4-REMAINDER CORDIAL LABELING OF PARACHUTE,TWIG,KAYAK PADDALE GRAPH

R. Ponraj, A. Gayathri and S.Somasundaram
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Abstract

Let G be a (p, q) graph. Let f be a map from $V(G)$ to the set $\{1,2, \ldots, k\}$ where k is an integer $2<k \leq|V(G)|$. For each edge $u v$ assign the label r where r is the remainder when $f(u)$ is divided by $f(v)$ (or) $f(v)$ is divided by $f(u)$ according as $f(u) \geq f(v)$ or $f(v) \geq f(u)$. The function f is called a k-remainder cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$, $i, j \in\{1, \ldots, k\}$ where $v_{f}(x)$ denote the number of vertices labelled with x and $\left|\eta_{o}-\eta_{e}\right| \leq 1$ where η_{e} and η_{o} respectively denote the number of edges labeled with even integers and number of edges labelled with odd integers. A graph with a k-remainder cordial labeling is called a k remainder cordial graph. In this paper we investigate the 4 -remainder cordial labeling behavior of parachute,twig and kayak paddale graph.

1 Introduction

In this paper we consider only finite, undirected and simple graphs. The notion of k-Remainder cordial labeling of a graph was introduced and studied some properties of k-Remainder cordial labeling in [3].The 4-Remainder cordial labeling behavior of several graphs like path, cycle, star, complete graph, wheel etc have been investigated in [3].In this paper we investigate the 4 - Remainder cordial labeling behavior of parachute, twig and kayak paddale graph.Terms not in here followed from [1,2]

2 4- Remainder cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let f be a map from $V(G)$ to the set $\{1,2, \ldots, k\}$ where k is an integer $2<k \leq|V(G)|$. For each edge $u v$ assign the label r where r is the remainder when $f(u)$ is divided by $f(v)$ (or) $f(v)$ is divided by $f(u)$ according as $f(u) \geq f(v)$ or $f(v) \geq f(u)$. The function f is called a k-remainder cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$, $i, j \in\{1, \ldots, k\}$ where $v_{f}(x)$ denote the number of vertices labelled with x and $\left|\eta_{e}-\eta_{o}\right| \leq 1$ where η_{e} and η_{o} respectively denote the number of edges labeled with even integers and number of edges labelled with odd integers. A graph with a k-remainder cordial labeling is called a k-remainder cordial graph.

3 Preliminaries

Definition 3.1. [1] A graph obtained from the wheel $W_{m+n}, m \geq 3$ by deleting n consecutive spokes is said to be parachute and it is denoted by $P_{m, n}$.
Definition 3.2. [1] A twig $T W\left(P_{n}\right), n \geq 3$ is a graph obtained from a path by attaching exactly two pendant edges to each internal vertex of the path.
Definition 3.3. [1] A Kayak Paddale $K P(m, n, l)$ is the graph obtained by joining C_{m} and C_{n} by a path of length l. Let C_{m} be the cycle $x_{1} x_{2} \cdots x_{m} x_{1}$ and C_{n} be the cycle $z_{1} z_{2} \cdots z_{n} z_{1}$ and let P_{l} be the path $y_{1} y_{2} \cdots y_{l} . E(K P(m, n, l))=E\left(P_{l}\right) \cup E\left(C_{m}\right) \cup E\left(C_{n}\right)$, identifying x_{1} with y_{1} and y_{n} with z_{1}.

4 Main results

Theorem 4.1. The Parachute $P_{m, n}$ is 4 -remainder cordial for all $m \geq 3, n \geq 1$.

Proof. Let $V\left(P_{m, n}\right)=\left\{x, x_{i}, y_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(P_{m, n}\right)=\left\{x x_{i}: 1 \leq i \leq m\right\} \cup$ $\left\{x_{i} x_{i+1}: 1 \leq i \leq m-1\right\} \cup\left\{y_{j} y_{j+1}: 1 \leq j \leq n-1\right\} \cup\left\{x_{1} y_{1}, x_{m} y_{n}\right\}$.
First assign the label the label 3 to the vertex x.Next assign the labels to the remaining vertices.There are 4 cases arises.

Case(i). $m \equiv 0(\bmod 4)$
There are four cases arises.
Subcase(i). $n \equiv 0(\bmod 4)$
First assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$. Proceed this process until we reach x_{m}.Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceed this process until we reach y_{n}.

Subcase(ii). $n \equiv 1(\bmod 4)$
Now we assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$. Proceeding like this until we reach x_{m}. Also assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$.Proceeding like this until we reach y_{n-1}. Lastly assign the label 1 to the vertex y_{n}.

