4-REMAINDER CORDIAL LABELING OF PARACHUTE, TWIG, KAYAK PADDALE GRAPH

R. Ponraj, A. Gayathri and S.Somasundaram

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Abstract. Let G be a (p,q) graph. Let f be a map from V(G) to the set $\{1,2,\ldots,k\}$ where k is an integer $2 < k \leq |V(G)|$. For each edge uv assign the label r where r is the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as $f(u) \geq f(v)$ or $f(v) \geq f(u)$. The function f is called a k-remainder cordial labeling of G if $|v_f(i) - v_f(j)| \leq 1$, $i, j \in \{1, \ldots, k\}$ where $v_f(x)$ denote the number of vertices labelled with x and $|\eta_o - \eta_e| \leq 1$ where η_e and η_o respectively denote the number of edges labeled with even integers and number of edges labeled with odd integers. A graph with a k-remainder cordial labeling is called a k-remainder cordial graph. In this paper we investigate the 4-remainder cordial labeling behavior of parachute, twig and kayak paddale graph.

1 Introduction

In this paper we consider only finite, undirected and simple graphs. The notion of k-Remainder cordial labeling of a graph was introduced and studied some properties of k-Remainder cordial labeling in [3]. The 4-Remainder cordial labeling behavior of several graphs like path, cycle, star, complete graph, wheel etc have been investigated in [3]. In this paper we investigate the 4- Remainder cordial labeling behavior of parachute, twig and kayak paddale graph. Terms not in here followed from [1,2]

2 4- Remainder cordial labeling

Definition 2.1. Let G be a (p,q) graph. Let f be a map from V(G) to the set $\{1,2,\ldots,k\}$ where k is an integer $2 < k \leq |V(G)|$. For each edge uv assign the label r where r is the remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as $f(u) \geq f(v)$ or $f(v) \geq f(u)$. The function f is called a k-remainder cordial labeling of G if $|v_f(i) - v_f(j)| \leq 1$, $i, j \in \{1, \ldots, k\}$ where $v_f(x)$ denote the number of vertices labelled with x and $|\eta_e - \eta_o| \leq 1$ where η_e and η_o respectively denote the number of edges labeled with even integers and number of edges labelled with odd integers. A graph with a k-remainder cordial labeling is called a k-remainder cordial graph.

3 Preliminaries

Definition 3.1. [1] A graph obtained from the wheel W_{m+n} , $m \ge 3$ by deleting *n* consecutive spokes is said to be parachute and it is denoted by $P_{m,n}$.

Definition 3.2. [1] A twig $TW(P_n)$, $n \ge 3$ is a graph obtained from a path by attaching exactly two pendant edges to each internal vertex of the path.

Definition 3.3. [1] A Kayak Paddale KP(m, n, l) is the graph obtained by joining C_m and C_n by a path of length l. Let C_m be the cycle $x_1x_2 \cdots x_mx_1$ and C_n be the cycle $z_1z_2 \cdots z_nz_1$ and let P_l be the path $y_1y_2 \cdots y_l$. $E(KP(m, n, l)) = E(P_l) \cup E(C_m) \cup E(C_n)$, identifying x_1 with y_1 and y_n with z_1 .

4 Main results

Theorem 4.1. The Parachute $P_{m,n}$ is 4-remainder cordial for all $m \ge 3, n \ge 1$.

Proof. Let $V(P_{m,n}) = \{x, x_i, y_j : 1 \le i \le m, 1 \le j \le n\}$ and $E(P_{m,n}) = \{xx_i : 1 \le i \le m\} \cup \{x_ix_{i+1} : 1 \le i \le m-1\} \cup \{y_jy_{j+1} : 1 \le j \le n-1\} \cup \{x_1y_1, x_my_n\}.$

First assign the label the label 3 to the vertex x.Next assign the labels to the remaining vertices.There are 4 cases arises.

Case(i). $m \equiv 0 \pmod{4}$ There are four cases arises.

Subcase(i). $n \equiv 0 \pmod{4}$

First assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceed this process until we reach x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceed this process until we reach y_n .

Subcase(ii). $n \equiv 1 \pmod{4}$

Now we assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceeding like this until we reach x_m . Also assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding like this until we reach y_{n-1} . Lastly assign the label 1 to the vertex y_n .

