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Abstract In this paper, we compute the geodetic set and geodetic number of circulant graphs
Cn({S}) where S = {1, 3}.

1 Introduction

A graph G is a finite simple connected graph without loops and multiple edges.

The minimum number of a geodetic set of G is called the geodetic number and this number
is denoted by g(G).

A graph is called circulant graph Cn({a1, a2, · · · , am}) where 1 < a1 < a2 < · · · < am ≤
bn2 c and two distinct vertices adjacent if |i− j| ≡ al(mod n).

Also, recently Al-Labadi [1] studied the geodetic number of circulant graphs ofCm({2, 4, · · · , bm2 c−
1, bm2 c}) and study the other properties of the circulant graph. Fore more application in geodetic
number of graph, see [5-12].

2 Preliminary Lemmas

Let Cn({1, 3}) be the circulant graphs.
In this section, we will present some crucial significant lemmas.

To light the idea of the following lemma. A vertex u in a graph G is called a extreme point if
the subgraph induced by its neighbors is complete. If S is a geodetic, then S contains the set of
extreme points.
Now, we give some lemmas of properties Cn({1, 3}).

Lemma 2.1. The circulant graphs Cn({1, 3}) has no extreme point.

Proof. Let va be the arbitrary vertex in Cn({1, 3}). Observe that va is adjacent to vi and vj ,
where i = {a+ 1, a+ 3} and j = {a− 1, a− 3}. The two vertices vi and vj are not adjacent in
Cn({1, 3}), since the distance between them in Cn({1, 3}) is not one or three. So, va is not an
simplicial vertex.
So, va is not an extreme point in the circulant graphs Cn({1, 3}) for any vertex va.

The following lemma, determine when the circulant graphs Cn({S}) is connected, see [12].

Lemma 2.2. The circulant graphs Cn({S}), where S = {a1, ..., ak}, is connected if and only if
gcd(a1, ..., ak) = 1.

This outcome to the following lemma, we determine the diameter of the circulant graphs
Cn({1, 3}).
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Lemma 2.3. If n = 6q + r for some positive integer q and 0 ≤ r ≤ 5, then the diameter of the
circulant graphs Cn({1, 3}) is

diam(Cn({1, 3})) =

{
q + 1 , if n = 6q + r, r 6= 4
q + 2 , if n = 6q + 4.

Proof. Suppose that n = 6q + r, r 6= 4. We have the following cases:

• case 1: If n = 6q, then observe that d(v0, vn
2
) = q. For each i with 0 ≤ i ≤ 2 the path,

v0, vn±(1×3−2i), vn±(2×3−2i), ..., vn±((q−1)×3−2i), vn±(q×3−2i) is of length q. Therefore the
distance between v0 and va is d(v0, va) ≤ q + 1, where d(v0, v3q−1) = q + 1 the path
v0, v3, v3×2, ..., v3q, v3q−1 is of length q + 1.

• case 2:If n = 6q+1, then observe that d(v0, vbn2 c−1) = q+1. For each i with 0 ≤ i ≤ 2 the
path, v0, v1×3−2i, v2×3−2i, ..., v(q−1)×3−2i, vq×3−2i, vq×3−2i−1 is of length q + 1. Therefore
the distance between v0 and va is d(v0, va) ≤ q + 1.

• case 3: If n = 6q + 2, then observe that d(v0, vn
2
) = q + 1. For each i with 0 ≤ i ≤ 1 the

path, v0, vn±(1×3−2i), vn±(2×3−2i), ..., vn±((q−1)×3−2i), vn±(q×3−2i) is of length q+1. So, the
distance between v0 and va is d(v0, va) ≤ q + 1.

• case 4: If n = 6q + 3, then observe that d(v0, vbn2 c) = q + 1. For each i with 0 ≤ i ≤ 1 the
path, v0, v(1×3−2i), v(2×3−2i), ..., v((q−1)×3−2i), v(q×3−2i) is of length q + 1. So, the distance
between v0 and va is d(v0, va) ≤ q + 1.

