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Abstract In this paper, we study triharmonic curves and bi -f - harmonic curves
in the standard three-dimensional geometry Sol3 with the left-invariant metric
gSol3 = ds2 = (ezdx)2 + (e−zdy)2 + (dz)2. We characterize the triharmonic
curves in terms of their curvature and torsion.

1 Introduction

Let ψ : I → Sol3 be a differentiable curve parametrized by arc length and let
{T,N,B} be the orthonormal moving Frenet frame along the curve ψ in Sol3 such
that T = ψ

′
is the unit vector field tangent to ψ, N is the unit vector field in the

direction∇TT normal to ψ ( principal normal ) and B = T ∧N (binormal vector).
Then we have the following Frenet equations ∇TT

∇TN
∇TB

 =

 0 k 0
−k 0 τ

0 −τ 0


 T

N

B

 , (1.1)

where
k2 = gSol3(∇TT,∇TT ),

is the curvature of ψ and τ is its torsion.
The planes spanned by {T,N} , {T,B} and {N,B} are respectively known as

the osculating, the rectifying and the normal plane.
Now curves with position vectors lie in the above defined three planes are re-

spectively called osculating, rectifying and normal curves.
A. A. Shaikh, M. S. Lone and P. R. Ghosh in [13], [14], [15] studied rectifying, os-
culating and normal curves on a smooth immersed surface in the Euclidean space
R3 and obtained their characterizations under isometry of surfaces.
First we should recall some notions and results related to the harmonic and the
Polyharmonic (r− harmonic r ≥ 1) maps between Riemannian manifolds.

Harmonic maps ψ : (M, g) → (N, g̃) between Riemannian manifolds are the
critical points of the energy functional

E1 : C∞(M,N)→ R, E1(ψ) =
1
2

∫
M

|dψ|2 vg,

and is characterized by the vanishing of the first tension field

τ1(ψ) = −d∗dψ = trace∇dψ,

where d is the exterior differentiation and d∗ is the codifferentiation.
We remind that the bienergy of ψ is given by

E2 : C∞(M,N)→ R, E2(ψ) =
1
2

∫
M

|τ(ψ)|2 vg,
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and the bitension field τ2(ψ) has the expression

τ2(ψ) = −∆
ψτ(ψ)− tracegRN (dψ, τ(ψ))dψ,

where ∆ψ = −trace(∇ψ)2 = −trace(∇ψ∇ψ −∇ψ∇).
A smooth map ψ is biharmonic if it satisfies the following biharmonic equation

τ2(ψ) = 0.

Biharmonic maps are the critical points of the bienergy functional E2. We call
proper biharmonic the non-harmonic biharmonic maps. Biharmonic curves ψ of a
Riemannian manifold are the solutions of the fourth order differential equation

∇3
φ′φ′ −R(φ′,∇φ′φ′)φ′ = 0. (1.2)

Eells and Lemaire [5] proposed the problem to consider the polyharmonic (r−
harmonic r ≥ 1) maps of order r, these are critical points of the r− energy func-
tional defined by

Er(ψ) =

∫
M

er(ψ)vg, r ≥ 1, (1.3)

where er(ψ) = 1
2‖(d + d∗)rψ‖2 for smooth maps ψ.

A map ψ is r− harmonic if it is a critical point of the functional Er(ψ) defined in
(1.3).
Every harmonic map is a solution of the polyharmonic map, see [1] for a recent
classification result. In [19], S.B. Wang studied the first variation formula of the
k- energy Ek , whose critical maps are called k- harmonic maps. In [8], S. Maeta
showed the second variation formula of the k- energy. Triharmonic curves with
constant curvature in space forms were studied by Maeta in [8].

In this paper, we study triharmonic curves and bi -f - harmonic curves in the
standard three-dimensional geometry Sol3. We characterize the triharmonic curves
in terms of their curvature and torsion.

2 Preliminaries

The space Sol3 is one of the eight models of geometry of Thurston [17]. The space
Sol3 is the space R3 equipped with the metric

gSol3 = ds2 = (ezdx)2 + (e−zdy)2 + (dz)2,

where (x, y, z) are usual coordinates of R3 (see for instance [6], [18]).
The space Sol3 is a Lie group with the multiplication

(x, y, z) ∗ (x′, y′, z′) = (x+ e−zx′, y + ezy′, z + z′),

where ∗ denotes the group operation of Sol3.A left-invariant orthonormal frame
{e1, e2, e3} in Sol3 is given by

e1 = e−z
∂

∂x
, e2 = ez

∂

∂y
, e3 =

∂

∂z
.