Subcase(iii). $n \equiv 2(\bmod 4)$
Assign the labels 1, 2, 3, 4 to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.continuing like this until we reach x_{m-4}. Next assign the labels $1,2,4,2$ to the vertices $x_{m-3}, x_{m-2}, x_{m-1}, x_{m}$.Also assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$.continuing like this until we reach y_{n-2}.Lastly assign the label 4,3 to the vertices y_{n-1}, y_{n}.

Subcase(iv). $n \equiv 3(\bmod 4)$
First assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.countinuing this process until we reach x_{m-4}.Next assign the labels $1,2,4,2$ to the vertices $x_{m-3}, x_{m-2}, x_{m-1}, x_{m}$. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceeding like this until we reach y_{n-3}.Lastly assign the label $1,4,3$ to the vertices y_{n-2}, y_{n-1}, y_{n}.

Thus the table 1 given below shows that $P_{m, n}$ is 4-remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 1(\bmod 4)$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n-2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$

Table 1.
Case(ii). $m \equiv 1(\bmod 4)$
There are four cases arises.
Subcase(i). $n \equiv 0(\bmod 4)$
First assign the labels 1,2,3,4 to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$. Proceed this process until we reach x_{m-1}. Next assign the label 2 to the vertex x_{m}. Also assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels

$1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceed this process until we reach y_{n}.

Subcase(ii). $n \equiv 1(\bmod 4)$.
Assign the labels 1, 2, 3, 4 to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$. Proceeding like this until we reach x_{m}. Next assign the label 2 to the vertex x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceeding like this until we reach y_{n-1}. Lastly assign the label 1 to the vertex y_{n}.

Subcase(iii). $n \equiv 2(\bmod 4)$.
We assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.In similar manner assign the labels until we reach x_{m-5}.Next assign the label 2 to the vertices $x_{m-4}, x_{m-3}, x_{m-2}$ then assign the label 4 to the vertices x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. In similar way proceed this until we reach y_{n-6}. Lastly Next assign the label 1 to the vertices $y_{n-5}, y_{n-4}, y_{n-3}$, and assign the label 4 to the vertex y_{n-1} then assign the label 3 to the vertices y_{n-2}, y_{n}.

Subcase(iv). $n \equiv 3(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.Proceed this process until we reach x_{m-5}.Next assign the labels $1,2,2,4,4$ to the vertices $x_{m-4}, x_{m-3}, x_{m-2}, x_{m-1}, x_{m}$. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$.Proceeding this process until we reach y_{n-3}. Lastly assign the label $1,2,3$ to the vertices y_{n-2}, y_{n-1}, y_{n}.

Thus the table 2 given below shows that $P_{m, n}$ is 4 -remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 1(\bmod 4)$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n-2}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$

Table 2.

Case(iii). $m \equiv 2(\bmod 4)$.
There are four cases arises.

Subcase(i). $n \equiv 0(\bmod 4)$.
First assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.In similar manner assign the labels to the vertices upto x_{m-2}. Next assign the label 4,2 to the vertex x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$.continue like this until we reach y_{n}.

Subcase(ii). $n \equiv 1(\bmod 4)$
Now assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$. Proceeding like this until we reach x_{m}. Next assign the label 4,2 to the vertex x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceeding like this until we reach y_{n-1}. Lastly assign the label 1 to the vertex y_{n}.

Subcase(iii). $n \equiv 2(\bmod 4)$.
Assign the labels 1, 2, 3, 4 to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.Proceed this process until we reach x_{m-2}.Next assign the labels 1,4 to
the vertices x_{m-2}, x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. continuing this process until we reach y_{n-2}.Lastly assign the label 2,3 to the vertices y_{n-1}, y_{n}.

Subcase(iv). $n \equiv 3(\bmod 4)$
We assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.Proceed like this until we reach x_{m-2}.Next assign the labels 4,2 to the vertices x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceeding this process until we reach y_{n-3}. Lastly assign the label $3,2,1$ to the vertices y_{n-2}, y_{n-1}, y_{n}.

Thus the table 3 given below shows that $P_{m, n}$ is 4 -remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n-2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 1(\bmod 4)$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2 m+n-11}{2}$	$\frac{2 m+n+1}{2}$

Table 3.

Case(iv). $m \equiv 3(\bmod 4)$.
There are four cases arises.
Subcase(i). $n \equiv 0(\bmod 4)$.
First assign the labels 1,2,3,4 to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels 1,2,3,4 to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.Proceeding like this until we reach x_{m-3}. Next assign the labels $2,2,4$ to the vertices x_{m-2}, x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Proceeding like this until we reach y_{n-4}.Finally assign the labels to $3,4,1,1$ to the vertices $y_{n-3}, y_{n-2}, y_{n-1}, y_{n}$.

Subcase(ii). $n \equiv 1(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.Proceed this pattern until we reach x_{m-3}. Next assign the labels $2,2,4$ to the vertices x_{m-2}, x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$.Proceeding this until we reach y_{n-1}. Lastly assign the label 1 to the vertex y_{n}.

Subcase(iii). $n \equiv 2(\bmod 4)$.
Assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$.In similar pattern assign the labels until we reach x_{m-3}..Next assign the labels $2,2,4$ to the vertices x_{m-2}, x_{m-1}, x_{m}. Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$.This similar pattern is repeated until we reach y_{n-2}. Lastly assign the label 3,1 to the vertices y_{n-1}, y_{n}.

Subcase(iv). $n \equiv 3(\bmod 4)$.
We assign the labels $1,2,3,4$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $1,2,3,4$ to the vertices $x_{4}, x_{6}, x_{7}, x_{8}$. Continuing like this until we reach x_{m-3}. Next assign the labels $1,2,4$, to the vertices x_{m-2}, x_{m-1}, x_{m} Secondly assign the labels $1,2,3,4$ to the vertices $y_{1}, y_{2}, y_{3}, y_{4}$ and then assign the labels $1,2,3,4$ to the vertices $y_{4}, y_{6}, y_{7}, y_{8}$. Continue this process until we reach y_{n-3}.Lastly assign the label $1,2,3$ to the vertices y_{n-2}, y_{n-1}, y_{n}.

Thus the table 4 given below shows that $P_{m, n}$ is $4-$ remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{m+n+1}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 1(\bmod 4)$	$\frac{m+n}{4}$	$\frac{m+n+4}{4}$	$\frac{m+n}{4}$	$\frac{m+n}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n-1}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n+3}{4}$	$\frac{m+n-1}{4}$	$\frac{2 m+n}{2}$	$\frac{2 m+n}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n+2}{4}$	$\frac{m+n-2}{4}$	$\frac{2 m+n+1}{2}$	$\frac{2 m+n-1}{2}$

Table 4.

Theorem 4.2. The Twig $T W\left(P_{n}\right)$ is 4-remainder cordial for all $n \geq 3$.
Proof. Let $V\left(T W\left(P_{n}\right)\right)=\left\{u_{i}, v_{j}, w_{j}: 1 \leq i \leq n, 1 \leq j \leq n-2\right\}$ and $E\left(T W\left(P_{n}\right)\right)=\left\{u_{i} u i+1, v_{i} u_{i+1}, w_{i}\right.$, There are four cases arises.
Case(i). $n \equiv 0(\bmod 4)$
First assign the labels $1,2,3,4$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$ and assign the labels $1,2,3,4$ to the vertices $u_{5}, u_{6}, u_{7}, u_{8}$.Proceeding this manner until we reach u_{n}. Secondly assign the labels $1,2,3,4$ to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and assign the labels $1,2,3,4$ to the vertices $v_{5}, v_{6}, v_{7}, v_{8}$. Proceed this pattern until we reach v_{n-4} then assign the labels 1,2 to the vertices v_{n-3}, v_{n-2}. Lastly assign the labels $1,2,3,4$ to the vertices $w_{1}, w_{2}, w_{3}, w_{4}$ and assign the labels $1,2,3,4$ to the vertices $w_{5}, w_{6}, w_{7}, w_{8}$. Proceeding like this until we reach w_{n-4} then assign the labels 4,3 to the vertices w_{n-3}, w_{n-2}.

Case(ii). $n \equiv 1(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$ and assign the labels $1,2,3,4$ to the vertices $u_{5}, u_{6}, u_{7}, u_{8}$. In similar manner assign the labels until we reach u_{n-1} then assign the label 4 to the vertex u_{n}. Secondly assign the labels $1,2,3,4$ to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and assign the labels $1,2,3,4$ to the vertices $v_{5}, v_{6}, v_{7}, v_{8}$. Continuing like this until we reach v_{n-5} then assign the labels $1,2,3$ to the vertices $v_{n-4}, v_{n-3}, v_{n-2}$.Lastly assign the labels $1,2,3,4$ to the vertices $w_{1}, w_{2}, w_{3}, w_{4}$ and assign the labels $1,2,3,4$ to the vertices $w_{5}, w_{6}, w_{7}, w_{8}$. Repeating like this until we reach w_{n-5} then assign the labels $2,4,1$ to the vertices $w_{n-4}, w_{n-3}, w_{n-2}$.

Case(iii). $n \equiv 2(\bmod 4)$.
We assign the labels $1,2,3,4$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$ and assign the labels $1,2,3,4$ to the vertices $u_{5}, u_{6}, u_{7}, u_{8}$.Proceed this pattern until we reach u_{n-2} then assign the label 4,2 to the vertex u_{n-1}, u_{n}.Secondly assign the labels $1,2,3,4$ to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and assign the labels $1,2,3,4$ to the vertices $v_{5}, v_{6}, v_{7}, v_{8}$. Repeat this pattern until we reach v_{n-2}.Lastly assign the labels $1,2,3,4$ to the vertices $w_{1}, w_{2}, w_{3}, w_{4}$ and assign the labels $1,2,3,4$ to the vertices $w_{5}, w_{6}, w_{7}, w_{8}$.Proceed like this until we reach w_{n-6} then assign the labels $2,4,1,3$ to the vertices $w_{n-5}, w_{n-4}, w_{n-3}, w_{n-2}$.

Case(iv). $n \equiv 3(\bmod 4)$.
Assign the labels $1,2,3,4$ to the vertices $u_{1}, u_{2}, u_{3}, u_{4}$ and assign the labels $1,2,3,4$ to the vertices $u_{5}, u_{6}, u_{7}, u_{8}$.In similar manner assign the labels until we reach u_{n-3} then assign the label $4,2,3$ to the vertex u_{n-2}, u_{n-1}, u_{n}. Secondly assign the labels $1,2,3,4$ to the vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and assign the labels $1,2,3,4$ to the vertices $v_{5}, v_{6}, v_{7}, v_{8}$. Continuing like this until we reach v_{n-3} then assign the label 1 to the vertex v_{n-2}. Lastly assign the labels $1,2,3,4$ to the vertices $w_{1}, w_{2}, w_{3}, w_{4}$ and assign the labels $1,2,3,4$ to the vertices $w_{5}, w_{6}, w_{7}, w_{8}$.Continue this proces until we reach w_{n-7} then assign the labels $2,4,3,1,3$ to the vertices $w_{n-6}, w_{n-5}, w_{n-4}, w_{n-3}, w_{n-2}$.

Thus the table 5 given below shows that $T W\left(P_{n}\right), n \geq 3$ is 4 -remainder cordial.

Theorem 4.3. The Kayak Paddale $K P(n, n, n)$ is 4 -remainder cordial for all $n \geq 3$.
Proof. Now describe the vertex labeling as follows.There are four cases arises.
Case(i). $n \equiv 0(\bmod 4)$
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $4,3,2,1$ to

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{3 n-4}{4}$	$\frac{3 n-4}{4}$	$\frac{3 n-4}{4}$	$\frac{3 n-4}{4}$	$\frac{3 n-4}{2}$	$\frac{3 n-6}{2}$
$n \equiv 1(\bmod 4)$	$\frac{3 n-3}{4}$	$\frac{3 n-3}{4}$	$\frac{3 n-7}{4}$	$\frac{3 n-3}{4}$	$\frac{3 n-5}{2}$	$\frac{3 n-5}{2}$
$n \equiv 2(\bmod 4)$	$\frac{3 n-6}{4}$	$\frac{3 n-2}{4}$	$\frac{3 n-6}{4}$	$\frac{3 n-2}{4}$	$\frac{3 n-4}{2}$	$\frac{3 n-6}{2}$
$n \equiv 3(\bmod 4)$	$\frac{3 n-5}{4}$	$\frac{3 n-5}{4}$	$\frac{3 n-1}{4}$	$\frac{3 n-5}{4}$	$\frac{3 n-5}{2}$	$\frac{3 n-5}{2}$

Table 5.
the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.In similar manner assign the labels $4,3,2,1$ to the vertices $x_{n-3}, x_{n-2}, x_{n-1}, x_{n}$. Secol assign the labels to the vertices $z_{i}(1 \leq i \leq n)$ as in $x_{i}(1 \leq i \leq n)$. Finally assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and then assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$. Repeat this process until we reach y_{n-4}, then assign the labels $2,4,3$ to the vertices $y_{n-3}, y_{n-2}, y_{n-1}$.

Case(ii). $n \equiv 1(\bmod 4)$.
Now assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.In similar pattern assign the labels $4,3,2,1$ to the vertices $x_{n-4}, x_{n-3}, x_{n-2}, x_{n-1}$. Sec assign the labels to the vertices $z_{i}(1 \leq i \leq n-1)$ as in $x_{i}(1 \leq i \leq n-1)$.Next assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and then assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$. Proceeding like this until we reach y_{n-5}, then assign the labels $2,4,3,1$ to the vertices $y_{n-4}, y_{n-3}, y_{n-2}, y_{n-1}$. Finally assign the label 3 to the vertex x_{n} and assign the label 1 to the vertex z_{n}.

Case(iii). $n \equiv 2(\bmod 4)$.
we assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.In similar pattern way assign the labels $4,3,2,1$ to the vertices $x_{n-5}, x_{n-4}, x_{n-3}, x_{n-2}$. Secondly assign the labels to the vertices $z_{i}(1 \leq i \leq n-2)$ as in $x_{i}(1 \leq i \leq n-2)$. Next assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and then assign the labels $4,3,2,1$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$. Proceed this pattern until we reach y_{n-6}, then assign the labels $3,2,4,1,3$ to the vertices $y_{n-5}, y_{n-4}, y_{n-3}, y_{n-2}, y_{n-1}$. Finally assign the label 4,3 to the vertices x_{n-1}, x_{n} and assign the label 1,2 to the vertices z_{n-1}, z_{n}.

Case(iv). $n \equiv 3(\bmod 4)$.
Assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and then assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.In similar way assign the labels $4,3,2,1$ to the vertices $x_{n-6}, x_{n-5}, x_{n-4}, x_{n-3}$. Secondly assign the labels to the vertices $z_{i}(1 \leq i \leq n-3)$ as in $x_{i}(1 \leq i \leq n-3)$.Next assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and then assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Proceeding like this until we reach y_{n-3}. Finally assign the label $1,2,3$ to the vertices x_{n-2}, x_{n-1}, x_{n} and assign the label $4,1,4$ to the vertices z_{n-2}, z_{n-1}, z_{n}, then assign the label 3,2 to the vertex y_{n-2}, y_{n-1}.

Thus the table 6 given below shows that $K P(n, n, n)$ is 4 -remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{3 n-4}{4}$	$\frac{3 n}{4}$	$\frac{3 n}{4}$	$\frac{3 n}{4}$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 1(\bmod 4)$	$\frac{3 n+1}{4}$	$\frac{3 n-3}{4}$	$\frac{3 n+1}{4}$	$\frac{3 n-3}{4}$	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{3 n-2}{4}$	$\frac{3 n-2}{4}$	$\frac{3 n+2}{4}$	$\frac{3 n-2}{4}$	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 3(\bmod 4)$	$\frac{3 n-1}{4}$	$\frac{3 n-1}{4}$	$\frac{3 n-1}{4}$	$\frac{3 n-1}{4}$	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$

Table 6.

Theorem 4.4. The Kayak Paddale $\operatorname{KP}(m, n, l)$ is 4 - remainder cordial if $m \geq 3, n \geq 3, l \geq 1$ and among any of them are congruent modulo 4 while the other may assume any values other
than those of the other two.

Proof. Now we describe the vertex labeling as follows.There are 12 cases arises.
Case(i). $m \equiv 0(\bmod 4), n \equiv 0(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$. Proceed this process until we reach x_{m}. Next assign the labels to the vertices $y_{i}(2 \leq i \leq l-1)$ and $z_{i}(1 \leq i \leq n)$.There are three cases arises.

Subcase(i). $l \equiv 1(\bmod 4)$.
Now we assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Proceeding like this until we reach y_{l-1}. Finally assign the labels to the vertices $z_{i}(1 \leq i \leq n)$ as in $x_{i}(1 \leq i \leq m)$.

Subcase(ii). $l \equiv 2(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Continuing this process until we reach y_{l-2} and assign the label 3 to the vertex y_{l-1}. Finally assign the labels to the vertices $z_{i}(5 \leq i \leq n)$ as in $x_{i}(5 \leq i \leq m)$ and assign the labels $2,4,3,1$ to the vertices $z_{1}, z_{2}, z_{3}, z_{4}$.

Subcase(iii). $l \equiv 3(\bmod 4)$.
We assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Continue this pattern until we reach y_{l-3} and assign the label 2,3 to the vertex y_{l-2}, y_{l-1}. Finally assign the labels to the vertices $z_{i}(1 \leq i \leq n)$ as in $x_{i}(1 \leq i \leq m)$.

Thus the table 7 given below shows that $K P(m, n, l)$ is 4 -remainder cordial.

Nature of l	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$l \equiv 1(\bmod 4)$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$
$l \equiv 2(\bmod 4)$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 3(\bmod 4)$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 7.

Case(ii). $m \equiv 0(\bmod 4), l \equiv 0(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.Proceed this pattern until we reach x_{m} Also assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Proceed this manner until we reach y_{l-4} and assign the label $1,2,3$ to the vertex $y_{l-3}, y_{l-2}, y_{l-1}$. Next assign the labels to the vertices $z_{i}(1 \leq i \leq n)$. There are three cases arises.

