol_{3}. We characterize the triharmonic curves in terms of their curvature and torsion.

2 Preliminaries

The space Sol_{3} is one of the eight models of geometry of Thurston [17]. The space Sol_{3} is the space \mathbb{R}^{3} equipped with the metric

$$
g_{S o l_{3}}=d s^{2}=\left(e^{z} d x\right)^{2}+\left(e^{-z} d y\right)^{2}+(d z)^{2}
$$

where (x, y, z) are usual coordinates of \mathbb{R}^{3} (see for instance [6], [18]). The space Sol_{3} is a Lie group with the multiplication

$$
(x, y, z) *\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+e^{-z} x^{\prime}, y+e^{z} y^{\prime}, z+z^{\prime}\right)
$$

where $*$ denotes the group operation of $S o l_{3}$. A left-invariant orthonormal frame $\left\{e_{1}, e_{2}, e_{3}\right\}$ in Sol_{3} is given by

$$
e_{1}=e^{-z} \frac{\partial}{\partial x}, \quad e_{2}=e^{z} \frac{\partial}{\partial y}, \quad e_{3}=\frac{\partial}{\partial z}
$$

Proposition 2.1 ([18]). The Levi Civita connection ∇ of Sol $_{3}$ with respect to this
frame is

$$
\begin{align*}
& \left(\begin{array}{c}
\nabla_{e_{1}} e_{1} \\
\nabla_{e_{1}} e_{2} \\
\nabla_{e_{1}} e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \\
& \left(\begin{array}{l}
\nabla_{e_{2}} e_{1} \\
\nabla_{e_{2}} e_{2} \\
\nabla_{e_{2}} e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) \tag{2.1}\\
& \left(\begin{array}{l}
\nabla_{e_{3}} e_{1} \\
\nabla_{e_{3}} e_{2} \\
\nabla_{e_{3}} e_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right) .
\end{align*}
$$

Also, we obtain the bracket relations

$$
\begin{equation*}
\left[e_{1}, e_{2}\right]=0, \quad\left[e_{2}, e_{3}\right]=-e_{2}, \quad\left[e_{1}, e_{3}\right]=e_{1} \tag{2.2}
\end{equation*}
$$

We shall adopt the following notation and sign convention. The Riemannian curvature operator is given by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.3}
\end{equation*}
$$

The Riemannian curvature tensor is given by

$$
\begin{equation*}
R(X, Y, Z, W)=g_{S o l_{3}}(R(Y, X) Z, W)=-g_{S o l_{3}}(R(X, Y) Z, W) \tag{2.4}
\end{equation*}
$$

where X, Y, Z, W are smooth vector fields on $S o l_{3}$.
Moreover we put

$$
\begin{equation*}
R_{i j k}=R\left(e_{i}, e_{j}\right) e_{k}, \quad R_{i j k l}=R\left(e_{i}, e_{j}, e_{k}, e_{l}\right) \tag{2.5}
\end{equation*}
$$

where $i, j, k, l \in\{1,2,3\}$.
The non vanishing components of the above tensor fields are

$$
\begin{equation*}
R_{121}=R_{233}=-e_{2}, R_{131}=R_{232}=e_{3}, \quad R_{122}=-R_{133}=e_{1} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{1212}=-R_{1313}=-R_{2323}=1 \tag{2.7}
\end{equation*}
$$

3 Polyharmonic curves in Sol_{3}

3.1 Biharmonic curves in Sol_{3}

Biharmonic curves in a three-dimensional Riemannian manifold with constant sectional curvature $K \leq 0$ are geodesics [4]. In [2] the authors considered the case of positive curvature showing that biharmonic curves have constant geodesic curvature and geodesic torsion (helices).