• case 5: If n = 6q+5, then observe that d(v0, vbn2 c) = q+1. The path, v0, vn±(1×3), vn±(2×3),

..., vn±((q−1)×3), vn±(q×3) is of length q+1. So, the distance between v0 and va is d(v0, va) ≤
q + 1.

Now if n = 6q + 4, then we have d(v0, vn
2
) = q. For each i with 0 ≤ i ≤ 2 the path

v0, vn±(1×3−2i), vn±(2×3−2i), ..., vn±((q−1)×3−2i), vn±(q×3−2i) is of length q + 2. Therefore the
distance between v0 and va is d(v0, va) ≤ q + 2.

The following lemma is a necessary result to determine the geodetic set in the circulant graph
Cn({1, 3}).

We subtract the vertices of the circulant graph for both sides of the cycle Cn (the side of
{v0, v1, ..., vbn2 c} and the side of {vn−1, vn−2, ..., vbn2 c+1}).

Lemma 2.4. For positive integers n and q if ICn({1,3})(v0, va)
⋂
{v0, v1, ..., vbn2 c} 6= φ and

ICn({1,3})(v0, va)
⋂
{vn−1, vn−2, ..., vbn2 c+1} 6= φ. Then

a =


n
2 ,

n
2 − 1, n

2 + 1, n− 2, 2 , if n = 6q, n = 6q + 4
n
2 − 2, n

2 , n− 2, 2 , if n = 6q + 2,
dn2 e+ d

r
2 e, b

n
2 c − d

r
2 e, n− 2, 2 , if n is odd.

Proof. First, we begins proof with the trivial two points in all cases are n − 2 and 2, since
ICn({1,3})(v0, v2)

⋂
{v0, v1, ..., vbn2 c} = {v1} and ICn({1,3})(v0, v2)

⋂
{vn−1, vn−2, ..., vbn2 c+1} =

{n− 1}. Also, ICn({1,3})(v0, v{n−2})
⋂
{v0, v1, ..., vbn2 c} = {v1} and ICn({1,3})(v0, v{n−2})⋂

{vn−1, vn−2, ..., vbn2 c+1} = {n− 1}.
We have the following cases:

• Case 1: If n = 6q + r is even, then we have the following subcases

– Subcase 1.1: If r = 0, then the vertex n
2 = 3q is d(v0, v3q) = q.

Since diam(C6q({1, 3})) = q + 1, ICn({1,3})(v0, va)
⋂
{v0, v1, ..., vbn2 c} 6= φ and

ICn({1,3})(v0, va)
⋂
{vn−1, vn−2, ..., vbn2 c+1} 6= φ, we have d(v0, va) ≥ q + 1. There-

fore a ∈ {n2 , 3q − 1, 3q + 1}.
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– Subcase 1.2: If r = 2, then the vertex n
2 = 3q + 1 is d(v0, v3q+1) = q + 1.

Since diam(C6q+2({1, 3})) = q + 1, ICn({1,3})(v0, va)
⋂
{v0, v1, ..., vbn2 c} 6= φ and

ICn({1,3})(v0, va)
⋂
{vn−1, vn−2, ..., vbn2 c+1} 6= φ, we have d(v0, va) ≥ q + 1. There-

fore a ∈ {n2 = 3q + 1, 3q − 1}.
– Subcase 1.3: If r = 4. then the vertex n

2 = 3q + 2 is d(v0, v3q+2) = q + 2.
Since diam(C6q+4({1, 3})) = q + 2, ICn({1,3})(v0, va)

⋂
{v0, v1, ..., vbn2 c} 6= φ and

ICn({1,3})(v0, va)
⋂
{vn−1, vn−2, ..., vbn2 c+1} 6= φ, we have d(v0, va) ≥ q + 1. There-

fore a ∈ {n2 = 3q + 1, 3q − 1}.
• Case 2: If n = 6q + r is odd, then bn2 c = 3q + r1 where 0 ≤ r1 ≤ 2 we have d(v0, v3q) =
q. Since the diam(Cn({1, 3})) = q + 1, ICn({1,3})(v0, va)

⋂
{v0, v1, ..., vbn2 c} 6= φ and

ICn({1,3})(v0, va)
⋂
{vn−1, vn−2, ..., vbn2 c+1} 6= φ, we have d(v0, va) = q + 1. Therefore

a = 3q − 1 i.e a = 3q ± d r2 e.