Proposition 2.1 ([18]). The Levi Civita connection ∇ of Sol3 with respect to this
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frame is  ∇e1e1

∇e1e2

∇e1e3

 =

 0 0 −1
0 0 0
1 0 0


 e1

e2

e3


 ∇e2e1

∇e2e2

∇e2e3

 =

 0 0 0
0 0 1
0 −1 0


 e1

e2

e3

 (2.1)

 ∇e3e1

∇e3e2

∇e3e3

 =

 0 0 0
0 0 0
0 0 0


 e1

e2

e3

 .

Also, we obtain the bracket relations

[e1, e2] = 0, [e2, e3] = −e2, [e1, e3] = e1. (2.2)

We shall adopt the following notation and sign convention. The Riemannian cur-
vature operator is given by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X, Y ]Z. (2.3)

The Riemannian curvature tensor is given by

R(X, Y, Z, W ) = gSol3(R(Y, X)Z, W ) = −gSol3(R(X, Y )Z, W ), (2.4)

where X,Y, Z,W are smooth vector fields on Sol3.
Moreover we put

Rijk = R(ei, ej)ek, Rijkl = R(ei, ej , ek, el), (2.5)

where i, j, k, l ∈ {1, 2, 3}.
The non vanishing components of the above tensor fields are

R121 = R233 = −e2, R131 = R232 = e3, R122 = −R133 = e1, (2.6)

and
R1212 = −R1313 = −R2323 = 1. (2.7)

3 Polyharmonic curves in Sol3

3.1 Biharmonic curves in Sol3

Biharmonic curves in a three-dimensional Riemannian manifold with constant sec-
tional curvature K ≤ 0 are geodesics [4]. In [2] the authors considered the case of
positive curvature showing that biharmonic curves have constant geodesic curva-
ture and geodesic torsion (helices).

Let ψ : I → Sol3 be a differentiable curve parametrized by arc length.
From (1.1) we have

∇3
TT = (−3kk′)T + (k′′ − k3 − kτ 2)N + (2k′τ + kτ ′)B, (3.1)

where k′ = dk
ds , k

′′ = d2k
ds2 , τ

′ = dτ
ds .

Using (2.7) one obtains [10]

R(T,N, T,N) = 2B2
3 − 1, R(T,N, T,B) = −2N3B3, (3.2)

where 
T = T1e1 + T2e2 + T3e3

N = N1e1 +N2e2 +N3e3

B = T ∧N = B1e1 +B2e2 +B3e3.

(3.3)
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Theorem 3.1 ([10]). Let ψ : I → Sol3 be a differentiable curve parametrized by
arc length. Then ψ is a proper non-geodesic biharmonic curve if and only if

k = constant 6= 0
k2 + τ 2 = 2B2

3 − 1
τ ′ = 2N3B3.

(3.4)

Corollary 3.2. If τ = 0 and k = constant 6= 0 for a curve φ. φ is a non-geodesic
biharmonic curve then {

k2 = 2B2
3 − 1

N3 = 0.

3.2 Triharmonic curves in Sol3

To study the triharmonic curves in Sol3, we shall use their Frenet vector fields and
equations.

Let us denote by ψ : I → Sol3 an arclength parametrized curve in Sol3. Assume
that ψ is non-geodesic.

If r = 2t, t ≥ 1, then (1.3) takes the form [7], [19]

E2t(ψ) =
1
2

∫
M

< (d∗d)...(d∗d)︸ ︷︷ ︸
t times

ψ, (d∗d)...(d∗d)︸ ︷︷ ︸
t times

ψ > vg. (3.5)

If r = 2t+ 1, then (1.3) takes the form

E2t+1(ψ) =
1
2

∫
M

< d (d∗d)...(d∗d)︸ ︷︷ ︸
t times

ψ, d (d∗d)...(d∗d)︸ ︷︷ ︸
t times

ψ > vg. (3.6)

The Euler-Lagrange equations of (3.5) and (3.6), reduces to the equation

τr(ψ) = ∇2r−1
T T +

r−1∑
s=0

(−1)sR(∇2r−3−s
T T, ∇sTT )T, r ≥ 1. (3.7)

Solutions of τr(ψ) = 0 are called r- harmonic curves.