Let $\psi: I \rightarrow$ Sol $_{3}$ be a differentiable curve parametrized by arc length.
From (1.1) we have

$$
\begin{equation*}
\nabla_{T}^{3} T=\left(-3 k k^{\prime}\right) T+\left(k^{\prime \prime}-k^{3}-k \tau^{2}\right) N+\left(2 k^{\prime} \tau+k \tau^{\prime}\right) B \tag{3.1}
\end{equation*}
$$

where $k^{\prime}=\frac{d k}{d s}, k^{\prime \prime}=\frac{d^{2} k}{d s^{2}}, \tau^{\prime}=\frac{d \tau}{d s}$.
Using (2.7) one obtains [10]

$$
\begin{equation*}
R(T, N, T, N)=2 B_{3}^{2}-1, \quad R(T, N, T, B)=-2 N_{3} B_{3}, \tag{3.2}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
T=T_{1} e_{1}+T_{2} e_{2}+T_{3} e_{3} \tag{3.3}\\
N=N_{1} e_{1}+N_{2} e_{2}+N_{3} e_{3} \\
B=T \wedge N=B_{1} e_{1}+B_{2} e_{2}+B_{3} e_{3}
\end{array}\right.
$$

Theorem 3.1 ([10]). Let $\psi: I \rightarrow$ Sol $_{3}$ be a differentiable curve parametrized by arc length. Then ψ is a proper non-geodesic biharmonic curve if and only if

$$
\left\{\begin{array}{l}
k=\text { constant } \neq 0 \tag{3.4}\\
k^{2}+\tau^{2}=2 B_{3}^{2}-1 \\
\tau^{\prime}=2 N_{3} B_{3}
\end{array}\right.
$$

Corollary 3.2. If $\tau=0$ and $k=$ constant $\neq 0$ for a curve $\phi . \phi$ is a non-geodesic biharmonic curve then

$$
\left\{\begin{array}{l}
k^{2}=2 B_{3}^{2}-1 \\
N_{3}=0
\end{array}\right.
$$

3.2 Triharmonic curves in Sol_{3}

To study the triharmonic curves in Sol_{3}, we shall use their Frenet vector fields and equations.

Let us denote by $\psi: I \rightarrow \mathrm{Sol}_{3}$ an arclength parametrized curve in Sol_{3}. Assume that ψ is non-geodesic.

If $r=2 t, t \geq 1$, then (1.3) takes the form [7], [19]

$$
\begin{equation*}
E_{2 t}(\psi)=\frac{1}{2} \int_{M}<\underbrace{\left(\mathrm{d}^{*} \mathrm{~d}\right) \ldots\left(\mathrm{d}^{*} \mathrm{~d}\right)}_{\text {ttimes }} \psi, \underbrace{\left(\mathrm{d}^{*} \mathrm{~d}\right) \ldots\left(\mathrm{d}^{*} \mathrm{~d}\right)}_{\text {ttimes }} \psi>v_{g} \tag{3.5}
\end{equation*}
$$

If $r=2 t+1$, then (1.3) takes the form

$$
\begin{equation*}
E_{2 t+1}(\psi)=\frac{1}{2} \int_{M}<\mathrm{d} \underbrace{\left(\mathrm{~d}^{*} \mathrm{~d}\right) \ldots\left(\mathrm{d}^{*} \mathrm{~d}\right)}_{t \text { times }} \psi, \mathrm{d} \underbrace{\left(\mathrm{~d}^{*} \mathrm{~d}\right) \ldots\left(\mathrm{d}^{*} \mathrm{~d}\right)}_{\text {times }} \psi>v_{g} \tag{3.6}
\end{equation*}
$$

The Euler-Lagrange equations of (3.5) and (3.6), reduces to the equation

$$
\begin{equation*}
\tau_{r}(\psi)=\nabla_{T}^{2 r-1} T+\sum_{s=0}^{r-1}(-1)^{s} R\left(\nabla_{T}^{2 r-3-s} T, \nabla_{T}^{s} T\right) T, r \geq 1 \tag{3.7}
\end{equation*}
$$

Solutions of $\tau_{r}(\psi)=0$ are called r - harmonic curves.

Remark 3.3. We say that a r - harmonic curve is proper if it is not harmonic.
Any harmonic curve is a r - harmonic curve, for any $r \geq 1$.

