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Abstract In the present article, we choose the generalized multi-index Mittag-Leffler func-
tion to establish some presumably new and potentially useful inequalities . Also, we point out
that the results presented here can be reduced to those corresponding to some relatively simple
Mittag-Leffler functions including certain known ones.

1 Introduction

In 1903, Gösta Mittag-Leffler [7] introduced and investigated the Mittag-Leffler function defined
by

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
(<(α) > 0; z ∈ C), (1.1)

where Γ denotes the familiar Gamma function (see, e.g., [8, 9, Section 1.1]). Here and in the
following, let C, R, R+ and N be the sets of complex numbers, real numbers, positive real
numbers and positive integers, respectively, and let N0 := N∪{0}. Since then, various extensions
(or generalizations) of this Mittag-Leffler function have been presented. The generalized Mittag-
Leffler functions have been connected and applied to diverse research fields such as mathematics
itself, engineering, statistics, biology, chemistry, and physics (see, e.g., [2, 19, 11, 10, 18, 17]).

Among numerous extensions of the Mittag-Leffler function (1.1), we choose to recall some
of them. Wiman [3, 4] generalized the Mittag-Leffler function (1.1)

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
(<(α) > 0; β, z ∈ C). (1.2)

Prabhakar [21] extended the Eα,β(z) (1.2)

Eγα,β(z) =
∞∑
n=0

(γ)n
Γ(αn+ β)

zn

n!
(<(α) > 0; β, γ, z ∈ C). (1.3)

Srivastava and Tomovski [11] gave a further extension of (1.3)

Eγ,δα,β(z) =
∞∑
n=0

(γ)κn
Γ(αn+ β)

zn

n!
(1.4)

(<(α) > max{0,<(κ)− 1}, <(κ) > 0; β, γ, z ∈ C) .

The special case of (1.4) when

κ = q ∈ (0, 1) ∪N and min{<(β), <(γ)} > 0



Several inequalities 291

was already considered by Shukla and Prajapati [1]. Here (λ)ν denotes the Pochhammer symbol
which is defined (for λ, ν ∈ C), in terms of the familiar Gamma function Γ, by

(λ)ν :=
Γ(λ+ ν)

Γ(λ)
=

{
1 (ν = 0; λ ∈ C \ {0})
λ(λ+ 1) · · · (λ+ n− 1) (ν = n ∈ N; λ ∈ C),

(1.5)

it being understood conventionally that (0)0 := 1 (see, e.g., [5, 8, 9]).
Saxena and Nishimoto [15, 16] introduced the following generalized multi-index Mittag-

Leffler function

Eγ,κ(αj ,βj)m
[z] = Eγ,κ

[
(αj , βj)

m
j=1; z

]
=
∞∑
n=0

(γ)κn
m∏
j=1

Γ(αjn+ βj)

zn

n!
(1.6)

(
<(βj) > 0 (j = 1, . . . ,m), <

( m∑
j=1

αj

)
> max{0,<(κ)− 1}; γ, z ∈ C

)
.

The generalized multi-index Mittag-Leffler function (1.6) is normalized as

Eγ,κ(αj ,βj)m
[z] =

( m∏
j=1

Γ(βj)
)
Eγ,κ(αj ,βj)m

[z], (1.7)

which satisfies the following differential formula

(
Eγ,κ(αj ,βj)m

[z]
)′

=
d

dz
Eγ,κ(αj ,βj)m

[z] =

(γ)κ
m∏
j=1

Γ(βj)

m∏
j=1

Γ(αj + βj)
Eγ+κ,κ(αj ,αj+βj)m

[z]. (1.8)

Or, equivalently, (
Eγ,κ(αj ,βj)m

[z]
)′

=
d

dz
Eγ,κ(αj ,βj)m

[z] = (γ)κE
γ+κ,κ
(αj ,αj+βj)m

[z]. (1.9)

In this paper, we aim to establish several inequalities involving the normalized general multi-
index Mittag-Leffler function (1.7). Also we present three inequalities associated with the nor-
malized general multi-index Mittag-Leffler function (1.7). Also we point out that the results
presented here can be reduced to those corresponding to some relatively simple Mittag-Leffler
functions including certain known ones.

For our purpose, first we recall the definition of log-convexity (log-concavity). A function
h : [a, b] ⊆ R −→ R+ is said to be log-convex if logh is convex on the interval [a, b], that is,

h(αx+ (1− α)y) ≤ [h(x)]α[h(y)]1−α (1.10)

holds for all x, y ∈ [a, b] and α ∈ [0, 1]. If the inequality in (1.10) is reversed, then h is said to
be log-concave on [a, b].