Subcase(i). $n \equiv 1(\bmod 4)$.
Finally assign the labels to the vertices $z_{i}(1 \leq i \leq n-1)$ as in $x_{i}(1 \leq i \leq m)$ and assign the label 4 to the vertex z_{n}.

Subcase(ii). $n \equiv 2(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-2)$ as in $x_{i}(1 \leq i \leq m)$ and assign the label 3,4 to the vertex z_{n-1}, z_{n}.

Subcase(iii). $n \equiv 3(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-3)$ as in $x_{i}(1 \leq i \leq m)$ and assign the label $1,4,3$ to the vertex z_{n-2}, z_{n-1}, z_{n}.

Thus the table 8 given below shows that $K P(m, n, l)$ is 4-remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 1(\bmod 4)$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 8.

Case(iii). $m \equiv 1(\bmod 4), n \equiv 0(\bmod 4), l \equiv 0(\bmod 4)$.
First as in case(ii), assign the labels to the vertices $x_{i}(1 \leq i \leq m)$ like as $z_{i}(1 \leq i \leq n)$ and $z_{i}(1 \leq i \leq n)$ like as $x_{i}(1 \leq i \leq m)$. Finally assign the labels to the vertices $y_{i}(1 \leq i \leq l-1)$ as in case(ii).

Thus the table 8 given below shows that $K P(m, n, l)$ is 4 -remainder cordial.
Case(iv). $m \equiv 1(\bmod 4), n \equiv 1(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.Proceed this process until we reach x_{m-1}.Secondly assign the labels to the vertices $z_{i}(1 \leq i \leq n-1)$ as in $x_{i}(1 \leq i \leq m-1)$.Next assign the labels to the vertices $y_{i}(2 \leq i \leq l-1)$. There are three cases arises.

Subcase(i). $l \equiv 0(\bmod 4)$.
Now we assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Proceeding like this until we reach y_{l-4}.Finally assign the labels $1,2,3$ to the vertices $y_{l-3}, y_{l-2}, y_{l-1}$ and then assign the label 3 to the vertex x_{m} and 4 to the vertex z_{n}.

Subcase(ii). $l \equiv 2(\bmod 4)$.
We assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.continuously assign this labels until we reach y_{l-2} and assign the label 3 to the vertex y_{l-1}. Finally assign the label 2 to the vertex x_{m} and 4 to the vertex z_{n}.

Subcase(iii). $l \equiv 3(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Continue this process until we reach y_{l-3} and assign the label 4,3 to the vertex y_{l-2}, y_{l-1}. Finally and then assign the label 2 to the vertex x_{m} and 1 to the vertex z_{n}.

Thus the table 9 given below shows that $K P(m, n, l)$ is 4 -remainder cordial.

Nature of l	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$l \equiv 0(\bmod 4)$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 2(\bmod 4)$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 3(\bmod 4)$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 9.

Case $(\mathbf{v}) . m \equiv 1(\bmod 4), l \equiv 1(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$. This pattern is repeated until we reach x_{m-1}. Also assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.In similar manner assign the labels to the vetices upto y_{l-1} then assign the label 4 to the vertex x_{m}. Next assign the labels to the vertices $z_{i}(1 \leq i \leq n)$.There are three cases arises.

Subcase(i). $n \equiv 0(\bmod 4)$.
Finally assign the labels to the vertices $z_{i}(1 \leq i \leq n)$ as in $x_{i}(1 \leq i \leq m-1)$.

Subcase(ii). $n \equiv 2(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-2)$ as in $x_{i}(1 \leq i \leq m-1)$ and assign the label 2,3 to the vertex z_{n-1}, z_{n}.

Subcase(iii). $n \equiv 3(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-3)$ as in $x_{i}(1 \leq i \leq m-1)$ and assign the label $1,2,3$ to the vertex z_{n-2}, z_{n-1}, z_{n}.

Thus the table 10 given below shows that $K P(m, n, l)$ is 4 -remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$

Table 10.
Case(vi). $m \equiv 1(\bmod 4), n \equiv 1(\bmod 4), l \equiv 1(\bmod 4)$.
First as in case(v), assign the labels to the vertices $x_{i}(1 \leq i \leq m)$ like as $z_{i}(1 \leq i \leq n)$ and $z_{i}(1 \leq i \leq n)$ like as $x_{i}(1 \leq i \leq m)$.Finally assign the labels to the vertices $y_{i}(1 \leq i \leq l-1)$ as in case(v).