An arc-length parametrized curve $\psi: I \rightarrow M^{n}$ from $I \subset \mathbb{R}$ to a Riemannian manifold M^{n} of dimension n is called triharmonic if [9]

$$
\begin{equation*}
\nabla_{T}^{5} T+R\left(\nabla_{T}^{3} T, T\right) T-R\left(\nabla_{T}^{2} T, \nabla_{T} T\right) T=0 \tag{3.8}
\end{equation*}
$$

Proposition 3.4. Let $\psi: I \subset \mathbb{R} \rightarrow M^{n}$ be a differentiable curve parametrized by arc length. Then ψ is triharmonic curve if and only if
$\left\{\begin{array}{l}\xi_{1}(s)=0 \\ \xi_{2}(s)-\xi_{4}(s) R(N, T, T, N)-\xi_{5}(s) R(B, T, T, N)+\xi_{6}(s) R(B, N, T, N)=0 \\ \xi_{3}(s)-\xi_{4}(s) R(N, T, T, B)-\xi_{5}(s) R(B, T, T, B)+\xi_{6}(s) R(B, N, T, B)=0,\end{array}\right.$
where

$$
\begin{aligned}
\xi_{1}(s)= & -10 k^{\prime} k^{\prime \prime}-5 k k^{(3)}+5 k k^{\prime}\left(2 k^{2}+\tau^{2}\right)+5 k^{2} \tau \tau^{\prime}, \\
\xi_{2}(s)= & k^{5}+k^{(4)}-15 k k^{\prime 2}-10 k^{2} k^{\prime \prime}+2 k^{3} \tau^{2}-6 \tau^{2} k^{\prime \prime} \\
& -12 k^{\prime} \tau \tau^{\prime}-3 k \tau^{\prime 2}+k \tau^{4}-4 k \tau \tau^{\prime \prime}, \\
\xi_{3}(s)= & 4 \tau k^{(3)}+k \tau^{(3)}-9 k^{2} k^{\prime} \tau-4 k^{\prime} \tau^{3}-6 k \tau^{2} \tau^{\prime}+6 k^{\prime \prime} \tau^{\prime} \\
& -\tau^{\prime} k^{3}+4 k^{\prime} \tau^{\prime \prime},
\end{aligned}
$$

$$
\xi_{4}(s)=k^{\prime \prime}-2 k^{3}-k \tau^{2}, \quad \xi_{5}(s)=2 k^{\prime} \tau+k \tau^{\prime}, \quad \xi_{6}(s)=k^{2} \tau
$$

Proof. From (1.1) we have

$$
\begin{gather*}
\nabla_{T}^{2} T=\left(-k^{2}\right) T+\left(k^{\prime}\right) N+(k \tau) B \tag{3.10}\\
\nabla_{T}^{3} T=\left(-3 k k^{\prime}\right) T+\left(k^{\prime \prime}-k\left(k^{2}+\tau^{2}\right)\right) N+\left(2 k^{\prime} \tau+k \tau^{\prime}\right) B \tag{3.11}\\
\nabla_{T}^{5} T=\xi_{1}(s) T+\xi_{2}(s) N+\xi_{3}(s) B \tag{3.12}
\end{gather*}
$$

By (3.8) we see that ψ is a triharmonic curve if and only if

$$
\begin{equation*}
\xi_{1}(s) T+\xi_{2}(s) N+\xi_{3}(s) B+\xi_{4}(s) R(N, T) T+\xi_{5}(s) R(B, T) T-\xi_{6}(s) R(B, N) T=0 . \tag{3.13}
\end{equation*}
$$

Using (2.4), we have (3.9). This completes the proof.

Theorem 3.5. Let $\psi: I \rightarrow$ Sol $_{3}$ be a differentiable curve parametrized by arc length. Then ψ is a proper non-geodesic triharmonic curve if and only if

$$
\left\{\begin{array}{c}
\xi_{1}(s)=0 \tag{3.14}\\
\xi_{2}(s)+\xi_{4}(s)\left(2 B_{3}^{2}-1\right)-2 \xi_{5}(s) N_{3} B_{3}-2 \xi_{6}(s) T_{3} B_{3}=0 \\
\xi_{3}(s)-2 \xi_{4}(s) N_{3} B_{3}-\xi_{5}(s)\left(1-2 N_{3}^{2}\right)+2 \xi_{6}(s) T_{3} N_{3}=0
\end{array}\right.
$$

Proof. Using (2.7) we get

$$
\left\{\begin{array}{l}
R(B, N, T, N)=-2 T_{3} B_{3}, \quad R(B, T, T, B)=1-2 N_{3}^{2} \tag{3.15}\\
R(B, N, T, B)=2 T_{3} N_{3}, \quad R(T, N, T, N)=2 B_{3}^{2}-1 \\
R(T, N, T, B)=-2 N_{3} B_{3} .
\end{array}\right.
$$

Combining (3.15) and (3.9), it is obtained (3.14). This completes the proof.