Subcase(iii). $n \equiv 2 \pmod{4}$

Assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 .continuing like this until we reach x_{m-4} .Next assign the labels 1, 2, 4, 2 to the vertices $x_{m-3}, x_{m-2}, x_{m-1}, x_m$.Also assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 .continuing like this until we reach y_{n-2} .Lastly assign the label 4, 3 to the vertices y_{n-1}, y_n .

Subcase(iv). $n \equiv 3 \pmod{4}$

First assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 .countinuing this process until we reach x_{m-4} .Next assign the labels 1, 2, 4, 2 to the vertices $x_{m-3}, x_{m-2}, x_{m-1}, x_m$. Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding like this until we reach y_{n-3} .Lastly assign the label 1, 4, 3 to the vertices y_{n-2}, y_{n-1}, y_n .

Thus the table 1 given below shows that $P_{m,n}$ is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 1 \pmod{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n-2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$

Table 1.

Case(ii). $m \equiv 1 \pmod{4}$ There are four cases arises.

Subcase(i). $n \equiv 0 \pmod{4}$

First assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceed this process until we reach x_{m-1} . Next assign the label 2 to the vertex x_m . Also assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels

1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceed this process until we reach y_n .

Subcase(ii). $n \equiv 1 \pmod{4}$.

Assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceeding like this until we reach x_m . Next assign the label 2 to the vertex x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertex y_n .

Subcase(iii). $n \equiv 2 \pmod{4}$.

We assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . In similar manner assign the labels until we reach x_{m-5} . Next assign the label 2 to the vertices $x_{m-4}, x_{m-3}, x_{m-2}$ then assign the label 4 to the vertices x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . In similar way proceed this until we reach y_{n-6} . Lastly Next assign the label 1 to the vertices $y_{n-5}, y_{n-4}, y_{n-3}$, and assign the label 4 to the vertex y_{n-1} then assign the label 3 to the vertices y_{n-2}, y_n .

Subcase(iv). $n \equiv 3 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceed this process until we reach x_{m-5} . Next assign the labels 1, 2, 2, 4, 4 to the vertices $x_{m-4}, x_{m-3}, x_{m-2}, x_{m-1}, x_m$. Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding this process until we reach y_{n-3} . Lastly assign the label 1, 2, 3 to the vertices y_{n-2}, y_{n-1}, y_n .

Thus the table 2 given below shows that $P_{m,n}$ is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 1 \pmod{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n-2}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$

Case(iii). $m \equiv 2 \pmod{4}$. There are four cases arises.

Subcase(i). $n \equiv 0 \pmod{4}$.

First assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . In similar manner assign the labels to the vertices upto x_{m-2} . Next assign the label 4, 2 to the vertex x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 .continue like this until we reach y_n .

Subcase(ii). $n \equiv 1 \pmod{4}$

Now assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceeding like this until we reach x_m . Next assign the label 4, 2 to the vertex x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding like this until we reach y_{n-1} . Lastly assign the label 1 to the vertex y_n .

Subcase(iii). $n \equiv 2 \pmod{4}$.

Assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceed this process until we reach x_{m-2} . Next assign the labels 1, 4 to

the vertices x_{m-2}, x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . continuing this process until we reach y_{n-2} . Lastly assign the label 2, 3 to the vertices y_{n-1}, y_n .

Subcase(iv). $n \equiv 3 \pmod{4}$

We assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceed like this until we reach x_{m-2} . Next assign the labels 4, 2 to the vertices x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding this process until we reach y_{n-3} . Lastly assign the label 3, 2, 1 to the vertices y_{n-2}, y_{n-1}, y_n .

Thus the table 3 given below shows that $P_{m,n}$ is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n-2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 1 \pmod{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2m+n-11}{2}$	$\frac{2m+n+1}{2}$

Table 3.

Case(iv). $m \equiv 3 \pmod{4}$. There are four cases arises.

Subcase(i). $n \equiv 0 \pmod{4}$.

First assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceeding like this until we reach x_{m-3} . Next assign the labels 2, 2, 4 to the vertices x_{m-2}, x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding like this until we reach y_{n-4} . Finally assign the labels to 3, 4, 1, 1 to the vertices $y_{n-3}, y_{n-2}, y_{n-1}, y_n$.