Remark 3.3. We say that a r− harmonic curve is proper if it is not harmonic.
Any harmonic curve is a r− harmonic curve, for any r ≥ 1.

An arc-length parametrized curve ψ : I → Mn from I ⊂ R to a Riemannian
manifold Mn of dimension n is called triharmonic if [9]

∇5
TT +R(∇3

TT, T )T −R(∇2
TT, ∇TT )T = 0. (3.8)

Proposition 3.4. Let ψ : I ⊂ R → Mn be a differentiable curve parametrized by
arc length. Then ψ is triharmonic curve if and only if


ξ1(s) = 0
ξ2(s)− ξ4(s)R(N,T, T,N)− ξ5(s)R(B, T, T,N) + ξ6(s)R(B,N, T,N) = 0
ξ3(s)− ξ4(s)R(N,T, T,B)− ξ5(s)R(B, T, T,B) + ξ6(s)R(B,N, T,B) = 0,

(3.9)
where
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ξ1(s) = −10k′k′′ − 5kk(3) + 5kk′(2k2 + τ 2) + 5k2ττ ′,

ξ2(s) = k5 + k(4) − 15kk′2 − 10k2k′′ + 2k3τ 2 − 6τ 2k′′

−12k′ττ ′ − 3kτ ′2 + kτ 4 − 4kττ ′′,

ξ3(s) = 4τk(3) + kτ (3) − 9k2k′τ − 4k′τ 3 − 6kτ 2τ ′ + 6k′′τ ′

−τ ′k3 + 4k′τ ′′,

ξ4(s) = k′′ − 2k3 − kτ 2, ξ5(s) = 2k′τ + kτ ′, ξ6(s) = k2τ.

Proof. From (1.1) we have

∇2
TT = (−k2)T + (k′)N + (kτ)B, (3.10)

∇3
TT = (−3kk′)T + (k′′ − k(k2 + τ 2))N + (2k′τ + kτ ′)B, (3.11)

∇5
TT = ξ1(s)T + ξ2(s)N + ξ3(s)B, (3.12)

By (3.8) we see that ψ is a triharmonic curve if and only if

ξ1(s)T+ξ2(s)N+ξ3(s)B+ξ4(s)R(N,T )T+ξ5(s)R(B, T )T−ξ6(s)R(B,N)T = 0.
(3.13)

Using (2.4), we have (3.9). This completes the proof. 2

Theorem 3.5. Let ψ : I → Sol3 be a differentiable curve parametrized by arc
length. Then ψ is a proper non-geodesic triharmonic curve if and only if

ξ1(s) = 0
ξ2(s) + ξ4(s)(2B2

3 − 1)− 2ξ5(s)N3B3 − 2ξ6(s)T3B3 = 0
ξ3(s)− 2ξ4(s)N3B3 − ξ5(s)(1− 2N2

3 ) + 2ξ6(s)T3N3 = 0.
(3.14)

Proof. Using (2.7) we get


R(B,N, T,N) = −2T3B3, R(B, T, T,B) = 1− 2N2

3

R(B,N, T,B) = 2T3N3, R(T,N, T,N) = 2B2
3 − 1

R(T,N, T,B) = −2N3B3.

(3.15)

Combining (3.15) and (3.9), it is obtained (3.14). This completes the proof. 2

Corollary 3.6. If τ = 0 and N3B3 6= 0. Then, k = 0.

4 Triharmonic helices in Sol3

We shall call helix a curve in Sol3 with constant geodesic curvature and torsion.
Now, for any helix in Sol3, the system (3.14) becomes{

(k2 + τ 2)2 − (2B2
3 − 1)(2k2 + τ 2)− 2kτT3B3 = 0

N3(B3(2k2 + τ 2) + τkT3) = 0.
(4.1)

Theorem 4.1. Let ψ : I → Sol3 be a non-geodesic triharmonic helix parametrized
by arc length. Then N3 = 0.
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Proof. If N3 6= 0, then from (4.1), we obtain{
(k2 + τ 2)2 − (2B2

3 − 1)(2k2 + τ 2)− 2kτT3B3 = 0
B3(2k2 + τ 2) + τkT3 = 0.