Corollary 3.6. If $\tau=0$ and $N_{3} B_{3} \neq 0$. Then, $k=0$.

4 Triharmonic helices in Sol_{3}

We shall call helix a curve in Sol_{3} with constant geodesic curvature and torsion. Now, for any helix in Sol_{3}, the system (3.14) becomes

$$
\left\{\begin{array}{l}
\left(k^{2}+\tau^{2}\right)^{2}-\left(2 B_{3}^{2}-1\right)\left(2 k^{2}+\tau^{2}\right)-2 k \tau T_{3} B_{3}=0 \tag{4.1}\\
N_{3}\left(B_{3}\left(2 k^{2}+\tau^{2}\right)+\tau k T_{3}\right)=0
\end{array}\right.
$$

Theorem 4.1. Let $\psi: I \rightarrow$ Sol $_{3}$ be a non-geodesic triharmonic helix parametrized by arc length. Then $N_{3}=0$.

Proof. If $N_{3} \neq 0$, then from (4.1), we obtain

$$
\left\{\begin{array}{l}
\left(k^{2}+\tau^{2}\right)^{2}-\left(2 B_{3}^{2}-1\right)\left(2 k^{2}+\tau^{2}\right)-2 k \tau T_{3} B_{3}=0 \tag{4.2}\\
B_{3}\left(2 k^{2}+\tau^{2}\right)+\tau k T_{3}=0
\end{array}\right.
$$

Using second equation of (4.2), we have

$$
\begin{equation*}
\left(k^{2}+\tau^{2}\right)^{2}+2 k^{2}+\tau^{2}=0 . \tag{4.3}
\end{equation*}
$$

From the definition of helix, the curvature and torsion of ψ satisfy the following $k=$ constant $\neq 0$ and $\tau=$ constant $\neq 0$.

From (4.4) we have $k=0=\tau$, a contradiction. Thus, we must have $N_{3}=0$.

Theorem 4.2. Let $\psi: I \rightarrow$ Sol $_{3}$ be a non-geodesic triharmonic helix parametrized by arc length. Then $B_{3} \neq 0$.

Proof. If $B_{3}=0$, from the first equation in (4.1), we obtain

$$
\begin{equation*}
\left(k^{2}+\tau^{2}\right)^{2}+\left(2 k^{2}+\tau^{2}\right)=0 \tag{4.4}
\end{equation*}
$$

Equation (4.4) implies that $k=0=\tau$, a contradiction. This completes the proof.

5 General helix in Sol_{3}

In 1845 , de Saint Venant first proved that a space curve is a general helix if and only if the ratio of curvature to torsion be constant (see [16] for details).
Definition 5.1. Let ψ be a curve in Sol_{3} and $\{T, N, B\}$ be the Frenet frame on Sol_{3} along ψ.

1) If both k and τ are constant along ψ, then is called circular helix with respect to Frenet frame. 2) A curve ψ such that

$$
\begin{equation*}
\frac{\tau}{k}=c, c \in \mathbb{R} \tag{5.1}
\end{equation*}
$$

is called a general helix with respect to Frenet frame.
If $k=$ constant $\neq 0$ and $\tau=0$, then the curve ϕ is a circle.
Theorem 5.2. Let $\psi: I \rightarrow \mathrm{Sol}_{3}$ be a non-geodesic triharmonic general helix parametrized by arc length. If $N_{3}=0$, then ψ is a circular helix.
Proof. From (5.1), we have

$$
\left\{\begin{array}{l}
\xi_{1}(s)=-10 k^{\prime} k^{\prime \prime}-5 k k^{(3)}+10 k^{3} k^{\prime}\left(c^{2}+1\right) \tag{5.2}\\
\xi_{2}(s)=k^{5}\left(c^{2}+1\right)^{2}+k^{(4)}-15 k k^{2}\left(c^{2}+1\right)-10 k^{2} k^{\prime \prime}\left(c^{2}+1\right) \\
\xi_{3}(s)=-c \xi_{1}(s) \\
\xi_{4}(s)=k^{\prime \prime}-k^{3}\left(c^{2}+1\right) \\
\xi_{5}(s)=3 c k^{\prime} k \\
\xi_{6}(s)=c k^{3}
\end{array}\right.
$$