Subcase(ii). $n \equiv 1 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Proceed this pattern until we reach x_{m-3} . Next assign the labels 2, 2, 4 to the vertices x_{m-2}, x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Proceeding this until we reach y_{n-1} . Lastly assign the label 1 to the vertex y_n .

Subcase(iii). $n \equiv 2 \pmod{4}$.

Assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . In similar pattern assign the labels until we reach x_{m-3} . Next assign the labels 2, 2, 4 to the vertices x_{m-2}, x_{m-1}, x_m . Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . This similar pattern is repeated until we reach y_{n-2} . Lastly assign the label 3, 1 to the vertices y_{n-1}, y_n .

Subcase(iv). $n \equiv 3 \pmod{4}$.

We assign the labels 1, 2, 3, 4 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 1, 2, 3, 4 to the vertices x_4, x_6, x_7, x_8 . Continuing like this until we reach x_{m-3} . Next assign the labels 1, 2, 4, to the vertices x_{m-2}, x_{m-1}, x_m Secondly assign the labels 1, 2, 3, 4 to the vertices y_1, y_2, y_3, y_4 and then assign the labels 1, 2, 3, 4 to the vertices y_4, y_6, y_7, y_8 . Continue this process until we reach y_{n-3} . Lastly assign the label 1, 2, 3 to the vertices y_{n-2}, y_{n-1}, y_n .

Thus the table 4 given below shows that $P_{m,n}$ is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 1 \pmod{4}$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2m+n}{2}$	$\frac{2m+n}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n-2}{4}$	$\frac{2m+n+1}{2}$	$\frac{2m+n-1}{2}$

Table 4.

Theorem 4.2. The Twig $TW(P_n)$ is 4-remainder cordial for all $n \ge 3$.

Proof. Let $V(TW(P_n)) = \{u_i, v_j, w_j : 1 \le i \le n, 1 \le j \le n-2\}$ and $E(TW(P_n)) = \{u_i u_i + 1, v_i u_{i+1}, w_i, There are four cases arises.$

Case(i). $n \equiv 0 \pmod{4}$

First assign the labels 1, 2, 3, 4 to the vertices u_1, u_2, u_3, u_4 and assign the labels 1, 2, 3, 4 to the vertices u_5, u_6, u_7, u_8 . Proceeding this manner until we reach u_n . Secondly assign the labels 1, 2, 3, 4 to the vertices v_1, v_2, v_3, v_4 and assign the labels 1, 2, 3, 4 to the vertices v_5, v_6, v_7, v_8 . Proceed this pattern until we reach v_{n-4} then assign the labels 1, 2 to the vertices v_{n-3}, v_{n-2} . Lastly assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices w_5, w_6, w_7, w_8 . Proceeding like this until we reach w_{n-4} then assign the labels 1, 2, 3, 4 to the vertices w_5, w_6, w_7, w_8 . Proceeding like this until we reach w_{n-4} then assign the labels 4, 3 to the vertices w_{n-3}, w_{n-2} .

Case(ii). $n \equiv 1 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices u_1, u_2, u_3, u_4 and assign the labels 1, 2, 3, 4 to the vertices u_5, u_6, u_7, u_8 . In similar manner assign the labels until we reach u_{n-1} then assign the label 4 to the vertex u_n . Secondly assign the labels 1, 2, 3, 4 to the vertices v_1, v_2, v_3, v_4 and assign the labels 1, 2, 3, 4 to the vertices v_5, v_6, v_7, v_8 . Continuing like this until we reach v_{n-5} then assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices $v_{n-4}, v_{n-3}, v_{n-2}$. Lastly assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices w_5, w_6, w_7, w_8 . Repeating like this until we reach w_{n-5} then assign the labels 2, 4, 1 to the vertices $w_{n-4}, w_{n-3}, w_{n-2}$.

Case(iii). $n \equiv 2 \pmod{4}$.

We assign the labels 1, 2, 3, 4 to the vertices u_1, u_2, u_3, u_4 and assign the labels 1, 2, 3, 4 to the vertices u_5, u_6, u_7, u_8 . Proceed this pattern until we reach u_{n-2} then assign the label 4, 2 to the vertex u_{n-1}, u_n . Secondly assign the labels 1, 2, 3, 4 to the vertices v_1, v_2, v_3, v_4 and assign the labels 1, 2, 3, 4 to the vertices v_5, v_6, v_7, v_8 . Repeat this pattern until we reach v_{n-2} . Lastly assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices w_5, w_6, w_7, w_8 . Proceed like this until we reach w_{n-6} then assign the labels 2, 4, 1, 3 to the vertices $w_{n-5}, w_{n-4}, w_{n-3}, w_{n-2}$.

Case(iv). $n \equiv 3 \pmod{4}$.

Assign the labels 1, 2, 3, 4 to the vertices u_1, u_2, u_3, u_4 and assign the labels 1, 2, 3, 4 to the vertices u_5, u_6, u_7, u_8 . In similar manner assign the labels until we reach u_{n-3} then assign the label 4, 2, 3 to the vertex u_{n-2}, u_{n-1}, u_n . Secondly assign the labels 1, 2, 3, 4 to the vertices v_1, v_2, v_3, v_4 and assign the labels 1, 2, 3, 4 to the vertices v_5, v_6, v_7, v_8 . Continuing like this until we reach v_{n-3} then assign the label 1 to the vertex v_{n-2} . Lastly assign the labels 1, 2, 3, 4 to the vertices w_1, w_2, w_3, w_4 and assign the labels 1, 2, 3, 4 to the vertices w_5, w_6, w_7, w_8 . Continue this proces until we reach w_{n-7} then assign the labels 2, 4, 3, 1, 3 to the vertices $w_{n-6}, w_{n-5}, w_{n-4}, w_{n-3}, w_{n-2}$.

Thus the table 5 given below shows that $TW(P_n)$, $n \ge 3$ is 4-remainder cordial.

Theorem 4.3. The Kayak Paddale KP(n, n, n) is 4-remainder cordial for all $n \ge 3$.

Proof. Now describe the vertex labeling as follows. There are four cases arises. **Case(i).** $n \equiv 0 \pmod{4}$

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 4, 3, 2, 1 to

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{3n-4}{4}$	$\frac{3n-4}{4}$	$\frac{3n-4}{4}$	$\frac{3n-4}{4}$	$\frac{3n-4}{2}$	$\frac{3n-6}{2}$
$n \equiv 1 \pmod{4}$	$\frac{3n-3}{4}$	$\frac{3n-3}{4}$	$\frac{3n-7}{4}$	$\frac{3n-3}{4}$	$\frac{3n-5}{2}$	$\frac{3n-5}{2}$
$n \equiv 2 \pmod{4}$	$\frac{3n-6}{4}$	$\frac{3n-2}{4}$	$\frac{3n-6}{4}$	$\frac{3n-2}{4}$	$\frac{3n-4}{2}$	$\frac{3n-6}{2}$
$n \equiv 3 \pmod{4}$	$\frac{3n-5}{4}$	$\frac{3n-5}{4}$	$\frac{3n-1}{4}$	$\frac{3n-5}{4}$	$\frac{3n-5}{2}$	$\frac{3n-5}{2}$

Table 5.

the vertices x_5, x_6, x_7, x_8 . In similar manner assign the labels 4, 3, 2, 1 to the vertices $x_{n-3}, x_{n-2}, x_{n-1}, x_n$. Second assign the labels to the vertices $z_i(1 \le i \le n)$ as in $x_i(1 \le i \le n)$. Finally assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and then assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Repeat this process until we reach y_{n-4} , then assign the labels 2, 4, 3 to the vertices $y_{n-3}, y_{n-2}, y_{n-1}$.

Case(ii). $n \equiv 1 \pmod{4}$.

Now assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . In similar pattern assign the labels 4, 3, 2, 1 to the vertices $x_{n-4}, x_{n-3}, x_{n-2}, x_{n-1}$. Sec assign the labels to the vertices $z_i(1 \le i \le n-1)$ as in $x_i(1 \le i \le n-1)$. Next assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and then assign the labels 1, 2, 3, 4 to the vertices $y_{n-4}, y_{n-3}, y_{n-2}, y_{n-1}$. Finally assign the label 3 to the vertex x_n and assign the label 1 to the vertex z_n .

Case(iii). $n \equiv 2 \pmod{4}$.

we assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . In similar pattern way assign the labels 4, 3, 2, 1 to the vertices $x_{n-5}, x_{n-4}, x_{n-3}, x_{n-2}$. Secondly assign the labels to the vertices $z_i(1 \le i \le n-2)$ as in $x_i(1 \le i \le n-2)$. Next assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and then assign the labels 4, 3, 2, 1 to the vertices y_6, y_7, y_8, y_9 . Proceed this pattern until we reach y_{n-6} , then assign the labels 3, 2, 4, 1, 3 to the vertices $y_{n-5}, y_{n-4}, y_{n-3}, y_{n-2}, y_{n-1}$. Finally assign the label 4, 3 to the vertices x_{n-1}, x_n and assign the label 1, 2 to the vertices z_{n-1}, z_n .

Case(iv). $n \equiv 3 \pmod{4}$.

Assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and then assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . In similar way assign the labels 4, 3, 2, 1 to the vertices $x_{n-6}, x_{n-5}, x_{n-4}, x_{n-3}$. Secondly assign the labels to the vertices $z_i(1 \le i \le n-3)$ as in $x_i(1 \le i \le n-3)$. Next assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and then assign the labels 1, 2, 3, 4 to the vertices y_{n-3} . Finally assign the label 1, 2, 3 to the vertices x_{n-2}, x_{n-1}, x_n and assign the label 4, 1, 4 to the vertices z_{n-2}, z_{n-1}, z_n , then assign the label 3, 2 to the vertex y_{n-2}, y_{n-1} .

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{3n-4}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{4}$	$\frac{3n}{2}$	$\frac{3n}{2}$
$n \equiv 1 \pmod{4}$	$\frac{3n+1}{4}$	$\frac{3n-3}{4}$	$\frac{3n+1}{4}$	$\frac{3n-3}{4}$	$\frac{3n+1}{2}$	$\frac{3n-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{3n-2}{4}$	$\frac{3n-2}{4}$	$\frac{3n+2}{4}$	$\frac{3n-2}{4}$	$\frac{3n}{2}$	$\frac{3n}{2}$
$n \equiv 3 \pmod{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n-1}{4}$	$\frac{3n+1}{2}$	$\frac{3n-1}{2}$

Thus the table 6 given below shows that KP(n, n, n) is 4-remainder cordial.

Table 6.

Theorem 4.4. The Kayak Paddale KP(m, n, l) is 4– remainder cordial if $m \ge 3, n \ge 3, l \ge 1$ and among any of them are congruent modulo 4 while the other may assume any values other

than those of the other two.

Proof. Now we describe the vertex labeling as follows. There are 12 cases arises.

Case(i). $m \equiv 0 \pmod{4}, n \equiv 0 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . Proceed this process until we reach x_m . Next assign the labels to the vertices $y_i(2 \le i \le l-1)$ and $z_i(1 \le i \le n)$. There are three cases arises.

Subcase(i). $l \equiv 1 \pmod{4}$.

Now we assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Proceeding like this until we reach y_{l-1} . Finally assign the labels to the vertices $z_i(1 \le i \le n)$ as in $x_i(1 \le i \le m)$.

Subcase(ii). $l \equiv 2 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Continuing this process until we reach y_{l-2} and assign the label 3 to the vertex y_{l-1} . Finally assign the labels to the vertices $z_i (5 \le i \le n)$ as in $x_i (5 \le i \le m)$ and assign the labels 2, 4, 3, 1 to the vertices z_1, z_2, z_3, z_4 .

Subcase(iii). $l \equiv 3 \pmod{4}$.

We assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Continue this pattern until we reach y_{l-3} and assign the label 2, 3 to the vertex y_{l-2}, y_{l-1} . Finally assign the labels to the vertices $z_i (1 \le i \le n)$ as in $x_i (1 \le i \le m)$.

Thus the table 7 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of <i>l</i>	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$l \equiv 1 \pmod{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$
$l \equiv 2 \pmod{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 3 \pmod{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 7.

Case(ii). $m \equiv 0 \pmod{4}, l \equiv 0 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . Proceed this pattern until we reach x_m Also assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Proceed this manner until we reach y_{l-4} and assign the label 1, 2, 3 to the vertex $y_{l-3}, y_{l-2}, y_{l-1}$. Next assign the labels to the vertices $z_i(1 \le i \le n)$. There are three cases arises.