(4.2)

Using second equation of (4.2), we have

(k2 + τ 2)2 + 2k2 + τ 2 = 0. (4.3)
From the definition of helix, the curvature and torsion of ψ satisfy the following

k = constant 6= 0 and τ = constant 6= 0.
From (4.4) we have k = 0 = τ , a contradiction. Thus, we must haveN3 = 0. 2

Theorem 4.2. Let ψ : I → Sol3 be a non-geodesic triharmonic helix parametrized
by arc length. Then B3 6= 0.

Proof. If B3 = 0, from the first equation in (4.1), we obtain

(k2 + τ 2)2 + (2k2 + τ 2) = 0. (4.4)
Equation (4.4) implies that k = 0 = τ , a contradiction. This completes the

proof. 2

5 General helix in Sol3

In 1845, de Saint Venant first proved that a space curve is a general helix if and
only if the ratio of curvature to torsion be constant (see [16] for details).

Definition 5.1. Let ψ be a curve in Sol3 and {T,N,B} be the Frenet frame on Sol3
along ψ.
1) If both k and τ are constant along ψ, then is called circular helix with respect to
Frenet frame. 2) A curve ψ such that

τ

k
= c, c ∈ R, (5.1)

is called a general helix with respect to Frenet frame.

If k =constant 6= 0 and τ = 0, then the curve φ is a circle.

Theorem 5.2. Let ψ : I → Sol3 be a non-geodesic triharmonic general helix
parametrized by arc length. If N3 = 0, then ψ is a circular helix.

Proof. From (5.1), we have



ξ1(s) = −10k′k′′ − 5kk(3) + 10k3k′(c2 + 1)
ξ2(s) = k5(c2 + 1)2 + k(4) − 15kk′2(c2 + 1)− 10k2k′′(c2 + 1)
ξ3(s) = −cξ1(s)

ξ4(s) = k′′ − k3(c2 + 1)
ξ5(s) = 3ck′k
ξ6(s) = ck3.

(5.2)

By using equations (5.2) in (3.14), equation (3.14), we can obtain a system of
three differential equations characterizing triharmonic general helix in Sol3

ξ1(s) = −10k′k′′ − 5kk(3) + 10k3k′(c2 + 1) = 0
ξ2(s) + (2B2

3 − 1)(k′′ − k3(1 + c2))− 6ck′kN3B3 − 2ck3T3B3 = 0
2N3B3(k′′ − k3(1 + c2)) + 3ck′k(1− 2N2

3 )− 2ck3T3N3 = 0.
(5.3)

Substituting N3 = 0 into the third equation in (5.3) we have k′k = 0, which
implies k =constant and hence τ =constant. Then ψ is a circular helix.
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6 Bi -f - harmonic curves in Sol3

In this section we derive the bi -f - harmonic curves in Sol3.
The authors of [11] gave the Euler-Lagrange equation of bi -f - harmonic maps.

Bi -f - harmonic maps ψ : (N , g) → (Ñ , g̃) between two Riemannian mani-
folds are critical points of the bi -f - energy functional [11], [12]:

Ef,2(ψ) =
1
2

∫
Ω

|τf (ψ)|2 vg, (6.1)

where Ω ⊂ N is a compact domain, τf (ψ) = fτ(ψ)+ dψ(gradf) is the f - tension
field of ψ, τ(ψ) = trace∇dψ is the tension field of ψ.
In [11], the authors used the name f - biharmonic maps for the critical points of the
functional (6.1).

Proposition 6.1 ([12]). Let α : I → (Ñ , g̃) be a curve in a Riemannian manifold
(Ñ , g̃), parametrized by its arclength, and α′ = T . Then α is a bi -f - harmonic
curve if and only if

0 = (ff ′′′ + f ′f ′′)T + (3ff ′′ + 2f ′2)∇ÑT T

+4(ff ′)∇2
TT + f2∇3

TT + f2RÑ (∇ÑT T, T )T, (6.2)

where f : I → (0, ∞) is a smooth map, ∇2
TT = ∇ÑT ∇ÑT T and ∇3

TT =

∇ÑT ∇ÑT ∇ÑT T .