By using equations (5.2) in (3.14), equation (3.14), we can obtain a system of three differential equations characterizing triharmonic general helix in Sol_{3}

$$
\left\{\begin{array}{l}
\xi_{1}(s)=-10 k^{\prime} k^{\prime \prime}-5 k k^{(3)}+10 k^{3} k^{\prime}\left(c^{2}+1\right)=0 \tag{5.3}\\
\xi_{2}(s)+\left(2 B_{3}^{2}-1\right)\left(k^{\prime \prime}-k^{3}\left(1+c^{2}\right)\right)-6 c k^{\prime} k N_{3} B_{3}-2 c k^{3} T_{3} B_{3}=0 \\
2 N_{3} B_{3}\left(k^{\prime \prime}-k^{3}\left(1+c^{2}\right)\right)+3 c k^{\prime} k\left(1-2 N_{3}^{2}\right)-2 c k^{3} T_{3} N_{3}=0
\end{array}\right.
$$

Substituting $N_{3}=0$ into the third equation in (5.3) we have $k^{\prime} k=0$, which implies $k=$ constant and hence $\tau=$ constant. Then ψ is a circular helix.

$6 \mathrm{Bi}-f$ - harmonic curves in Sol_{3}

In this section we derive the bi $-f$ - harmonic curves in Sol_{3}.
The authors of [11] gave the Euler-Lagrange equation of bi - f - harmonic maps.
Bi $-f$ - harmonic maps $\psi:(\mathcal{N}, g) \rightarrow(\tilde{\mathcal{N}}, \tilde{g})$ between two Riemannian manifolds are critical points of the bi $-f$-energy functional [11], [12]:

$$
\begin{equation*}
E_{f, 2}(\psi)=\frac{1}{2} \int_{\Omega}\left|\tau_{f}(\psi)\right|^{2} v_{g} \tag{6.1}
\end{equation*}
$$

where $\Omega \subset \mathcal{N}$ is a compact domain, $\tau_{f}(\psi)=f \tau(\psi)+\mathrm{d} \psi(\operatorname{grad} f)$ is the f - tension field of $\psi, \tau(\psi)=\operatorname{trace} \nabla \mathrm{d} \psi$ is the tension field of ψ.
In [11], the authors used the name f-biharmonic maps for the critical points of the functional (6.1).

Proposition 6.1 ([12]). Let $\alpha: I \rightarrow(\tilde{\mathcal{N}}, \tilde{g})$ be a curve in a Riemannian manifold $(\tilde{\mathcal{N}}, \tilde{g})$, parametrized by its arclength, and $\alpha^{\prime}=T$. Then α is a bi-f-harmonic curve if and only if

$$
\begin{align*}
0= & \left(f f^{\prime \prime \prime}+f^{\prime} f^{\prime \prime}\right) T+\left(3 f f^{\prime \prime}+2 f^{\prime 2}\right) \nabla_{T}^{\tilde{N}} T \\
& +4\left(f f^{\prime}\right) \nabla_{T}^{2} T+f^{2} \nabla_{T}^{3} T+f^{2} R^{\tilde{\mathcal{N}}}\left(\nabla_{T}^{\tilde{\mathcal{N}}} T, T\right) T \tag{6.2}
\end{align*}
$$

where $f: I \rightarrow(0, \infty)$ is a smooth map, $\nabla_{T}^{2} T=\nabla_{T}^{\tilde{\mathcal{N}}} \nabla_{T}^{\tilde{N}} T$ and $\nabla_{T}^{3} T=$ $\nabla_{T}^{\tilde{N}} \nabla_{T}^{\tilde{N}} \nabla_{T}^{\tilde{N}} T$.

Using (1.1), (3.10) and (3.11) in (6.2), we have
Theorem 6.2. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{S o l_{3}}\right)$ be a curve parametrized by arc length in Sol $_{3}$ space $\left(\mathbb{R}^{3}, g_{S o l_{3}}\right)$. Then α is a bi-f-harmonic curve if and only if

$$
\begin{align*}
0= & \left(f f^{\prime \prime \prime}+f^{\prime} f^{\prime \prime}-4 k^{2} f f^{\prime}-3 k k^{\prime} f^{2}\right) T \\
& +\left(3 k f f^{\prime \prime}+2 k f^{\prime 2}+4 k^{\prime} f f^{\prime}+\left(k^{\prime \prime}-k^{3}-k \tau^{2}\right) f^{2}\right) N \\
& +\left(4 k \tau f f^{\prime}+\left(2 k^{\prime} \tau+k \tau^{\prime}\right) f^{2}\right) B+k f^{2} R(N, T) T \tag{6.3}
\end{align*}
$$

From (3.15), we obtain
Theorem 6.3. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$ be a curve parametrized by arc length in $S_{\text {Sol }}^{3}$ space $\left(\mathbb{R}^{3}, g_{S o l_{3}}\right)$. Then α is a bi-f-harmonic curve if and only if the following equations hold:

$$
\left\{\begin{array}{l}
f f^{\prime \prime \prime}+f^{\prime} f^{\prime \prime}-4 k^{2} f f^{\prime}-3 k k^{\prime} f^{2}=0 \tag{6.4}\\
3 k f f^{\prime \prime}+2 k f^{\prime 2}+4 k^{\prime} f f^{\prime}+\left(k^{\prime \prime}-k^{3}-k \tau^{2}\right) f^{2}+k f^{2}\left(1-2 B_{3}^{2}\right)=0 \\
4 k \tau f f^{\prime}+\left(2 k^{\prime} \tau+k \tau^{\prime}\right) f^{2}+2 k f^{2}\left(N_{3} B_{3}\right)=0
\end{array}\right.
$$

In the following cases, we find necessary and sufficient conditions for curves of Sol_{3} space to be bi $-f$-harmonic:

Case 6.1. If $k=0$, namely α is a geodesic curve, then from (6.4) we obtain that it is bi $-f$ - harmonic if and only if $f f^{\prime \prime \prime}+f^{\prime} f^{\prime \prime}=\left(f f^{\prime \prime}\right)^{\prime}=0$. Then we have the following corollary:

Corollary 6.4. A geodesic curve is bi-f-harmonic if and only if $f f^{\prime \prime}=$ constant.

Case 6.2. If $k=$ constant $=c \neq 0$ and $\tau=0$, then (6.4) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}=4 c^{2} f f^{\prime} \tag{6.5}\\
3 f f^{\prime \prime}+2 f^{\prime 2}+\left(1-c^{2}-2 B_{3}^{2}\right) f^{2}=0 \\
N_{3} B_{3}=0
\end{array}\right.
$$

Case 6.2.1. If $B_{3}=0$, then (6.5) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}=4 c^{2} f f^{\prime} \tag{6.6}\\
3 f f^{\prime \prime}+2 f^{\prime 2}+\left(1-c^{2}\right) f^{2}=0
\end{array}\right.
$$

From the second equation above we obtain

$$
\left(f f^{\prime \prime}\right)^{\prime}=\frac{2\left(c^{2}-1\right)}{3} f f^{\prime}-\frac{4}{3} f^{\prime} f^{\prime \prime}
$$

which implies

$$
\left(\left(5 c^{2}+1\right) f+2 f^{\prime \prime}\right) f^{\prime}=0
$$

Then we have
Corollary 6.5. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{S o l_{3}}\right)$ be a curve parametrized by arc length in Sol ${ }_{3}$ space $\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$, with $k=$ constant $=c \neq 0, \tau=0$ and $B_{3}=0$. Then α is a bi-f-harmonic curve if and only if either f is a constant function or f is given by

$$
f(s)=c_{1} \cos (\xi s)+c_{2} \sin (\xi s), s \in I
$$

where $c_{1}, c_{2} \in \mathbb{R}$ and $\xi=\sqrt{\frac{5 c^{2}+1}{2}}$.
Case 6.2.2. If $N_{3}=0$, then we have
Corollary 6.6. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$ be a curve parametrized by arc length in $S_{o l} l_{3}$ space $\left(\mathbb{R}^{3}, g_{S o l_{3}}\right)$, with $k=$ constant $=c \neq 0, \tau=0$ and $N_{3}=0$ $\left(B_{3} \neq 0\right)$. Then α is a bi-f-harmonic curve if and only if the following equations are satisfied:

