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Abstract The pair of Lucas and Fibonacci numbers and Pell-Lucas and Pell numbers and
their numerous elegant combinatorial identities occupy a significant area in the study of combi-
natorial identities. With the application of Chebyshev polynomials of the first and second kind,
the two pairs may be further split into two pairs of twin number pairs. In the present paper, one
such twin number pair is defined, and we call them as Pell-Chebyshev twin number pairs. Many
of their combinatorial identities are derived which show remarkable interconnections among
them.

1 Introduction

Pascals triangle, continued fractions, partition of numbers, matrices and determinants, linear
and nonlinear difference equations, convolution sums and so on, produce many beautiful com-
binatorial identities of several combinatorial entities like pair of sequences of numbers, pair of
sequences of polynomials and so on ( [10], [13], [14], [17], [18], [19]). One of the major portions
of these identities is spread on the two well known pairs of numbers, namely, the pair of Lucas
and Fibonacci numbers[17], [19] as well as Pell-Lucas and Pell numbers[18]. They have prac-
tical applications in computer science such as quantum key distribution[7], cryptography[15],
Coding theory [4] and so on. There are identities which highlight the striking similarities among
the two pairs. For the sake of clarity the standard notations are listed in Table(1):

No. Entity Notation and definition

1 Golden Ratio and its reciprocal Φ =
√

5+1
2 , φ =

√
5−1
2

2 Pythagorean algebraic integer and its reciprocal α =
√

2 + 1, β =
√

2− 1

3 Fibonacci numbers
Fn = 1√

5
(Φn − (−φ)n)

= 0, 1, 1, 2, 3, 5, 8, . . .

4 Lucas numbers
Ln = Φn + (−φ)n

=2, 1, 3, 4, 7, 11, 18, . . .

5 Pell numbers
qn = 1

2
√

2
(αn − (−β)n)

= 0, 1, 2, 5, 12, 29, . . .

6 Pell-Lucas numbers
pn = 1

2(α
n + (−β)n)

= 1, 1, 3, 7, 17, 41, . . .

Table 1. Basic notations and definitions

The two pairs of numbers (Ln, Fn) and (pn, qn) appear to be very simple but they have pro-
found mathematical ideas behind the variety of their combinatorial identities. The following
Table 2 shows their striking similarities:
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No. (Ln, Fn) (pn, qn)

1
Fn = