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Abstract. Let G be a (p, q) graph. Let f be a map from V (G) to the set {1, 2, . . . , k}
where k is an integer 2 < k ≤ |V (G)|. For each edge uv assign the label r where r is the
remainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as f(u) ≥ f(v) or
f(v) ≥ f(u). The function f is called a k-remainder cordial labeling of G if |vf (i)− vf (j)| ≤ 1,
i, j ∈ {1, . . . , k} where vf (x) denote the number of vertices labelled with x and |ηo − ηe| ≤ 1
where ηe and ηo respectively denote the number of edges labeled with even integers and number
of edges labelled with odd integers. A graph with a k-remainder cordial labeling is called a k-
remainder cordial graph. In this paper we investigate the 4−remainder cordial labeling behavior
of parachute,twig and kayak paddale graph.

1 Introduction

In this paper we consider only finite, undirected and simple graphs.The notion of k−Remainder
cordial labeling of a graph was introduced and studied some properties of k-Remainder cordial
labeling in [3].The 4-Remainder cordial labeling behavior of several graphs like path, cycle, star,
complete graph, wheel etc have been investigated in [3].In this paper we investigate the 4- Re-
mainder cordial labeling behavior of parachute, twig and kayak paddale graph.Terms not in here
followed from [1,2]

2 4- Remainder cordial labeling

Definition 2.1. Let G be a (p, q) graph. Let f be a map from V (G) to the set {1, 2, . . . , k}
where k is an integer 2 < k ≤ |V (G)|. For each edge uv assign the label r where r is the re-
mainder when f(u) is divided by f(v) (or) f(v) is divided by f(u) according as f(u) ≥ f(v) or
f(v) ≥ f(u). The function f is called a k-remainder cordial labeling of G if |vf (i)− vf (j)| ≤ 1,
i, j ∈ {1, . . . , k} where vf (x) denote the number of vertices labelled with x and |ηe − ηo| ≤ 1
where ηe and ηo respectively denote the number of edges labeled with even integers and number
of edges labelled with odd integers. A graph with a k-remainder cordial labeling is called a
k-remainder cordial graph.

3 Preliminaries

Definition 3.1. [1] A graph obtained from the wheel Wm+n, m ≥ 3 by deleting n consecutive
spokes is said to be parachute and it is denoted by Pm,n .

Definition 3.2. [1] A twig TW (Pn), n ≥ 3 is a graph obtained from a path by attaching exactly
two pendant edges to each internal vertex of the path.

Definition 3.3. [1] A Kayak Paddale KP (m,n, l) is the graph obtained by joining Cm and Cn

by a path of length l. Let Cm be the cycle x1x2 · · ·xmx1 and Cn be the cycle z1z2 · · · znz1 and
let Pl be the path y1y2 · · · yl. E(KP (m,n, l)) = E (Pl)∪E (Cm)∪E (Cn), identifying x1 with
y1 and yn with z1.
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4 Main results

Theorem 4.1. The Parachute Pm,n is 4−remainder cordial for all m ≥ 3, n ≥ 1.

Proof. Let V (Pm,n) = {x, xi, yj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and E(Pm,n) = {xxi : 1 ≤ i ≤ m} ∪
{xixi+1 : 1 ≤ i ≤ m− 1} ∪ {yjyj+1 : 1 ≤ j ≤ n− 1} ∪ {x1y1, xmyn}.
First assign the label the label 3 to the vertex x.Next assign the labels to the remaining ver-
tices.There are 4 cases arises.

Case(i). m ≡ 0 (mod 4)
There are four cases arises.

Subcase(i). n ≡ 0 (mod 4)
First assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4
to the vertices x4, x6, x7, x8.Proceed this process until we reach xm.Secondly assign the la-
bels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4 to the vertices
y4, y6, y7, y8.Proceed this process until we reach yn.

Subcase(ii). n ≡ 1 (mod 4)
Now we assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4
to the vertices x4, x6, x7, x8.Proceeding like this until we reach xm.Also assign the labels 1, 2, 3, 4
to the vertices y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceeding
like this until we reach yn−1.Lastly assign the label 1 to the vertex yn.

Subcase(iii). n ≡ 2 (mod 4)
Assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to the
vertices x4, x6, x7, x8.continuing like this until we reach xm−4.Next assign the labels 1, 2, 4, 2 to
the vertices xm−3, xm−2, xm−1, xm.Also assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4
and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.continuing like this until we reach
yn−2.Lastly assign the label 4, 3 to the vertices yn−1, yn.