Using (1.1), (3.10) and (3.11) in (6.2), we have

Theorem 6.2. Let α : I → (R3, gSol3) be a curve parametrized by arc length in
Sol3 space (R3, gSol3). Then α is a bi -f - harmonic curve if and only if

0 = (ff ′′′ + f ′f ′′ − 4k2ff ′ − 3kk′f2)T

+(3kff ′′ + 2kf ′2 + 4k′ff ′ + (k′′ − k3 − kτ 2)f2)N

+(4kτff ′ + (2k′τ + kτ ′)f2)B + kf2R(N, T )T. (6.3)

From (3.15), we obtain

Theorem 6.3. Let α : I → (R3, gSol3) be a curve parametrized by arc length in
Sol3 space (R3, gSol3). Then α is a bi -f - harmonic curve if and only if the follow-
ing equations hold:


ff ′′′ + f ′f ′′ − 4k2ff ′ − 3kk′f2 = 0
3kff ′′ + 2kf ′2 + 4k′ff ′ + (k′′ − k3 − kτ 2)f2 + kf2(1− 2B2

3) = 0
4kτff ′ + (2k′τ + kτ ′)f2 + 2kf2(N3B3) = 0.

(6.4)

In the following cases, we find necessary and sufficient conditions for curves
of Sol3 space to be bi -f - harmonic:

Case 6.1. If k = 0, namely α is a geodesic curve, then from (6.4) we obtain that
it is bi -f - harmonic if and only if ff ′′′ + f ′f ′′ = (ff ′′)′ = 0. Then we have the
following corollary:

Corollary 6.4. A geodesic curve is bi -f - harmonic if and only if ff ′′ = constant.
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Case 6.2. If k = constant = c 6= 0 and τ = 0, then (6.4) reduces to
(ff ′′)′ = 4c2ff ′

3ff ′′ + 2f ′2 + (1− c2 − 2B2
3)f

2 = 0
N3B3 = 0.

(6.5)

Case 6.2.1. If B3 = 0, then (6.5) reduces to{
(ff ′′)′ = 4c2ff ′

3ff ′′ + 2f ′2 + (1− c2)f2 = 0.
(6.6)

From the second equation above we obtain

(ff ′′)′ =
2(c2 − 1)

3
ff ′ − 4

3
f ′f ′′,

which implies

((5c2 + 1)f + 2f ′′)f ′ = 0.

Then we have

Corollary 6.5. Let α : I → (R3, gSol3) be a curve parametrized by arc length in
Sol3 space (R3, gSol3), with k = constant = c 6= 0, τ = 0 and B3 = 0. Then α is
a bi -f - harmonic curve if and only if either f is a constant function or f is given
by

f(s) = c1 cos(ξs) + c2 sin(ξs), s ∈ I,

where c1, c2 ∈ R and ξ =
√

5c2+1
2 .

Case 6.2.2. If N3 = 0, then we have

Corollary 6.6. Let α : I → (R3, gSol3) be a curve parametrized by arc length
in Sol3 space (R3, gSol3), with k = constant = c 6= 0, τ = 0 and N3 = 0
(B3 6= 0). Then α is a bi -f - harmonic curve if and only if the following equations
are satisfied: {

(ff ′′)′ = 4c2ff ′

3ff ′′ + 2f ′2 + (1− c2 − 2B2
3)f

2 = 0.

Case 6.3. If k = constant = c 6= 0 and τ = constant = b 6= 0, then (6.4)
reduces to 

(ff ′′)′ = 4c2ff ′

3ff ′′ + 2f ′2 + (1− c2 − b2 − 2B2
3)f

2 = 0
2bf ′ + (N3B3)f = 0.

(6.7)

Case 6.3.1. If N3 = 0, then the third equation of (6.7) implies that f is constant
and B3 = constant.

Case 6.3.2. If N3 6= 0, then the first and the second equations of (6.7) give

2f ′f ′′ − 2B3B
′
3f

2 + (5c2 + 1− b2 − 2B2
3)ff

′ = 0. (6.8)

Substituting the third equation of (6.7) in (6.8), we obtain

2N3f
′′ + ((5c2 + 1− b2 − 2B2

3)N3 + 4B3B
′
3)f = 0.