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}=4 c^{2} f f^{\prime} \\
3 f f^{\prime \prime}+2 f^{\prime 2}+\left(1-c^{2}-2 B_{3}^{2}\right) f^{2}=0
\end{array}\right.
$$

Case 6.3. If $k=$ constant $=c \neq 0$ and $\tau=$ constant $=b \neq 0$, then (6.4) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}=4 c^{2} f f^{\prime} \tag{6.7}\\
3 f f^{\prime \prime}+2 f^{\prime 2}+\left(1-c^{2}-b^{2}-2 B_{3}^{2}\right) f^{2}=0 \\
2 b f^{\prime}+\left(N_{3} B_{3}\right) f=0
\end{array}\right.
$$

Case 6.3.1. If $N_{3}=0$, then the third equation of (6.7) implies that f is constant and $B_{3}=$ constant .

Case 6.3.2. If $N_{3} \neq 0$, then the first and the second equations of (6.7) give

$$
\begin{equation*}
2 f^{\prime} f^{\prime \prime}-2 B_{3} B_{3}^{\prime} f^{2}+\left(5 c^{2}+1-b^{2}-2 B_{3}^{2}\right) f f^{\prime}=0 \tag{6.8}
\end{equation*}
$$

Substituting the third equation of (6.7) in (6.8), we obtain

$$
2 N_{3} f^{\prime \prime}+\left(\left(5 c^{2}+1-b^{2}-2 B_{3}^{2}\right) N_{3}+4 B_{3} B_{3}^{\prime}\right) f=0
$$

Hence, we give the following result:

Corollary 6.7. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$ be a curve parametrized by arc length in Sol $_{3}$ space $\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$, with $k=$ constant $=c \neq 0, \tau=$ constant $=b \neq 0$ and $N_{3} \neq 0$. Then α is a bi-f-harmonic curve if and only if

$$
2 N_{3} f^{\prime \prime}+\left(\left(5 c^{2}+1-b^{2}-2 B_{3}^{2}\right) N_{3}+4 B_{3} B_{3}^{\prime}\right) f=0
$$

Case 6.4. If $k=$ constant $=c \neq 0$ and $\tau \neq$ constant, then (6.4) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}=4 c^{2} f f^{\prime} \tag{6.9}\\
3 f f^{\prime \prime}+2 f^{\prime 2}+\left(1-c^{2}-\tau^{2}-2 B_{3}^{2}\right) f^{2}=0 \\
4 \tau f^{\prime}+\left(\tau^{\prime}+2 N_{3} B_{3}\right) f=0
\end{array}\right.
$$

If $N_{3}=0$, then the third equation of (6.9) implies that

$$
f(s)=a \tau^{-\frac{1}{4}}, a \in \mathbb{R}
$$

Substituting the third equation into the second one in (6.9) we have

$$
\begin{gathered}
\varrho^{\prime \prime}-\varrho^{\prime} \varrho+\frac{1}{8} \varrho^{3}-4 c^{2} \varrho=0 \\
-12 \varrho^{\prime}+5 \varrho^{2}+16 \delta=0
\end{gathered}
$$

where $\varrho=\frac{\tau^{\prime}}{\tau}$ and $\delta=1-c^{2}-\tau^{2}-2 B_{3}^{2}$.
Therefore, we conclude that
Corollary 6.8. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$ be a curve parametrized by arc length in Sol $_{3}$ space $\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$, with $k=$ constant $=c \neq 0, \tau \neq$ constant and $N_{3}=0$. Then α is a bi-f-harmonic curve if and only if $f(s)=a \tau^{-\frac{1}{4}}, a \in \mathbb{R}$ and the torsion τ solves the following

$$
\begin{gathered}
\varrho^{\prime \prime}-\varrho^{\prime} \varrho+\frac{1}{8} \varrho^{3}-4 c^{2} \varrho=0 \\
-12 \varrho^{\prime}+5 \varrho^{2}+16 \delta=0
\end{gathered}
$$

where $\varrho=\frac{\tau^{\prime}}{\tau}$ and $\delta=1-c^{2}-\tau^{2}-2 B_{3}^{2}$.