Thus the table 10 given below shows that $K P(m, n, l)$ is 4-remainder cordial.
Case(vii). $m \equiv 2(\bmod 4), n \equiv 2(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.Proceed this manner until we reach x_{m-2}.Secondly assign the labels to the vertices $z_{i}(1 \leq i \leq n-2)$ as in $x_{i}(1 \leq i \leq m-2)$. And assign the label 4,3 to the vertices x_{m-1}, x_{m} then assign the label 1,2 to the vertices z_{n-1}, z_{n}. Next assign the labels to the vertices $y_{i}(2 \leq i \leq l-1)$. There are three cases arises.

Subcase(i). $l \equiv 0(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.This pattern is repeated until we reach y_{l-4}.Finally assign the labels $1,2,3$ to the vertices $y_{l-3}, y_{l-2}, y_{l-1}$.

Subcase(ii). $l \equiv 1(\bmod 4)$.
Assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$. Proceed this pattern until we reach y_{l-1}.

Subcase(iii). $l \equiv 3(\bmod 4)$.
Finally assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Proceeding like this until we reach y_{l-3} and assign the label 1,2 to the vertex y_{l-2}, y_{l-1}.

Thus the table 11 given below shows that $K P(m, n, l)$ is 4-remainder cordial.
Case(viii). $m \equiv 2(\bmod 4), l \equiv 2(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.In similar manner assign the labels until we reach x_{m-2} then assign the labels 4,3 to the vertices x_{m-1}, x_{m}. Also assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$. This pattern is repeated until we reach y_{l-2} then assign the label 2 to the vertex y_{l-1}. Next assign the labels to the vertices $z_{i}(1 \leq i \leq$ n).There are three cases arises.

Nature of l	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$l \equiv 0(\bmod 4)$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 1(\bmod 4)$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$l \equiv 3(\bmod 4)$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 11.

Subcase(i). $n \equiv 0(\bmod 4)$.
Finally assign the labels to the vertices $z_{i}(1 \leq i \leq n)$ as in $x_{i}(1 \leq i \leq m-2)$.

Subcase(ii). $n \equiv 1(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-2)$ as in $x_{i}(1 \leq i \leq m-2)$ and assign the label 1,2 to the vertex z_{n-1}, z_{n}.

Subcase(iii). $n \equiv 3(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-3)$ as in $x_{i}(1 \leq i \leq m-2)$ and assign the label $1,2,3$ to the vertex z_{n-2}, z_{n-1}, z_{n}.

Thus the table 12 given below shows that $K P(m, n, l)$ is 4-remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 1(\bmod 4)$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l-1}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$n \equiv 3(\bmod 4)$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$

Table 12.

Case(ix). $m \equiv 2(\bmod 4), n \equiv 2(\bmod 4), l \equiv 2(\bmod 4)$.
First as in case(viii), assign the labels to the vertices $x_{i}(1 \leq i \leq m)$ like as $z_{i}(1 \leq i \leq n)$ and $z_{i}(1 \leq i \leq n)$ like as $x_{i}(1 \leq i \leq m)$. Finally assign the labels to the vertices $y_{i}(1 \leq i \leq l-1)$ as in case(viii).

Thus the table 12 given below shows that $K P(m, n, l)$ is 4-remainder cordial.
$\operatorname{Case}(\mathbf{x}) . m \equiv 3(\bmod 4), n \equiv 3(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$.Proceeding this pattern until we reach x_{m-3}.Secondly assign the labels to the vertices $z_{i}(1 \leq i \leq n-3)$ as in $x_{i}(1 \leq i \leq m-3)$. Next assign the labels to the vertices $y_{i}(2 \leq i \leq l-1)$. There are three cases arises.

Subcase(i). $l \equiv 0(\bmod 4)$.
Now assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.continuing this manner until we reach y_{l-4}. Finally assign the labels $2,3,4$ to the vertices $y_{l-3}, y_{l-2}, y_{l-1}$. And assign the label $1,4,3$ to the vertices x_{m-3}, x_{m-1}, x_{m} then assign the label $2,3,1$ to the vertices z_{n-2}, z_{n-1}, z_{n}.

Subcase(ii). $l \equiv 1(\bmod 4)$.
Now we assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.Repeat this pattern until we reach y_{l-1}. And assign the label $1,2,3$ to the vertices x_{m-3}, x_{m-1}, x_{m} then assign the label $2,3,4$ to the vertices z_{n-2}, z_{n-1}, z_{n}.

Subcase(iii). $l \equiv 2(\bmod 4)$.
Finally assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to
the vertices $y_{6}, y_{7}, y_{8}, y_{9}$.This pattern is repeated until we reach y_{l-2} and assign the label 1 to the vertex y_{l-1}.And assign the label $1,2,3$ to the vertices x_{m-3}, x_{m-1}, x_{m} then assign the label $2,3,4$ to the vertices z_{n-2}, z_{n-1}, z_{n}.