Hence, we give the following result:
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Corollary 6.7. Let α : I → (R3, gSol3) be a curve parametrized by arc length in
Sol3 space (R3, gSol3), with k = constant = c 6= 0, τ = constant = b 6= 0 and
N3 6= 0. Then α is a bi -f - harmonic curve if and only if

2N3f
′′ + ((5c2 + 1− b2 − 2B2

3)N3 + 4B3B
′
3)f = 0.

Case 6.4. If k = constant = c 6= 0 and τ 6= constant, then (6.4) reduces to
(ff ′′)′ = 4c2ff ′

3ff ′′ + 2f ′2 + (1− c2 − τ 2 − 2B2
3)f

2 = 0
4τf ′ + (τ ′ + 2N3B3)f = 0.

(6.9)

If N3 = 0, then the third equation of (6.9) implies that

f(s) = aτ−
1
4 , a ∈ R.

Substituting the third equation into the second one in (6.9) we have

%′′ − %′%+ 1
8
%3 − 4c2% = 0

−12%′ + 5%2 + 16δ = 0,

where % = τ ′

τ and δ = 1− c2 − τ 2 − 2B2
3 .

Therefore, we conclude that

Corollary 6.8. Let α : I → (R3, gSol3) be a curve parametrized by arc length in
Sol3 space (R3, gSol3), with k = constant = c 6= 0, τ 6= constant and N3 = 0.
Then α is a bi -f - harmonic curve if and only if f(s) = aτ−

1
4 , a ∈ R and the

torsion τ solves the following

%′′ − %′%+ 1
8
%3 − 4c2% = 0,

−12%′ + 5%2 + 16δ = 0,

where % = τ ′

τ and δ = 1− c2 − τ 2 − 2B2
3 .

Case 6.5. If k 6= constant 6= 0 and τ = 0, then (6.4) reduces to


(ff ′′)′ − 4k2ff ′ − 3kk′f2 = 0
3kff ′′ + 2kf ′2 + 4k′ff ′ + (k′′ − k3)f2 + kf2(1− 2B2

3) = 0
N3B3 = 0.

(6.10)

Then we have the following corollary

Corollary 6.9. Let α : I → (R3, gSol3) be a differentiable bi -f - harmonic curve
parametrized by arc length in Sol3 space. If k 6= constant 6= 0 and τ = 0, then
N3B3 = 0.
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[12] S. Y. Perktaş, A. M. Blaga, F. E. Erdoğan and B. E. Acet, Bi-f-harmonic curves and
hypersurfaces, Filomat. 16, 5167–5180 (2019).

[13] A. A. Shaikh and P. R. Ghosh, Rectifying curves on a smooth surface immersed in the
Euclidean space, Indian J. Pure Appl. Math. 4, 883–890 (2019).

[14] A. A. Shaikh and P. R. Ghosh, Rectifying and osculating curves on a smooth surface,
Indian J. Pure Appl. Math. 51, 67–75 (2020).

[15] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Normal curves on a smooth immersed surface,
Indian J. Pure Appl. Math. 51, 1343–1355 (2020).

[16] D. J. Struik, Lectures on classical differential geometry, New York: Dover Publications,
Inc., Zbl 0697.53002, (1988).

[17] W. P. Thurston, Three-dimensional geometry and topology, Vol. 1, Princeton Math. Ser,
35, Princeton University Press, Princeton, NJ, (1997).

[18] M. Troyanov, L’horizon de SOL, Exposition. Math. 16, 441–479 (1998).

[19] S. B.Wang. The first variation formula for k-Harmonic mapping, Journal of Nanchang
University 13, (1989).

Author information
Bendehiba Senoussi, Department of Mathematics, Ecole Normale Supérieure, Mostaganem,
Algeria.
E-mail: snoussi.bendehiba19@gmail.com

Received: December 10, 2020.

Accepted: February 27, 2021.


	1 Introduction
	2 Preliminaries
	3 Polyharmonic curves in Sol3
	3.1 Biharmonic curves in Sol3
	3.2 Triharmonic curves in Sol3

	4 Triharmonic helices in Sol3
	5 General helix in Sol3
	6 Bi -f- harmonic curves in Sol3