Case 6.5. If $k \neq$ constant $\neq 0$ and $\tau=0$, then (6.4) reduces to

$$
\left\{\begin{array}{l}
\left(f f^{\prime \prime}\right)^{\prime}-4 k^{2} f f^{\prime}-3 k k^{\prime} f^{2}=0 \tag{6.10}\\
3 k f f^{\prime \prime}+2 k f^{\prime 2}+4 k^{\prime} f f^{\prime}+\left(k^{\prime \prime}-k^{3}\right) f^{2}+k f^{2}\left(1-2 B_{3}^{2}\right)=0 \\
N_{3} B_{3}=0
\end{array}\right.
$$

Then we have the following corollary
Corollary 6.9. Let $\alpha: I \rightarrow\left(\mathbb{R}^{3}, g_{\text {Sol }_{3}}\right)$ be a differentiable bi-f-harmonic curve parametrized by arc length in Sol $_{3}$ space. If $k \neq$ constant $\neq 0$ and $\tau=0$, then $N_{3} B_{3}=0$.

References

[1] V. Branding, A structure theorem for polyharmonic maps between riemannian manifolds, arXiv preprint arXiv:1901.08445, (2019).
[2] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12, 867-876 (2001).
[3] R. Caddeo, C. Oniciuc and P. Piu, Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group, Rend. Sem. Mat. Univ. Pol. Torino. 62, 265-278 (2004).
[4] I. Dimitric, Submanifolds of Em with harmonic mean curvature vector, Bull. Inst. Math. Acad. Sinica. 20, 53-65 (1992).
[5] J. Eells and L. Lemaire, Selected topics in harmonic maps, CBMS. Am. Math. Soc. 50, (1983).
[6] R. López and M. I. Munteanu, Minimal translation surfaces in Sol 3 , J. Math. Soc. Japan. 64, 985-1003 (2012).
[7] S. Maeta. k-Harmonic maps into a Riemannian manifold with constant sectional curvature, Proc. Amer. Math. Soc. 140, 1835-1847 (2012).
[8] S. Maeta. The second variational formula of the k-Energy and k-Harmonic curves, Osaka J. Math. 49, 1035-1063 (2012).
[9] S. Montaldo and A. Pampano, Triharmonic curves in 3-dimensional homogeneous spaces, arXiv:2008.10571v1. (2020).
[10] Y. Ou and Z. Wang, Linear biharmonic maps into Sol, Nil and Heisenberg spaces, Mediterr. j. math. 5, 379-394 (2008).
[11] S. Ouakkas, R. Nasri and M. Djaa, On the f - harmonic and f - biharmonic maps, J. Geom. Topol. 10, 11-27 (2010).
[12] S. Y. Perktaş, A. M. Blaga, F. E. Erdoğan and B. E. Acet, Bi-f-harmonic curves and hypersurfaces, Filomat. 16, 5167-5180 (2019).
[13] A. A. Shaikh and P. R. Ghosh, Rectifying curves on a smooth surface immersed in the Euclidean space, Indian J. Pure Appl. Math. 4, 883-890 (2019).
[14] A. A. Shaikh and P. R. Ghosh, Rectifying and osculating curves on a smooth surface, Indian J. Pure Appl. Math. 51, 67-75 (2020).
[15] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Normal curves on a smooth immersed surface, Indian J. Pure Appl. Math. 51, 1343-1355 (2020).
[16] D. J. Struik, Lectures on classical differential geometry, New York: Dover Publications, Inc., Zbl 0697.53002, (1988).
[17] W. P. Thurston, Three-dimensional geometry and topology, Vol. 1, Princeton Math. Ser, 35, Princeton University Press, Princeton, NJ, (1997).
[18] M. Troyanov, L'horizon de SOL, Exposition. Math. 16, 441-479 (1998).
[19] S. B.Wang. The first variation formula for k-Harmonic mapping, Journal of Nanchang University 13, (1989).

Author information

Bendehiba Senoussi, Department of Mathematics, Ecole Normale Supérieure, Mostaganem, Algeria.
E-mail: snoussi.bendehiba19@gmail.com
Received: December 10, 2020.
Accepted: February 27, 2021.