3 The geodetic number of the circulant graphs Cn({1, 3})

In this section we determine the geodetic number of the circulant graphs Cn({1, 3}). We also,
assume the vertex set of Cn({1, 3}) is {v0, v1, ..., vn−1}.

Lemma 3.1. If n = 6q + r for some positive integer q and 0 ≤ r ≤ 6, then g(Cn({1, 3})) = 2 if
and only if r = 4.

Proof. Suppose that n = 6q + 4, then d(v0, v3q+2) = 3q + 2. For each i with 0 ≤ i ≤ 2 the
path v0, vn±(1×3−2i), vn±(2×3−2i), ..., vn±((q−1)×3−2i), vn±(q×3−2i) is of length 3q + 2 and so it is
v0 − v3q+2 geodesic cover all values of i. These paths cover the vertices v0, v1, ..., v3q+2. Since
v0, and v3q+2 are antipodal points in Cn({1, 3}), we have S = {v0, v3q+2} is geodetic set of
Cn({1, 3}). Now, suppose that n = 6q + r and g(Cn({1, 3})) = 2. Let S = {v0, va} be a
minimal geodetic set of Cn({1, 3}). Then v0 − va geodesic covers all vertices v0, v1, v2, · · · , va
and va, va+1, va+2, · · · , v0. By using Lemma4, a = 3q+ r1 for some positive integer 0 ≤ r1 ≤ 2
and n− a = 3q + r − r1.

On the other hand, since v0−va geodesic covers all vertices v0, v1, v2, · · · , va and va, va+1, ...,
v0, thus r − r1 = r1, so r = 2r1. Suppose that n = 6q + r and r 6= 4, i.e r1 6= 2. In this case
n = 6q + 2 or n = 6q by using Lemma 4, for any cases of a not all vertices lie on any v0 − va
geodesic. Hence g(Cn({1, 3})) > 2.

In the following Lemma, we found the geodetic number of Cn({1, 3}) when n = 6q + r
where r 6= 4.

Lemma 3.2. If n = 6q+r for some positive integer q > 1 and 0 ≤ r ≤ 5, then g(Cn({1, 3})) = 3
if and only if r = 0, 1, 3.

Proof. Suppose that n = 6q + r for some positive integer q and n 6= 6, 9 and 11, then:

Case 1: Let r = 0. Consider S = {v0, vn
2 −1, vn

2 +1}, the v0 − vn
2 −1 geodesics cover all the

vertices {v0, v1, v2,..., vn
2 −1}. And v0−vn

2 +1 geodesics cover all vertices {v0, vn−1, vn−2, ..., vn
2 +1}.

And using Lemma 5, g(Cn({1, 3})) > 2. Hence S is a geodetic set and g(Cn({1, 3})) = 3.
Case 2: Let r = 1. Consider S = {v0, vbn2 c−1, vdn2 e+1}, the v0 − vbn2 c−1 geodesics
cover all vertices {v0, v1, ..., vn

2
, vbn2 c−1}. And v0 − vdn2 e+1 geodesic cover all vertices

{v0, vn−1, vn−2, ..., vdn2 e, vd
n
2 e+1}. And using Lemma 5, g(Cn({1, 3})) > 2. Hence S is

a geodetic set and g(Cn({1, 3})) = 3.
Case 3: Let r = 3. Consider S = {v0, vbn2 c−2, vdn2 e+2}, the v0 − vbn2 c−2 geodesics
cover all vertices {v0, v1, ..., vbn2 c − 2, vbn2 c−1}. And v0 − vdn2 e+2 geodesic cover all ver-
tices {v0, vn−1, vn−2, ..., vdn2 e+2, vdn2 e+1}. And vbn2 c−2−vdn2 e+1 geodesics cover all vertices
{vbn2 c−2, vbn2 c−1, vbn2 c, ..., vd

n
2 e, vd

n
2 e+1, vdn2 e+2}. By using Lemma 5, g(Cn({1, 3})) > 2.