Subcase(iv). n ≡ 3 (mod 4)
First assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4
to the vertices x4, x6, x7, x8.countinuing this process until we reach xm−4.Next assign the labels
1, 2, 4, 2 to the vertices xm−3, xm−2, xm−1, xm. Secondly assign the labels 1, 2, 3, 4 to the ver-
tices y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8. Proceeding like
this until we reach yn−3.Lastly assign the label 1, 4, 3 to the vertices yn−2, yn−1, yn.

Thus the table 1 given below shows that Pm,n is 4-remainder cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n
4

m+n+4
4

m+n
4

m+n
4

2m+n
2

2m+n
2

n ≡ 1 (mod 4) m+n+3
4

m+n−1
4

m+n+3
4

m+n−1
4

2m+n+1
2

2m+n−1
2

n ≡ 2 (mod 4) m+n−2
4

m+n+2
4

m+n+2
4

m+n+2
4

2m+n
2

2m+n
2

n ≡ 3 (mod 4) m+n+1
4

m+n+1
4

m+n+1
4

m+n+1
4

2m+n+1
2

2m+n−1
2

Table 1.

Case(ii). m ≡ 1 (mod 4)
There are four cases arises.

Subcase(i). n ≡ 0 (mod 4)
First assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.Proceed this process until we reach xm−1.Next assign the label 2 to the
vertex xm. Also assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and then assign the labels
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1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceed this process until we reach yn.

Subcase(ii). n ≡ 1 (mod 4).
Assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to the
vertices x4, x6, x7, x8.Proceeding like this until we reach xm.Next assign the label 2 to the vertex
xm. Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and then assign the labels
1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceeding like this until we reach yn−1.Lastly assign the
label 1 to the vertex yn.

Subcase(iii). n ≡ 2 (mod 4).
We assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.In similar manner assign the labels until we reach xm−5.Next assign
the label 2 to the vertices xm−4, xm−3, xm−2 then assign the label 4 to the vertices xm−1, xm.
Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4
to the vertices y4, y6, y7, y8.In similar way proceed this until we reach yn−6.Lastly Next assign
the label 1 to the vertices yn−5, yn−4, yn−3, and assign the label 4 to the vertex yn−1 then assign
the label 3 to the vertices yn−2, yn.

Subcase(iv). n ≡ 3 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4
to the vertices x4, x6, x7, x8.Proceed this process until we reach xm−5.Next assign the labels
1, 2, 2, 4, 4 to the vertices xm−4, xm−3, xm−2, xm−1, xm. Secondly assign the labels 1, 2, 3, 4 to
the vertices y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceeding
this process until we reach yn−3. Lastly assign the label 1, 2, 3 to the vertices yn−2, yn−1, yn.

Thus the table 2 given below shows that Pm,n is 4−remainder cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n−1
4

m+n+3
4

m+n+3
4

m+n−1
4

2m+n
2

2m+n
2

n ≡ 1 (mod 4) m+n+2
4

m+n+2
4

m+n+2
4

m+n−2
4

2m+n+1
2

2m+n−1
2

n ≡ 2 (mod 4) m+n+1
4

m+n+1
4

m+n+1
4

m+n+1
4

2m+n
2

2m+n
2

n ≡ 3 (mod 4) m+n
4

m+n+4
4

m+n
4

m+n
4

2m+n+1
2

2m+n−1
2

Table 2.

Case(iii). m ≡ 2 (mod 4).
There are four cases arises.

Subcase(i). n ≡ 0 (mod 4).
First assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4
to the vertices x4, x6, x7, x8.In similar manner assign the labels to the vertices upto xm−2.Next
assign the label 4, 2 to the vertex xm−1, xm.Secondly assign the labels 1, 2, 3, 4 to the vertices
y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.continue like this until
we reach yn.

Subcase(ii). n ≡ 1 (mod 4)
Now assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.Proceeding like this until we reach xm.Next assign the label 4, 2 to the
vertex xm−1, xm. Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and then assign
the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceeding like this until we reach yn−1.Lastly
assign the label 1 to the vertex yn.

Subcase(iii). n ≡ 2 (mod 4).
Assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to the
vertices x4, x6, x7, x8.Proceed this process until we reach xm−2.Next assign the labels 1, 4 to
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the vertices xm−2, xm−1, xm.Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and
then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8. continuing this process until we reach
yn−2.Lastly assign the label 2, 3 to the vertices yn−1, yn.

Subcase(iv). n ≡ 3 (mod 4)
We assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.Proceed like this until we reach xm−2.Next assign the labels 4, 2 to the
vertices xm−1, xm. Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4 and then as-
sign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceeding this process until we reach yn−3.
Lastly assign the label 3, 2, 1 to the vertices yn−2, yn−1, yn.

Thus the table 3 given below shows that Pm,n is 4−remainder cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n−2
4

m+n+2
4

m+n+2
4

m+n+2
4

2m+n
2

2m+n
2

n ≡ 1 (mod 4) m+n+1
4

m+n+1
4

m+n+1
4

m+n+1
4

2m+n+1
2

2m+n−1
2

n ≡ 2 (mod 4) m+n
4

m+n
4

m+n+4
4

m+n
4

2m+n
2

2m+n
2

n ≡ 3 (mod 4) m+n−1
4

m+n+3
4

m+n+3
4

m+n−1
4

2m+n−11
2

2m+n+1
2

Table 3.

Case(iv). m ≡ 3 (mod 4).
There are four cases arises.

Subcase(i). n ≡ 0 (mod 4).
First assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.Proceeding like this until we reach xm−3.Next assign the labels 2, 2, 4
to the vertices xm−2, xm−1, xm.Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4
and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8. Proceeding like this until we
reach yn−4.Finally assign the labels to 3, 4, 1, 1 to the vertices yn−3, yn−2, yn−1, yn.

Subcase(ii).n ≡ 1 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.Proceed this pattern until we reach xm−3.Next assign the labels 2, 2, 4
to the vertices xm−2, xm−1, xm.Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4
and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.Proceeding this until we reach
yn−1.Lastly assign the label 1 to the vertex yn.

Subcase(iii). n ≡ 2 (mod 4).
Assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to the
vertices x4, x6, x7, x8.In similar pattern assign the labels until we reach xm−3..Next assign the
labels 2, 2, 4 to the vertices xm−2, xm−1, xm. Secondly assign the labels 1, 2, 3, 4 to the vertices
y1, y2, y3, y4 and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8.This similar pattern
is repeated until we reach yn−2. Lastly assign the label 3, 1 to the vertices yn−1, yn.

Subcase(iv). n ≡ 3 (mod 4).
We assign the labels 1, 2, 3, 4 to the vertices x1, x2, x3, x4 and then assign the labels 1, 2, 3, 4 to
the vertices x4, x6, x7, x8.Continuing like this until we reach xm−3.Next assign the labels 1, 2, 4,
to the vertices xm−2, xm−1, xm Secondly assign the labels 1, 2, 3, 4 to the vertices y1, y2, y3, y4
and then assign the labels 1, 2, 3, 4 to the vertices y4, y6, y7, y8. Continue this process until we
reach yn−3.Lastly assign the label 1, 2, 3 to the vertices yn−2, yn−1, yn.

Thus the table 4 given below shows that Pm,n is 4−remainder cordial.
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Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n+1
4

m+n+1
4

m+n+1
4

m+n+1
4

2m+n
2

2m+n
2

n ≡ 1 (mod 4) m+n
4

m+n+4
4

m+n
4

m+n
4

2m+n+1
2

2m+n−1
2

n ≡ 2 (mod 4) m+n−1
4

m+n+3
4

m+n+3
4

m+n−1
4

2m+n
2

2m+n
2

n ≡ 3 (mod 4) m+n+2
4

m+n+2
4

m+n+2
4

m+n−2
4

2m+n+1
2

2m+n−1
2

Table 4.

Theorem 4.2. The Twig TW (Pn) is 4-remainder cordial for all n ≥ 3.

Proof. Let V (TW (Pn)) = {ui, vj , wj : 1 ≤ i ≤ n, 1 ≤ j ≤ n− 2} andE(TW (Pn)) = {uiui+ 1, viui+1, wi, ui+1 : 1 ≤ i ≤ n− 2}.
There are four cases arises.
Case(i). n ≡ 0 (mod 4)
First assign the labels 1, 2, 3, 4 to the vertices u1, u2, u3, u4 and assign the labels 1, 2, 3, 4 to
the vertices u5, u6, u7, u8.Proceeding this manner until we reach un.Secondly assign the labels
1, 2, 3, 4 to the vertices v1, v2, v3, v4 and assign the labels 1, 2, 3, 4 to the vertices v5, v6, v7, v8.
Proceed this pattern until we reach vn−4 then assign the labels 1, 2 to the vertices vn−3, vn−2.Lastly
assign the labels 1, 2, 3, 4 to the vertices w1, w2, w3, w4 and assign the labels 1, 2, 3, 4 to the ver-
tices w5, w6, w7, w8. Proceeding like this until we reach wn−4 then assign the labels 4, 3 to the
vertices wn−3, wn−2.

Case(ii). n ≡ 1 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices u1, u2, u3, u4 and assign the labels 1, 2, 3, 4 to the
vertices u5, u6, u7, u8.In similar manner assign the labels until we reach un−1 then assign the
label 4 to the vertex un.Secondly assign the labels 1, 2, 3, 4 to the vertices v1, v2, v3, v4 and as-
sign the labels 1, 2, 3, 4 to the vertices v5, v6, v7, v8.Continuing like this until we reach vn−5 then
assign the labels 1, 2, 3 to the vertices vn−4, vn−3, vn−2.Lastly assign the labels 1, 2, 3, 4 to the
vertices w1, w2, w3, w4 and assign the labels 1, 2, 3, 4 to the vertices w5, w6, w7, w8.Repeating like
this until we reach wn−5 then assign the labels 2, 4, 1 to the vertices wn−4, wn−3, wn−2.

Case(iii). n ≡ 2 (mod 4).
We assign the labels 1, 2, 3, 4 to the vertices u1, u2, u3, u4 and assign the labels 1, 2, 3, 4 to the
vertices u5, u6, u7, u8.Proceed this pattern until we reach un−2 then assign the label 4, 2 to the
vertex un−1, un.Secondly assign the labels 1, 2, 3, 4 to the vertices v1, v2, v3, v4 and assign the
labels 1, 2, 3, 4 to the vertices v5, v6, v7, v8.Repeat this pattern until we reach vn−2.Lastly assign
the labels 1, 2, 3, 4 to the vertices w1, w2, w3, w4 and assign the labels 1, 2, 3, 4 to the vertices
w5, w6, w7, w8.Proceed like this until we reach wn−6 then assign the labels 2, 4, 1, 3 to the ver-
tices wn−5, wn−4, wn−3, wn−2.

Case(iv). n ≡ 3 (mod 4).
Assign the labels 1, 2, 3, 4 to the vertices u1, u2, u3, u4 and assign the labels 1, 2, 3, 4 to the ver-
tices u5, u6, u7, u8.In similar manner assign the labels until we reach un−3 then assign the label
4, 2, 3 to the vertex un−2, un−1, un.Secondly assign the labels 1, 2, 3, 4 to the vertices v1, v2, v3, v4
and assign the labels 1, 2, 3, 4 to the vertices v5, v6, v7, v8. Continuing like this until we reach
vn−3 then assign the label 1 to the vertex vn−2.Lastly assign the labels 1, 2, 3, 4 to the vertices
w1, w2, w3, w4 and assign the labels 1, 2, 3, 4 to the vertices w5, w6, w7, w8.Continue this proces
until we reachwn−7 then assign the labels 2, 4, 3, 1, 3 to the verticeswn−6, wn−5, wn−4, wn−3, wn−2.

Thus the table 5 given below shows that TW (Pn), n ≥ 3 is 4−remainder cordial.

Theorem 4.3. The Kayak Paddale KP (n, n, n) is 4−remainder cordial for all n ≥ 3.

Proof. Now describe the vertex labeling as follows.There are four cases arises.
Case(i). n ≡ 0 (mod 4)
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and then assign the labels 4, 3, 2, 1 to
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Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) 3n−4
4

3n−4
4

3n−4
4

3n−4
4

3n−4
2

3n−6
2

n ≡ 1 (mod 4) 3n−3
4

3n−3
4

3n−7
4

3n−3
4

3n−5
2

3n−5
2

n ≡ 2 (mod 4) 3n−6
4

3n−2
4

3n−6
4

3n−2
4

3n−4
2

3n−6
2

n ≡ 3 (mod 4) 3n−5
4

3n−5
4

3n−1
4

3n−5
4

3n−5
2

3n−5
2

Table 5.

the vertices x5, x6, x7, x8.In similar manner assign the labels 4, 3, 2, 1 to the vertices xn−3, xn−2, xn−1, xn.Secondly
assign the labels to the vertices zi(1 ≤ i ≤ n) as in xi(1 ≤ i ≤ n).Finally assign the la-
bels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and then assign the labels 1, 2, 3, 4 to the vertices
y6, y7, y8, y9.Repeat this process until we reach yn−4, then assign the labels 2, 4, 3 to the ver-
tices yn−3, yn−2, yn−1.

Case(ii). n ≡ 1 (mod 4).
Now assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and then assign the labels 4, 3, 2, 1 to
the vertices x5, x6, x7, x8.In similar pattern assign the labels 4, 3, 2, 1 to the vertices xn−4, xn−3, xn−2, xn−1.Secondly
assign the labels to the vertices zi(1 ≤ i ≤ n − 1) as in xi(1 ≤ i ≤ n − 1).Next assign the
labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and then assign the labels 1, 2, 3, 4 to the vertices
y6, y7, y8, y9.Proceeding like this until we reach yn−5, then assign the labels 2, 4, 3, 1 to the ver-
tices yn−4, yn−3, yn−2, yn−1.Finally assign the label 3 to the vertex xn and assign the label 1 to
the vertex zn.

Case(iii). n ≡ 2 (mod 4).
we assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and then assign the labels 4, 3, 2, 1
to the vertices x5, x6, x7, x8.In similar pattern way assign the labels 4, 3, 2, 1 to the vertices
xn−5, xn−4, xn−3, xn−2.Secondly assign the labels to the vertices zi(1 ≤ i ≤ n − 2) as in
xi(1 ≤ i ≤ n − 2). Next assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and then as-
sign the labels 4, 3, 2, 1 to the vertices y6, y7, y8, y9.Proceed this pattern until we reach yn−6, then
assign the labels 3, 2, 4, 1, 3 to the vertices yn−5, yn−4, yn−3, yn−2, yn−1.Finally assign the label
4, 3 to the vertices xn−1, xn and assign the label 1, 2 to the vertices zn−1, zn.

Case(iv). n ≡ 3 (mod 4).
Assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and then assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.In similar way assign the labels 4, 3, 2, 1 to the vertices xn−6, xn−5, xn−4, xn−3.Secondly
assign the labels to the vertices zi(1 ≤ i ≤ n − 3) as in xi(1 ≤ i ≤ n − 3).Next assign the
labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and then assign the labels 1, 2, 3, 4 to the vertices
y6, y7, y8, y9.Proceeding like this until we reach yn−3. Finally assign the label 1, 2, 3 to the ver-
tices xn−2, xn−1, xn and assign the label 4, 1, 4 to the vertices zn−2, zn−1, zn, then assign the
label 3, 2 to the vertex yn−2, yn−1.

Thus the table 6 given below shows that KP (n, n, n) is 4−remainder cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) 3n−4
4

3n
4

3n
4

3n
4

3n
2

3n
2

n ≡ 1 (mod 4) 3n+1
4

3n−3
4

3n+1
4

3n−3
4

3n+1
2

3n−1
2

n ≡ 2 (mod 4) 3n−2
4

3n−2
4

3n+2
4

3n−2
4

3n
2

3n
2

n ≡ 3 (mod 4) 3n−1
4

3n−1
4

3n−1
4

3n−1
4

3n+1
2

3n−1
2

Table 6.

Theorem 4.4. The Kayak Paddale KP (m,n, l) is 4− remainder cordial if m ≥ 3, n ≥ 3, l ≥ 1
and among any of them are congruent modulo 4 while the other may assume any values other
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than those of the other two.

Proof. Now we describe the vertex labeling as follows.There are 12 cases arises.

Case(i). m ≡ 0 (mod 4), n ≡ 0 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.Proceed this process until we reach xm.Next assign the labels to the ver-
tices yi(2 ≤ i ≤ l − 1) and zi(1 ≤ i ≤ n).There are three cases arises.

Subcase(i). l ≡ 1 (mod 4).
Now we assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to
the vertices y6, y7, y8, y9.Proceeding like this until we reach yl−1.Finally assign the labels to the
vertices zi(1 ≤ i ≤ n) as in xi(1 ≤ i ≤ m).

Subcase(ii). l ≡ 2 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the
vertices y6, y7, y8, y9.Continuing this process until we reach yl−2 and assign the label 3 to the
vertex yl−1.Finally assign the labels to the vertices zi(5 ≤ i ≤ n) as in xi(5 ≤ i ≤ m) and assign
the labels 2, 4, 3, 1 to the vertices z1, z2, z3, z4.

Subcase(iii). l ≡ 3 (mod 4).
We assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the
vertices y6, y7, y8, y9.Continue this pattern until we reach yl−3 and assign the label 2, 3 to the
vertex yl−2, yl−1.Finally assign the labels to the vertices zi(1 ≤ i ≤ n) as in xi(1 ≤ i ≤ m).

Thus the table 7 given below shows that KP (m,n, l) is 4−remainder cordial.

Nature of l vf (1) vf (2) vf (3) vf (4) ηe ηo

l ≡ 1 (mod 4) m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
2

m+n+l+1
2

l ≡ 2 (mod 4) m+n+l−2
4

m+n+l−2
4

m+n+l+2
4

m+n+l−2
4

m+n+l
2

m+n+l
2

l ≡ 3 (mod 4) m+n+l−3
4

m+n+l+1
4

m+n+l+1
4

m+n+l−3
4

m+n+l−1
2

m+n+l+1
2

Table 7.

Case(ii). m ≡ 0 (mod 4), l ≡ 0 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.Proceed this pattern until we reach xmAlso assign the labels 1, 2, 3, 4 to
the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the vertices y6, y7, y8, y9.Proceed this
manner until we reach yl−4 and assign the label 1, 2, 3 to the vertex yl−3, yl−2, yl−1.Next assign
the labels to the vertices zi(1 ≤ i ≤ n).There are three cases arises.

Subcase(i). n ≡ 1 (mod 4).
Finally assign the labels to the vertices zi(1 ≤ i ≤ n − 1) as in xi(1 ≤ i ≤ m) and assign the
label 4 to the vertex zn.

Subcase(ii). n ≡ 2 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 2) as in xi(1 ≤ i ≤ m) and assign the label
3, 4 to the vertex zn−1, zn.

Subcase(iii). n ≡ 3 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 3) as in xi(1 ≤ i ≤ m) and assign the label
1, 4, 3 to the vertex zn−2, zn−1, zn.

Thus the table 8 given below shows that KP (m,n, l) is 4−remainder cordial.
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Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 1 (mod 4) m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l+1
2

m+n+l−1
2

n ≡ 2 (mod 4) m+n+l−2
4

m+n+l−2
4

m+n+l+2
4

m+n+l−2
4

m+n+l
2

m+n+l
2

n ≡ 3 (mod 4) m+n+l+1
4

m+n+l−3
4

m+n+l+1
4

m+n+l−3
4

m+n+l−1
2

m+n+l+1
2

Table 8.

Case(iii). m ≡ 1 (mod 4), n ≡ 0 (mod 4), l ≡ 0 (mod 4).
First as in case(ii), assign the labels to the vertices xi(1 ≤ i ≤ m) like as zi(1 ≤ i ≤ n) and
zi(1 ≤ i ≤ n) like as xi(1 ≤ i ≤ m). Finally assign the labels to the vertices yi(1 ≤ i ≤ l − 1)
as in case(ii).

Thus the table 8 given below shows that KP (m,n, l) is 4−remainder cordial.

Case(iv). m ≡ 1 (mod 4), n ≡ 1 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.Proceed this process until we reach xm−1.Secondly assign the labels to the
vertices zi(1 ≤ i ≤ n − 1) as in xi(1 ≤ i ≤ m − 1).Next assign the labels to the vertices
yi(2 ≤ i ≤ l − 1). There are three cases arises.

Subcase(i). l ≡ 0 (mod 4).
Now we assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to
the vertices y6, y7, y8, y9.Proceeding like this until we reach yl−4.Finally assign the labels 1, 2, 3
to the vertices yl−3, yl−2, yl−1 and then assign the label 3 to the vertex xm and 4 to the vertex zn.

Subcase(ii). l ≡ 2 (mod 4).
We assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the
vertices y6, y7, y8, y9.continuously assign this labels until we reach yl−2 and assign the label 3 to
the vertex yl−1.Finally assign the label 2 to the vertex xm and 4 to the vertex zn.

Subcase(iii). l ≡ 3 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the
vertices y6, y7, y8, y9.Continue this process until we reach yl−3 and assign the label 4, 3 to the
vertex yl−2, yl−1.Finally and then assign the label 2 to the vertex xm and 1 to the vertex zn.

Thus the table 9 given below shows that KP (m,n, l) is 4−remainder cordial.

Nature of l vf (1) vf (2) vf (3) vf (4) ηe ηo

l ≡ 0 (mod 4) m+n+l−2
4

m+n+l−2
4

m+n+l+2
4

m+n+l−2
4

m+n+l
2

m+n+l
2

l ≡ 2 (mod 4) m+n+l−4
4

m+n+l
4

m+n+l
4

m+n+l
4

m+n+l
2

m+n+l
2

l ≡ 3 (mod 4) m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
2

m+n+l+1
2

Table 9.

Case(v). m ≡ 1 (mod 4), l ≡ 1 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.This pattern is repeated until we reach xm−1.Also assign the labels 1, 2, 3, 4
to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the vertices y6, y7, y8, y9.In similar
manner assign the labels to the vetices upto yl−1 then assign the label 4 to the vertex xm.Next
assign the labels to the vertices zi(1 ≤ i ≤ n).There are three cases arises.

Subcase(i). n ≡ 0 (mod 4).
Finally assign the labels to the vertices zi(1 ≤ i ≤ n) as in xi(1 ≤ i ≤ m− 1).
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Subcase(ii). n ≡ 2 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 2) as in xi(1 ≤ i ≤ m− 1) and assign the
label 2, 3 to the vertex zn−1, zn.

Subcase(iii). n ≡ 3 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 3) as in xi(1 ≤ i ≤ m− 1) and assign the
label 1, 2, 3 to the vertex zn−2, zn−1, zn.

Thus the table 10 given below shows that KP (m,n, l) is 4−remainder
cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n+l−2
4

m+n+l−2
4

m+n+l−2
4

m+n+l+2
4

m+n+l
2

m+n+l
2

n ≡ 2 (mod 4) m+n+l−4
4

m+n+l
4

m+n+l
4

m+n+l
4

m+n+l
2

m+n+l
2

n ≡ 3 (mod 4) m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l+1
2

m+n+l−1
2

Table 10.

Case(vi). m ≡ 1 (mod 4), n ≡ 1 (mod 4), l ≡ 1 (mod 4).
First as in case(v), assign the labels to the vertices xi(1 ≤ i ≤ m) like as zi(1 ≤ i ≤ n) and
zi(1 ≤ i ≤ n) like as xi(1 ≤ i ≤ m).Finally assign the labels to the vertices yi(1 ≤ i ≤ l− 1) as
in case(v).

Thus the table 10 given below shows that KP (m,n, l) is 4−remainder cordial.

Case(vii). m ≡ 2 (mod 4), n ≡ 2 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.Proceed this manner until we reach xm−2.Secondly assign the labels to the
vertices zi(1 ≤ i ≤ n − 2) as in xi(1 ≤ i ≤ m − 2).And assign the label 4, 3 to the vertices
xm−1, xm then assign the label 1, 2 to the vertices zn−1, zn.Next assign the labels to the vertices
yi(2 ≤ i ≤ l − 1). There are three cases arises.

Subcase(i). l ≡ 0 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the
vertices y6, y7, y8, y9.This pattern is repeated until we reach yl−4.Finally assign the labels 1, 2, 3
to the vertices yl−3, yl−2, yl−1.

Subcase(ii). l ≡ 1 (mod 4).
Assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the ver-
tices y6, y7, y8, y9.Proceed this pattern until we reach yl−1.

Subcase(iii). l ≡ 3 (mod 4).
Finally assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to
the vertices y6, y7, y8, y9.Proceeding like this until we reach yl−3 and assign the label 1, 2 to the
vertex yl−2, yl−1.

Thus the table 11 given below shows that KP (m,n, l) is 4−remainder cordial.

Case(viii). m ≡ 2 (mod 4), l ≡ 2 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.In similar manner assign the labels until we reach xm−2 then assign the
labels 4, 3 to the vertices xm−1, xm.Also assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5
and assign the labels 1, 2, 3, 4 to the vertices y6, y7, y8, y9.This pattern is repeated until we reach
yl−2 then assign the label 2 to the vertex yl−1.Next assign the labels to the vertices zi(1 ≤ i ≤
n).There are three cases arises.
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Nature of l vf (1) vf (2) vf (3) vf (4) ηe ηo

l ≡ 0 (mod 4) m+n+l
4

m+n+l
4

m+n+l
4

m+n+l−4
4

m+n+l
2

m+n+l
2

l ≡ 1 (mod 4) m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l+1
2

m+n+l−1
2

l ≡ 3 (mod 4) m+n+l−3
4

m+n+l+1
4

m+n+l+1
4

m+n+l−3
4

m+n+l−1
2

m+n+l+1
2

Table 11.

Subcase(i). n ≡ 0 (mod 4).
Finally assign the labels to the vertices zi(1 ≤ i ≤ n) as in xi(1 ≤ i ≤ m− 2).

Subcase(ii). n ≡ 1 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 2) as in xi(1 ≤ i ≤ m− 2) and assign the
label 1, 2 to the vertex zn−1, zn.

Subcase(iii). n ≡ 3 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 3) as in xi(1 ≤ i ≤ m− 2) and assign the
label 1, 2, 3 to the vertex zn−2, zn−1, zn.

Thus the table 12 given below shows that KP (m,n, l) is 4−remainder cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n+l−4
4

m+n+l
4

m+n+l
4

m+n+l
4

m+n+l
2

m+n+l
2

n ≡ 1 (mod 4) m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l−1
4

m+n+l+1
2

m+n+l−1
2

n ≡ 3 (mod 4) m+n+l−3
4

m+n+l+1
4

m+n+l+1
4

m+n+l−3
4

m+n+l−1
2

m+n+l+1
2

Table 12.

Case(ix). m ≡ 2 (mod 4), n ≡ 2 (mod 4), l ≡ 2 (mod 4).
First as in case(viii), assign the labels to the vertices xi(1 ≤ i ≤ m) like as zi(1 ≤ i ≤ n) and
zi(1 ≤ i ≤ n) like as xi(1 ≤ i ≤ m).Finally assign the labels to the vertices yi(1 ≤ i ≤ l− 1) as
in case(viii).

Thus the table 12 given below shows that KP (m,n, l) is 4−remainder cordial.

Case(x). m ≡ 3 (mod 4), n ≡ 3 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.Proceeding this pattern until we reach xm−3.Secondly assign the labels to
the vertices zi(1 ≤ i ≤ n − 3) as in xi(1 ≤ i ≤ m − 3).Next assign the labels to the vertices
yi(2 ≤ i ≤ l − 1). There are three cases arises.