The following statement obviously holds: If a function g : [a, b] ⊆ R −→ R+ is differen-
tiable, then g is log-convex (log-concave) if and only if g′/g is increasing (decreasing).

Next we give a theorem which states monotonicity of ratio of two functions depends on that
of the sequence of ratios of the coefficients of the two respective functions, which is asserted in
Theorem A (see, e.g., [20]).

Theorem 1.1. Let F (x) =
∞∑
n=0

fn x
n and G(x) =

∞∑
n=0

gn x
n be two series with real coefficients

fn and gn (n ∈ N0), which are convergent for |x| < r for some r ∈ R+. If gn ∈ R+ (n ∈ N0)
and the sequence {fn/gn}∞n=0 is (strictly) increasing (decreasing), then the function F (x)/G(x)
is also (strictly) increasing (decreasing) on [0, r).
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Further we recall another theorem which states monotonicity of ratio of certain differences
of two functions depends on that of the ratio of derivatives of two respective functions, which is
asserted in Theorem 1.2 (see, e.g., [6]).

Theorem 1.2. Let two functions f, g : [a, b] −→ R are continuous on [a, b] and differentiable on
(a, b). Also let g′(x) 6= 0 for all x ∈ (a, b). If f ′/g′ is increasing (decreasing) on the interval
(a, b), then the functions

f(x)− f(a)
g(x)− g(a)

and
f(x)− f(b)
g(x)− g(b)

(1.11)

are increasing (decreasing) on the interval (a, b).

2 Inequalities

Turán [14] showed that the Legendre polynomials Pn(x) satisfy the following determinant in-
equality ∣∣∣∣∣ Pn(x) Pn+1(x)

Pn+1(x) Pn+2(x)

∣∣∣∣∣ = Pn(x)Pn+2(x)− {Pn+1(x)}
2 ≤ 0

(−1 ≤ x ≤ 1; n ∈ N0) ,

(2.1)

where the equality occurs only when x = ±1 (see also [13]). Recently, many researchers have
applied the above classical inequality (2.1) in various polynomials and functions such as ultras-
pherical polynomials, Laguerre polynomials, Hermite polynomials, Bessel functions of the first
kind, modified Bessel functions, and polygamma functions.

We present a Turán-type inequality for the normalized general multi-index Mittag-Leffler
function (1.7), asserted in Theorem 2.1.

Theorem 2.1. Let γ, κ, αj , βj ∈ R+ (j = 1, . . . ,m; m ∈ N). Then(
Eγ,κ(αj ,βj+1)m

[z]
)2
≤ Eγ,κ(αj ,βj)m

[z] Eγ,κ(αj ,βj+2)m
[z] (2.2)

holds for all z ∈ R+.

Proof. We begin by recalling the Psi (or Digamma) function ψ(z) defined by (see, e.g., [9,
Section 1.3])

ψ(z) :=
d

dz
{log Γ(z)} = Γ′(z)

Γ(z)
or log Γ(z) =

∫ z

1
ψ(t) dt. (2.3)

The ψ(z) has the following property

ψ(z) = −γ − 1
z
+
∞∑
n=1

z

n(z + n)
, (2.4)

where γ is the Euler-Mascheroni constant (see, e.g., [9, Section 1.2]).
From (1.6) and (1.7), we write

Eγ,κ(αj ,βj)m
[z] =

∞∑
n=0

aκn(αj , βj ,m, γ) z
n,

where

aκn(αj , βj ,m, γ) :=
(γ)κn

m∏
j=1

Γ(βj)

n!
m∏
j=1

Γ(αjn+ βj)
. (2.5)
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We prove the function βj 7−→ Eγ,κ(αj ,βj)m
[z] is log-convex for βj ∈ R+ and j = 1, . . . ,m.

Since sum of log-convex functions is log-convex, it suffices to show that βj 7−→ aκn(αj , βj ,m, γ)
is log-convex for βj ∈ R+ and j = 1, . . . ,m, that is,

∂2

∂βj
2 log(aκn(αj , βj ,m, γ)) = ψ′(βj)− ψ′(βj + αj n) ≥ 0 (2.6)

(
αj , βj ∈ R+; n ∈ N0

)
.