Hence S is a geodetic set and g(Cn({1, 3})) = 3.
Now, suppose that n = 6q + r and r 6= 0, 1, 3, 4. In this case, the vertex vn+1

2 +1 can not lie
on any v0 − va geodesic. Hence g(Cn({1, 3})) > 3.
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Now, we discuss the cases for the geodetic number when n = 6q + r, where r = 2, 5.

Lemma 3.3. For the circulant graph Cn({1, 3}), suppose that n = 6q + r for some positive
integer q and r = 2, 5, then g(Cn({1, 3})) = 4.

Proof. Suppose that n = 6q + r for some positive integer q and r = 2, 5, then:

• Case 1: Let n = 6q + 2. Then consider S = {v0, vn
2 −2, vn

2
, vn−2}, the v0 − vn

2 −2
geodesics cover all vertices {v0, v1, ..., vn

2 −2, vn
2 −1}. The v0−vn

2
geodesic cover all vertices

{v0, vn−1, vn−3, vn−4, vn−6, ..., vn
2 +4, vn

2 +3, vn
2 +1, vn

2
} and vn

2
− vn−2 geodesics cover all

vertices {vn−2, vn−5, ..., vn
2 −2, vn

2
}. And using Lemma 6 , g(Cn({1, 3})) > 3. Hence S is

a geodetic set and g(Cn({1, 3})) = 4.

• Case 2: Let n = 6q + 5, q > 1. Then consider S = {v0, vbn2 c−3, vdn2 e+3, vdn2 e+1}, the
v0 − vbn2 c−3 geodesics cover all vertices {v0, v1, v2, ..., vbn2 c−2, vbn2 c−3}, the v0 − vdn2 e+3
geodesics all vertices {v0, vn−1, vn−2, ..., vdn2 e+2, vdn2 e+3} and the vbn2 c−3−vdn2 e+1 geodesics
all vertices {vbn2 c−3, vbn2 c−2, vbn2 c−1, vbn2 c, vd

n
2 e, vd

n
2 e+1}. And using Lemma 6, g(Cn({1, 3})) >

3. Hence S is a geodetic set and g(Cn({1, 3})) = 4.

Finally, we agitate the case for when the geodetic number is 5.

Lemma 3.4. If n = 9, 11, then g(Cn({1, 3})) = 5.

Proof. If n = 9, then consider S = {v0, v2, v4, v6, v7} is a geodetic set of C9({1, 3}). Hence
g(C9({1, 3})) = 5.
If n = 11, then consider S = {v0, v1, v2, v3, v10} is a geodetic set of C11({1, 3}). Hence
g(C11({1, 3})) = 5.

4 The girth of the circulant graphs Cn({1, 3})

In this section we find the girth of the circulant graphs Cn({1, 3}) and we find the relation be-
tween the geodetic number of the circulant graph Cn({1, 3}) and the girth of the circulant graph
Cn({1, 3}).

Definition 4.1. The smallest cycle in the graph G is called the girth of G and to simplify we
notation by girth(G).

Lemma 4.2. If n = 6q+4 for some positive integer q, then girth ofCn({1, 3}) is girth(Cn({1, 3})) =
2q + 2.

Proof. Suppose that n = 6q + 4, then d(v0, v3q) = q. For each i with 0 ≤ i ≤ 2 the
path v0, vn±(1×3−2i), vn±(2×3−2i), ..., vn±((q−1)×3−2i), vn±(q×3−2i) is of length 3q + 2 and so it
is v0 − v3q+2 geodesic cover all values of i . This cycle with the vertices v0, v3, v2×3, ..., vn

2 −2,
vn

2 +3, vn
2 +6 ..., vn−1, v0 is smallest length. Since vn

2 −2, and vn
2 +3 are antipodal points inCn({1, 3}),

we have girth of Cn({1, 3}) is girth(Cn({1, 3})) = 2q + 2.

In the following Lemma, we found the girth of the circulant graph Cn({1, 3}) when n =
6q + r where r = 0, 1 and 3.

Lemma 4.3. If n = 6q + r for some positive integer q > 1 and r = 0, 1 and 3, then the girth of
the circulant graph is

girth(Cn({1, 3})) =

{
2q , if r = 0,

2q + 1 , if r = 1 or r = 3.

.
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Proof. Suppose that n = 6q + r for some positive integer q and n 6= 6, 9 and 11, then:

Case 1: If r = 0, then d(v0, v3q) = q then this cycle with the vertices v0, v3, ...., v3q,
v3q+3, v3q+6, ..., vn−3, v0 is the smallest length. Since v0, and v3q are antipodal points in
Cn({1, 3}), we have girth of Cn({1, 3}) is girth(Cn({1, 3})) = 2q.
Case 2: Let r = 1, then d(v0, v3q) = q then this cycle with the vertices v0, v3, ...., v3q,
v3(q+1), v3(q+2), ..., vn−1, v0 is the smallest length. We have girth ofCn({1, 3}) is girth(Cn({1, 3})) =
2q + 1.
Case 3: If r = 3, then d(v0, v3q) = q then this cycle with the vertices v0, v3, ...., v3q,
v3q+3, v3q+6, ..., vn−3, v0 is the smallest length. Since v3q, and v3q+3 are antipodal points in
Cn({1, 3}), we have girth of Cn({1, 3}) is girth(Cn({1, 3})) = 2q + 1.

Now, we will discuss the cases for the girth of the circulant graphCn({1, 3}) when n = 6q+r,
where r = 2, 5.

Lemma 4.4. For the circulant graph Cn({1, 3}), suppose that n = 6q + r for some positive
integer q and r = 2, 5, then the girth of the circulant graph of Cn({1, 3}) is

girth(Cn({1, 3})) =

{
2q + 2 , if r = 2,
2q + 3 , if r = 5.

..

Proof. Suppose that n = 6q + r for some positive integer q and r = 2, 5, then:
• Case 1: If n = 6q + 2, then d(v0, v3q) = q then this cycle with the vertices v0, v3, ...., v3q,
v3q+3, v3q+6, ..., vn−2, vn−1, v0 is the smallest length. Then we have girth of Cn({1, 3}) is
girth(Cn({1, 3})) = 2q + 2.

• Case 2: If n = 6q + 5, then d(v0, v3q) = q, d(v0, v3q+1) = q + 1 and d(v3q+1, vn−1) = 3q.
So,this cycle with the vertices v0, v3, ...., v3q, v3q+3, v3q+6, ..., vn−2, vn−1, v0 is the smallest
length. Then we have girth of Cn({1, 3}) is girth(Cn({1, 3})) = 2q + 3.

Finally, we agitate the case for n = 9 or n = 11.

Lemma 4.5. If n = 9, 11, then girth(C9({1, 3})) = 3 and girth(C9({1, 3})) = 4.

Proof. If n = 9, then consider the smallest cycle v0, v3, v6, v0. Hence the girth of the circulant
graph is girth(C9({1, 3})) = 3.
If n = 11, then consider the smallest cycle v0, v3, v6, v9, v0. Hence the girth of the circulant graph
is girth(C11({1, 3})) = 4.

5 Conclusion

In this paper, we determined the geodetic number of circulant graphs Cn({1, 3}) and we sum up
our calculations in the following theorem.

Theorem 5.1. If n = 6q + r for some integer q and n 6= 6, then

g(Cn({1, 3})) =


2 , if n = 6q + 4,
3 , if n = 6q or n = 6q + 1 or n = 6q + 3,
4 , if n = 6q + 2 or n = 6q + 5,
5 , if n = 9 or n = 11.
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