Thus the table 13 given below shows that $K P(m, n, l)$ is 4-remainder cordial.

Nature of l	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$l \equiv 0(\bmod 4)$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$l \equiv 1(\bmod 4)$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l-1}{2}$	$\frac{m+n+l+1}{2}$
$l \equiv 2(\bmod 4)$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$

Table 13.
Case $(x i) . m \equiv 3(\bmod 4), l \equiv 3(\bmod 4)$.
First assign the labels $4,3,2,1$ to the vertices $x_{1}, x_{2}, x_{3}, x_{4}$ and assign the labels $4,3,2,1$ to the vertices $x_{5}, x_{6}, x_{7}, x_{8}$. Proceed this pattern until we reach x_{m-3}. Also assign the labels $1,2,3,4$ to the vertices $y_{2}, y_{3}, y_{4}, y_{5}$ and assign the labels $1,2,3,4$ to the vertices $y_{6}, y_{7}, y_{8}, y_{9}$. Proceed this pattern until we reach y_{l-3}. Next assign the labels to the vertices $z_{i}(1 \leq i \leq n)$. There are three cases arises.

Subcase(i). $n \equiv 0(\bmod 4)$
Now assign the labels to the vertices $z_{i}(1 \leq i \leq n)$ as in $x_{i}(1 \leq i \leq m-3)$ and assign the label $2,3,4$ to the vertices x_{m-3}, x_{m-1}, x_{m}. Finally assign the labels 1,3 to the vertices y_{l-2}, y_{l-1}.

Subcase(ii). $n \equiv 1(\bmod 4)$
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-1)$ as in $x_{i}(1 \leq i \leq m-3)$ and assign the label 3 to the vertex z_{n}.Finally assign the label $1,2,3$ to the vertices x_{m-3}, x_{m-1}, x_{m} and then assign the labels 2,4 to the vertices y_{l-2}, y_{l-1}.

Subcase(iii). $n \equiv 2(\bmod 4)$.
Next assign the labels to the vertices $z_{i}(1 \leq i \leq n-2)$ as in $x_{i}(1 \leq i \leq m-3)$ and assign the label 4,3 to the vertex z_{n-1}, z_{n}.Finally assign the label $1,2,3$ to the vertices x_{m-3}, x_{m-1}, x_{m} and then assign the labels 2,4 to the vertices y_{l-2}, y_{l-1}

Thus the table 14 given below shows that $K P(m, n, l)$ is 4-remainder cordial.

Nature of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$v_{f}(4)$	η_{e}	η_{o}
$n \equiv 0(\bmod 4)$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l+2}{4}$	$\frac{m+n+l-2}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$
$n \equiv 1(\bmod 4)$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l+1}{4}$	$\frac{m+n+l-3}{4}$	$\frac{m+n+l+1}{2}$	$\frac{m+n+l-1}{2}$
$n \equiv 2(\bmod 4)$	$\frac{m+n+l-4}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{4}$	$\frac{m+n+l}{2}$	$\frac{m+n+l}{2}$

Table 14.
Case $(\mathbf{x i i}) . ~ m \equiv 3(\bmod 4), n \equiv 3(\bmod 4), l \equiv 3(\bmod 4)$.
First as in case(xi), assign the labels to the vertices $x_{i}(1 \leq i \leq m)$ like as $z_{i}(1 \leq i \leq n)$ and $z_{i}(1 \leq i \leq n)$ like as $x_{i}(1 \leq i \leq m)$. Finally assign the labels to the vertices $y_{i}(1 \leq i \leq l-1)$ as in case(xi).

Thus the table 14 given below shows that $K P(m, n, l)$ is 4-remainder cordial.

References

[2] Harary, F., Graph theory, Addision wesley, New Delhi, 1969.
[3] Ponraj, R., Annathurai, K., and Kala, R., k-Remainder cordial graphs, Journal of Algorithms and Computation, Vol.49(2), (2017), 41-52.

Author information

R. Ponraj, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412., India..

E-mail: ponrajmaths@gmail.com
A. Gayathri, Research Scholor,Reg.No:20124012092023, Department of Mathematics, Manonmaniam Sundaranar University, Abhishekapati,Tirunelveli-627 012., India..
E-mail: gayugayathria555@gmail.com
S.Somasundaram, Department of Mathematics Manonmaniam Sundaranar University, Tirunelveli- 627 012., India..
E-mail: somutvl@gmail.com
Received: June 4, 2020
Accepted: January 6, 2021