Indeed, using (2.4), we have

ψ(2)(z) = −2
∞∑
n=0

1
(z + n)3 < 0

(
z ∈ R+

)
, (2.7)

which implies that ψ′(z) is a decreasing function on z ∈ R+. Therefore the inequality (2.6) holds
true. Hence the function βj 7−→ Eγ,κ(αj ,βj)m

[z] is log-convex for βj ∈ R+ and j = 1, . . . ,m. In
view of (1.10), we find

Eγ,κ(αj , tµj+(1−t)νj)m [z] ≤
{
Eγ,κ(αj ,µj)m

[z]
}t {

Eγ,κ(αj ,νj)m
[z]
}1−t

(2.8)(
αj , γ, κ, µ, ν, z ∈ R+, m ∈ N; 0 ≤ t ≤ 1

)
.

Setting µj = βj , νj = βj + 2 and choosing t = 1/2 in (2.8), we obtain the desired inequality
(2.2).

Lemma 2.2. The function z 7→ Γ(z + a)/Γ(z) is increasing for z, a ∈ R+. Also, the function
z 7→ Γ(z)/Γ(z + a) is decreasing for z, a ∈ R+. Further, the function

z 7−→ Γ2(z(n+ 1) + a)

Γ(z(n+ 2) + a)Γ(zn+ a)
(2.9)

is decreasing for z, a ∈ R+ and n ∈ N0.

Proof. Let f(z) := Γ(z + a)/Γ(z). Using (2.4) and taking logarithmic derivative, we get

f ′(z) =
aΓ(z + a)

Γ(z)

∞∑
n=0

1
(z + n)(z + a+ n)

> 0
(
z, a ∈ R+

)
.

So the function z 7→ Γ(z + a)/Γ(z) is increasing for z, a ∈ R+.
Similarly, we can prove the second statement. We omit the details.

Indeed, let

g(z) :=
Γ2(z(n+ 1) + a)

Γ(z(n+ 2) + a)Γ(zn+ a)

(
z ∈ R+

)
.

Taking logarithmic derivative, we have

g′(z) = g(z) {2(n+ 1)ψ(z(n+ 1) + a)− (n+ 2)ψ(z(n+ 2) + a)− nψ(zn+ a)}. (2.10)

Using (2.4) in (2.10), we get

g′(z) = −2z g(z)
∞∑
k=0

a+ k

(zn+ a+ k){z(n+ 1) + a+ k}{z(n+ 2) + a+ k}
< 0

for z, a ∈ R+ and n ∈ N0. This proves the third statement.

Theorem 2.3. Let γ, κ, αj , µj , νj (j = 1, . . . ,m) ∈ R+. Then the following statements hold.

(i) If µj < νj (νj < µj) (j = 1, . . . ,m), the function

z 7−→ Eγ,κ(αj ,µj)m
[z]
/
Eγ,κ(αj ,νj)m

[z] (2.11)

is increasing (decreasing) for z ∈ R+.
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(ii) If µj < νj (j = 1, . . . ,m),

Eγ,κ(αj ,νj)m
[z]Eγ+κ,κ(αj ,αj+µj)m

[z]− Eγ,κ(αj ,µj)m
[z]Eγ+κ,κ(αj ,αj+νj)m

[z] ≥ 0 (2.12)

for z ∈ R+.

(iii) If βj (j = 1, . . . ,m) ∈ R+,

Eγ,κ(αj ,αj+βj)m
[z]Eγ+κ,κ(αj ,αj+βj)m

[z]− Eγ,κ(αj ,βj)m
[z]Eγ+κ,κ(αj ,2αj+βj)m

[z] ≥ 0 (2.13)

for z ∈ R+.

Proof. To prove the statement in (i), using (1.6), in view of Theorem 1.1, we need to show
monotonicity of the following sequence {an}∞n=0 given by

an =
m∏
j=1

Γ(αjn+ νj)

/ m∏
j=1

Γ(αjn+ µj). (2.14)

Then we have

an+1

an
=

m∏
j=1

Γ(αj(n+ 1) + νj)

Γ(αjn+ νj)

/ m∏
j=1

Γ(αj(n+ 1) + µj)

Γ(αjn+ µj)
. (2.15)

If µj < νj (j = 1, . . . , m), in view of the first statement in Lemma 2.2, we have

Γ(αj(n+ 1) + νj)

Γ(αjn+ νj)
>

Γ(αj(n+ 1) + µj)

Γ(αjn+ µj)
. (2.16)

Using (2.16) in (2.15), we find an+1
an
≥ 1. If µj > νj (j = 1, . . . , m), we can have an+1

an
≤ 1.

This proves the statement in (i).

For (ii), in view of (i), using (1.9), we have

d

dz

{
Eγ,κ(αj ,µj)m

[z]
/
Eγ,κ(αj ,νj)m

[z]
}

=
(γ)κ

[
Eγ,κ(αj ,νj)m

[z]Eγ+κ,κ(αj ,αj+µj)m
[z]− Eγ,κ(αj ,µj)m

[z]Eγ+κ,κ(αj ,αj+νj)m
[z]
]

(
Eγ,κ(αj ,νj)m

[z]
)2 ≥ 0,

which implies the statement in (ii).

Setting µj = βj and νj = αj + βj in the result in (ii), we prove the statement in (iii).

Corollary 2.4. Let γ, κ, αj , µj , νj (j = 1, . . . ,m) ∈ R+ such that µj < νj (j = 1, . . . ,m).
Then

Eγ,κ(αj ,µj)m
[z] ≥ Eγ,κ(αj ,νj)m

[z] (2.17)

for z ∈ R+.

Proof. If µj < νj (j = 1, . . . ,m), then, from (i) of Theorem 2.3, we have

Eγ,κ(αj ,µj)m
[z]
/
Eγ,κ(αj ,νj)m

[z] ≥ Eγ,κ(αj ,µj)m
[0]
/
Eγ,κ(αj ,νj)m

[0] =
m∏
j=1

Γ(νj)

/ m∏
j=1

Γ(µj),

from which we get
m∏
j=1

Γ(µj)E
γ,κ
(αj ,µj)m

[z] ≥
m∏
j=1

Γ(νj)E
γ,κ
(αj ,νj)m

[z].

In view of (1.7), the last inequality is the same as that in (2.17).
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3 Lazarević and Wilker-type inequalities

We present Lazarević and Wilker-type inequalities for the normalized general multi-index Mittag-
Leffler function (1.7), asserted in Theorem 3.1.

Theorem 3.1. Let γ, κ, αj , µj , νj ∈ R+ with µj ≤ νj (j = 1, . . . ,m). Then

{
Eγ,κ(αj ,µj)m

[z]
} m∏
j=1

Γ(µj )

Γ(αj+µj ) ≥
{
Eγ,κ(αj ,νj)m

[z]
} m∏
j=1

Γ(νj )

Γ(αj+νj ) (3.1)

for z ∈ R+.

Proof. Using the results in Corollary 2.4 and Lemma 2.2, we can prove the result here.

4 Further inequalities

Here we present several inequalities product of generalized multi-index Mittag-Leffler functions
(1.7). To do this, we begin by proving log-concavity of the function (1.7), asserted by the fol-
lowing lemma.

Lemma 4.1. Let γ, κ, αj , βj ∈ R+ such that κ ≤ αj and βj = γ for some j ∈ {1, . . . ,m}. Then
the function z 7→ Eγ,κ(αj ,βj)m

[z] is log-concave for z ∈ R+.

Proof. We find that f(z) := Eγ,κ(αj ,βj)m
[z] is log-concave for z ∈ R+ if and only if log f(z) is

concave for z ∈ R+ if and only if d
dz log f(z) = f ′(z)/f(z) is decreasing for z ∈ R+. From

(1.6), (1.7), and (1.8), we have

f ′(z)

f(z)
=

(γ)κE
γ+κ,κ
(αj ,αj+βj)m

[z]

Eγ,κ(αj ,βj)m
[z]

= (γ)κ

∞∑
n=0

(γ + κ)κn
m∏
j=1

Γ(αjn+ αj + βj)

zn

n!

/ ∞∑
n=0

(γ)κn
m∏
j=1

Γ(αjn+ βj)

zn

n!
.

(4.1)

In order to prove that f ′(z)/f(z) is decreasing for z ∈ R+, in view of Theorem A, it suffices
to show that the following sequence, which is obtained by dividing the coefficient of zn in the
numerator series by that in the denominator series in (4.1),

an :=
Γ(γ + κ(n+ 1))

m∏
j=1

Γ(αjn+ βj)

Γ(γ + κn)
m∏
j=1

Γ(αj(n+ 1) + βj)
(n ∈ N0) (4.2)

is decreasing if and only if an+1/an ≤ 1 (n ∈ N0). Now we have to show that, for n ∈ N0,

an+1

an
=

Γ(γ + κ(n+ 2))Γ(γ + κn)

Γ2(γ + κ(n+ 1))

m∏
j=1

Γ2(αj(n+ 1) + βj)

m∏
j=1

Γ(αj(n+ 2) + βj)Γ(αjn+ βj)
≤ 1,

or, equivalently,
m∏
j=1

Γ2(αj(n+ 1) + βj)

Γ(αj(n+ 2) + βj)Γ(αjn+ βj)
≤ Γ2(κ(n+ 1) + γ)

Γ(κ(n+ 2) + γ)Γ(κn+ γ)
. (4.3)

By assumption, say, αj0 ≥ κ and βj0 = γ for some j0 ∈ {1, . . . , m}. Then, in view of the
third statement in Lemma 2.2, we obtain

Γ2(κ(n+ 1) + γ)

Γ(κ(n+ 2) + γ)Γ(κn+ γ)
≥ Γ2(αj0(n+ 1) + γ)

Γ(αj0(n+ 2) + γ)Γ(αj0n+ γ)
. (4.4)
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Also, we find from the first or second statement in Lemma 2.2 that

Γ2(αj(n+ 1) + βj)

Γ(αjn+ βj)Γ(αj(n+ 2) + βj)
≤ 1 (j = 1, . . . , m). (4.5)

Then, using (4.5) in the right side of (4.4), we prove (4.3).

Theorem 4.2. Let γ, κ, αj , βj ∈ R+ such that κ ≤ αj and βj = γ for some j ∈ {1, . . . ,m}.
Then

(i) {
Eγ,κ(αj ,βj)m

[z1]
}t {

Eγ,κ(αj ,βj)m
[z2]
}1−t

≤ Eγ,κ(αj ,βj)m
(tz1 + (1− t)z2), (4.6)

where z1, z2 ∈ R+ and t ∈ [0, 1].

(ii)

Eγ,κ(αj ,βj)m
[z]Eγ+2κ,κ

(αj ,2αj+βj)m
[z] ≤ C(αj , βj ;m)

{
Eγ+κ,κ(αj ,αj+βj)m

[z]
}2

(4.7)

for z ∈ R+, where

C(αj , βj ;m) :=
m∏
j=1

Γ(βj)Γ(2αj + βj)

Γ2(αj + βj)
≥ 1.

(iii)
Eγ+κ,κ(αj ,αj+βj)m

[z] ≤ Eγ,κ(αj ,βj)m
[z]

(
z ∈ R+

)
. (4.8)

Proof. The inequality in (i) is a restatement of the log-concavity of the function z 7→ Eγ,κ(αj ,βj)m
[z]

for z ∈ R+ in Lemma 4.1.

By Lemma 4.1, E[z] := Eγ,κ(αj ,βj)m
[z] is log-concave for z ∈ R+ if and only if

d

dz

E′[z]

E[z]
=

E′′[z]E[z]− {E′[z]}2

{E[z]}2 ≤ 0

for z ∈ R+ if and only if

E′′[z]E[z] ≤ {E′[z]}2 (
z ∈ R+

)
. (4.9)

Using (1.8) in (4.9), we obtain

Eγ,κ(αj ,βj)m
[z]Eγ+2κ,κ

(αj ,2αj+βj)m
[z] ≤ (γ)κ

(γ + κ)κ
C(αj , βj ;m)

{
Eγ+κ,κ(αj ,αj+βj)m

[z]
}2

(4.10)

for z ∈ R+. In view of the first or second statement in Lemma 2.2, we have

(γ)κ
(γ + κ)κ

=
Γ2(γ + κ)

Γ(γ)Γ(γ + 2κ)
≤ 1, (4.11)

which is used in (4.10) to prove (4.7). Here, C(αj , βj ;m) ≥ 1 can also be shown by the first or
second statement in Lemma 2.2.

As in the proof of (ii), E[z] := Eγ,κ(αj ,βj)m
[z] is log-concave for z ∈ R+ if and only if

E′[z]/E[z] is decreasing for z ∈ R+. Thus we find

E′[z]/E[z] ≤ lim
z→0+

E′[z]/E[z] = E′[0],

from which we have
E′[z] ≤ E′[0]E[z]. (4.12)

Applying (1.8) to (4.12), we obtain the inequality (4.8).
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5 Special cases

Since the generalized multi-index Mittag-Leffler function Eγ,κ(αj ,βj)m
[z] (1.6) contain relatively

simple Mittag-Leffler functions such as (1.2), (1.3) and (1.4) as its special cases, the results
presented here may be reduced to yield those corresponding to the functions (1.2), (1.3) and
(1.4).

Settingm = γ = κ = 1 in the result in Theorem 2.1 yields the corresponding known inequal-
ity [12, Theorem 1]. Taking m = 1 and κ ∈ (0, 1) ∪ N in Theorem 2.1 gives the corresponding
known inequality [12, Theorem 5]. The known result [12, Theorem 4] is a special case of the
inequality in Theorem 3.1.
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