Subcase(i). $n \equiv 1 \pmod{4}$.

Finally assign the labels to the vertices $z_i(1 \le i \le n-1)$ as in $x_i(1 \le i \le m)$ and assign the label 4 to the vertex z_n .

Subcase(ii). $n \equiv 2 \pmod{4}$. Next assign the labels to the vertices $z_i (1 \le i \le n-2)$ as in $x_i (1 \le i \le m)$ and assign the label 3,4 to the vertex z_{n-1}, z_n .

Subcase(iii). $n \equiv 3 \pmod{4}$.

Next assign the labels to the vertices $z_i (1 \le i \le n-3)$ as in $x_i (1 \le i \le m)$ and assign the label 1,4,3 to the vertex z_{n-2}, z_{n-1}, z_n .

Thus the table 8 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 1 \pmod{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 8.

Case(iii). $m \equiv 1 \pmod{4}, n \equiv 0 \pmod{4}, l \equiv 0 \pmod{4}$. First as in case(ii), assign the labels to the vertices $x_i(1 \le i \le m)$ like as $z_i(1 \le i \le n)$ and $z_i(1 \le i \le n)$ like as $x_i(1 \le i \le m)$. Finally assign the labels to the vertices $y_i(1 \le i \le l-1)$ as in case(ii).

Thus the table 8 given below shows that KP(m, n, l) is 4-remainder cordial.

Case(iv). $m \equiv 1 \pmod{4}, n \equiv 1 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . Proceed this process until we reach x_{m-1} . Secondly assign the labels to the vertices $z_i(1 \le i \le n-1)$ as in $x_i(1 \le i \le m-1)$. Next assign the labels to the vertices $y_i(2 \le i \le l-1)$. There are three cases arises.

Subcase(i). $l \equiv 0 \pmod{4}$.

Now we assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Proceeding like this until we reach y_{l-4} . Finally assign the labels 1, 2, 3 to the vertices $y_{l-3}, y_{l-2}, y_{l-1}$ and then assign the label 3 to the vertex x_m and 4 to the vertex z_n .

Subcase(ii). $l \equiv 2 \pmod{4}$.

We assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 .continuously assign this labels until we reach y_{l-2} and assign the label 3 to the vertex y_{l-1} .Finally assign the label 2 to the vertex x_m and 4 to the vertex z_n .

Subcase(iii). $l \equiv 3 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Continue this process until we reach y_{l-3} and assign the label 4, 3 to the vertex y_{l-2}, y_{l-1} . Finally and then assign the label 2 to the vertex x_m and 1 to the vertex z_n .

Thus the table 9 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of <i>l</i>	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$l \equiv 0 \pmod{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 2 \pmod{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 3 \pmod{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Case(v). $m \equiv 1 \pmod{4}, l \equiv 1 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . This pattern is repeated until we reach x_{m-1} . Also assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . In similar manner assign the labels to the vertices upto y_{l-1} then assign the label 4 to the vertex x_m . Next assign the labels to the vertices $z_i (1 \le i \le n)$. There are three cases arises.

Subcase(i). $n \equiv 0 \pmod{4}$.

Finally assign the labels to the vertices $z_i(1 \le i \le n)$ as in $x_i(1 \le i \le m-1)$.

Subcase(ii). $n \equiv 2 \pmod{4}$.

Next assign the labels to the vertices $z_i(1 \le i \le n-2)$ as in $x_i(1 \le i \le m-1)$ and assign the label 2, 3 to the vertex z_{n-1}, z_n .

Subcase(iii). $n \equiv 3 \pmod{4}$.

Next assign the labels to the vertices $z_i (1 \le i \le n-3)$ as in $x_i (1 \le i \le m-1)$ and assign the label 1, 2, 3 to the vertex z_{n-2}, z_{n-1}, z_n .

Thus the table 10 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$

Table 10.

Case(vi). $m \equiv 1 \pmod{4}, n \equiv 1 \pmod{4}, l \equiv 1 \pmod{4}$.

First as in case(v), assign the labels to the vertices $x_i(1 \le i \le m)$ like as $z_i(1 \le i \le n)$ and $z_i(1 \le i \le n)$ like as $x_i(1 \le i \le m)$. Finally assign the labels to the vertices $y_i(1 \le i \le l-1)$ as in case(v).