Subcase(i). l ≡ 0 (mod 4).
Now assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the
vertices y6, y7, y8, y9.continuing this manner until we reach yl−4.Finally assign the labels 2, 3, 4
to the vertices yl−3, yl−2, yl−1.And assign the label 1, 4, 3 to the vertices xm−3, xm−1, xm then
assign the label 2, 3, 1 to the vertices zn−2, zn−1, zn.

Subcase(ii). l ≡ 1 (mod 4).
Now we assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to
the vertices y6, y7, y8, y9.Repeat this pattern until we reach yl−1.And assign the label 1, 2, 3 to the
vertices xm−3, xm−1, xm then assign the label 2, 3, 4 to the vertices zn−2, zn−1, zn.

Subcase(iii). l ≡ 2 (mod 4).
Finally assign the labels 1, 2, 3, 4 to the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to
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the vertices y6, y7, y8, y9.This pattern is repeated until we reach yl−2 and assign the label 1 to
the vertex yl−1.And assign the label 1, 2, 3 to the vertices xm−3, xm−1, xm then assign the label
2, 3, 4 to the vertices zn−2, zn−1, zn.

Thus the table 13 given below shows that KP (m,n, l) is 4−remainder cordial.

Nature of l vf (1) vf (2) vf (3) vf (4) ηe ηo

l ≡ 0 (mod 4) m+n+l−2
4

m+n+l−2
4

m+n+l+2
4

m+n+l−2
4

m+n+l
2

m+n+l
2

l ≡ 1 (mod 4) m+n+l−3
4

m+n+l+1
4

m+n+l+1
4

m+n+l−3
4

m+n+l−1
2

m+n+l+1
2

l ≡ 2 (mod 4) m+n+l
4

m+n+l
4

m+n+l
4

m+n+l−4
4

m+n+l
2

m+n+l
2

Table 13.

Case(xi). m ≡ 3 (mod 4), l ≡ 3 (mod 4).
First assign the labels 4, 3, 2, 1 to the vertices x1, x2, x3, x4 and assign the labels 4, 3, 2, 1 to the
vertices x5, x6, x7, x8.Proceed this pattern until we reach xm−3.Also assign the labels 1, 2, 3, 4 to
the vertices y2, y3, y4, y5 and assign the labels 1, 2, 3, 4 to the vertices y6, y7, y8, y9.Proceed this
pattern until we reach yl−3. Next assign the labels to the vertices zi(1 ≤ i ≤ n).There are three
cases arises.

Subcase(i). n ≡ 0 (mod 4)
Now assign the labels to the vertices zi(1 ≤ i ≤ n) as in xi(1 ≤ i ≤ m− 3) and assign the label
2, 3, 4 to the vertices xm−3, xm−1, xm. Finally assign the labels 1, 3 to the vertices yl−2, yl−1.

Subcase(ii). n ≡ 1 (mod 4)
Next assign the labels to the vertices zi(1 ≤ i ≤ n− 1) as in xi(1 ≤ i ≤ m− 3) and assign the
label 3 to the vertex zn.Finally assign the label 1, 2, 3 to the vertices xm−3, xm−1, xm and then
assign the labels 2, 4 to the vertices yl−2, yl−1.

Subcase(iii). n ≡ 2 (mod 4).
Next assign the labels to the vertices zi(1 ≤ i ≤ n − 2) as in xi(1 ≤ i ≤ m − 3) and assign
the label 4, 3 to the vertex zn−1, zn.Finally assign the label 1, 2, 3 to the vertices xm−3, xm−1, xm
and then assign the labels 2, 4 to the vertices yl−2, yl−1

Thus the table 14 given below shows that KP (m,n, l) is 4−remainder cordial.

Nature of n vf (1) vf (2) vf (3) vf (4) ηe ηo

n ≡ 0 (mod 4) m+n+l−2
4

m+n+l−2
4

m+n+l+2
4

m+n+l−2
4

m+n+l
2

m+n+l
2

n ≡ 1 (mod 4) m+n+l−3
4

m+n+l+1
4

m+n+l+1
4

m+n+l−3
4

m+n+l+1
2

m+n+l−1
2

n ≡ 2 (mod 4) m+n+l−4
4

m+n+l
4

m+n+l
4

m+n+l
4

m+n+l
2

m+n+l
2

Table 14.

Case(xii). m ≡ 3 (mod 4), n ≡ 3 (mod 4), l ≡ 3 (mod 4).
First as in case(xi), assign the labels to the vertices xi(1 ≤ i ≤ m) like as zi(1 ≤ i ≤ n) and
zi(1 ≤ i ≤ n) like as xi(1 ≤ i ≤ m). Finally assign the labels to the vertices yi(1 ≤ i ≤ l − 1)
as in case(xi).

Thus the table 14 given below shows that KP (m,n, l) is 4−remainder cordial.
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