Thus the table 10 given below shows that KP(m, n, l) is 4-remainder cordial.

Case(vii). $m \equiv 2 \pmod{4}, n \equiv 2 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . Proceed this manner until we reach x_{m-2} . Secondly assign the labels to the vertices $z_i(1 \le i \le n-2)$ as in $x_i(1 \le i \le m-2)$. And assign the label 4, 3 to the vertices x_{m-1}, x_m then assign the label 1, 2 to the vertices z_{n-1}, z_n . Next assign the labels to the vertices $y_i(2 \le i \le l-1)$. There are three cases arises.

Subcase(i). $l \equiv 0 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . This pattern is repeated until we reach y_{l-4} . Finally assign the labels 1, 2, 3 to the vertices $y_{l-3}, y_{l-2}, y_{l-1}$.

Subcase(ii). $l \equiv 1 \pmod{4}$.

Assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Proceed this pattern until we reach y_{l-1} .

Subcase(iii). $l \equiv 3 \pmod{4}$.

Finally assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Proceeding like this until we reach y_{l-3} and assign the label 1, 2 to the vertex y_{l-2}, y_{l-1} .

Thus the table 11 given below shows that KP(m, n, l) is 4-remainder cordial.

Case(viii). $m \equiv 2 \pmod{4}, l \equiv 2 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . In similar manner assign the labels until we reach x_{m-2} then assign the labels 4, 3 to the vertices x_{m-1}, x_m . Also assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . This pattern is repeated until we reach y_{l-2} then assign the label 2 to the vertex y_{l-1} . Next assign the labels to the vertices $z_i (1 \le i \le n)$. There are three cases arises.

Nature of <i>l</i>	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$l \equiv 0 \pmod{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 1 \pmod{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$l \equiv 3 \pmod{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 11.

Subcase(i). $n \equiv 0 \pmod{4}$. Finally assign the labels to the vertices $z_i(1 \le i \le n)$ as in $x_i(1 \le i \le m - 2)$.

Subcase(ii). $n \equiv 1 \pmod{4}$.

Next assign the labels to the vertices $z_i (1 \le i \le n-2)$ as in $x_i (1 \le i \le m-2)$ and assign the label 1, 2 to the vertex z_{n-1}, z_n .

Subcase(iii). $n \equiv 3 \pmod{4}$.

Next assign the labels to the vertices $z_i(1 \le i \le n-3)$ as in $x_i(1 \le i \le m-2)$ and assign the label 1, 2, 3 to the vertex z_{n-2}, z_{n-1}, z_n .

Thus the table 12 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 1 \pmod{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$n \equiv 3 \pmod{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 12.

Case(ix). $m \equiv 2 \pmod{4}, n \equiv 2 \pmod{4}, l \equiv 2 \pmod{4}$. First as in case(viii), assign the labels to the vertices $x_i(1 \le i \le m)$ like as $z_i(1 \le i \le n)$ and $z_i(1 \le i \le n)$ like as $x_i(1 \le i \le m)$. Finally assign the labels to the vertices $y_i(1 \le i \le l-1)$ as in case(viii).

Thus the table 12 given below shows that KP(m, n, l) is 4-remainder cordial.

Case(x). $m \equiv 3 \pmod{4}, n \equiv 3 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . Proceeding this pattern until we reach x_{m-3} . Secondly assign the labels to the vertices $z_i(1 \le i \le n-3)$ as in $x_i(1 \le i \le m-3)$. Next assign the labels to the vertices $y_i(2 \le i \le l-1)$. There are three cases arises.

Subcase(i). $l \equiv 0 \pmod{4}$.

Now assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 continuing this manner until we reach y_{l-4} . Finally assign the labels 2, 3, 4 to the vertices $y_{l-3}, y_{l-2}, y_{l-1}$. And assign the label 1, 4, 3 to the vertices x_{m-3}, x_{m-1}, x_m then assign the label 2, 3, 1 to the vertices z_{n-2}, z_{n-1}, z_n .

Subcase(ii). $l \equiv 1 \pmod{4}$.

Now we assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Repeat this pattern until we reach y_{l-1} . And assign the label 1, 2, 3 to the vertices x_{m-3}, x_{m-1}, x_m then assign the label 2, 3, 4 to the vertices z_{n-2}, z_{n-1}, z_n .

Subcase(iii). $l \equiv 2 \pmod{4}$.

Finally assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to

the vertices y_6, y_7, y_8, y_9 . This pattern is repeated until we reach y_{l-2} and assign the label 1 to the vertex y_{l-1} . And assign the label 1, 2, 3 to the vertices x_{m-3}, x_{m-1}, x_m then assign the label 2, 3, 4 to the vertices z_{n-2}, z_{n-1}, z_n .

Thus the table 13 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of <i>l</i>	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$l \equiv 0 \pmod{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 1 \pmod{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$
$l \equiv 2 \pmod{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$

Table 13.

Case(xi). $m \equiv 3 \pmod{4}, l \equiv 3 \pmod{4}$.

First assign the labels 4, 3, 2, 1 to the vertices x_1, x_2, x_3, x_4 and assign the labels 4, 3, 2, 1 to the vertices x_5, x_6, x_7, x_8 . Proceed this pattern until we reach x_{m-3} . Also assign the labels 1, 2, 3, 4 to the vertices y_2, y_3, y_4, y_5 and assign the labels 1, 2, 3, 4 to the vertices y_6, y_7, y_8, y_9 . Proceed this pattern until we reach y_{l-3} . Next assign the labels to the vertices $z_i(1 \le i \le n)$. There are three cases arises.

Subcase(i). $n \equiv 0 \pmod{4}$

Now assign the labels to the vertices $z_i(1 \le i \le n)$ as in $x_i(1 \le i \le m-3)$ and assign the label 2, 3, 4 to the vertices x_{m-3}, x_{m-1}, x_m . Finally assign the labels 1, 3 to the vertices y_{l-2}, y_{l-1} .

Subcase(ii). $n \equiv 1 \pmod{4}$

Next assign the labels to the vertices $z_i(1 \le i \le n-1)$ as in $x_i(1 \le i \le m-3)$ and assign the label 3 to the vertex z_n . Finally assign the label 1, 2, 3 to the vertices x_{m-3}, x_{m-1}, x_m and then assign the labels 2, 4 to the vertices y_{l-2}, y_{l-1} .

Subcase(iii). $n \equiv 2 \pmod{4}$.

Next assign the labels to the vertices $z_i(1 \le i \le n-2)$ as in $x_i(1 \le i \le m-3)$ and assign the label 4, 3 to the vertex z_{n-1}, z_n . Finally assign the label 1, 2, 3 to the vertices x_{m-3}, x_{m-1}, x_m and then assign the labels 2, 4 to the vertices y_{l-2}, y_{l-1}

Thus the table 14 given below shows that KP(m, n, l) is 4-remainder cordial.

Nature of n	$v_f(1)$	$v_f(2)$	$v_f(3)$	$v_f(4)$	η_e	η_o
$n \equiv 0 \pmod{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 1 \pmod{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$n \equiv 2 \pmod{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$

Table 14.

Case(xii). $m \equiv 3 \pmod{4}, n \equiv 3 \pmod{4}, l \equiv 3 \pmod{4}$.

First as in case(xi), assign the labels to the vertices $x_i(1 \le i \le m)$ like as $z_i(1 \le i \le n)$ and $z_i(1 \le i \le n)$ like as $x_i(1 \le i \le m)$. Finally assign the labels to the vertices $y_i(1 \le i \le l-1)$ as in case(xi).

Thus the table 14 given below shows that KP(m, n, l) is 4-remainder cordial.

References

[1] Gallian, J.A., A Dynamic survey of graph labeling, *The Electronic Journal of Combinatorics.*, 19, (2016).

- [2] Harary, F., Graph theory, Addision wesley, New Delhi, 1969.
- [3] Ponraj, R., Annathurai, K., and Kala, R., k-Remainder cordial graphs, *Journal of Algorithms and Computation*, Vol.49(2), (2017), 41–52.

Author information

R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi–627 412., India.. E-mail: ponrajmaths@gmail.com

A. Gayathri, Research Scholor, Reg. No:20124012092023, Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli–627 012., India.. E-mail: gayugayathria555@gmail.com

S.Somasundaram, Department of Mathematics Manonmaniam Sundaranar University, Tirunelveli– 627 012., India.

E-mail: somutvl@gmail.com

Received: June 4, 2020 Accepted: January 6, 2021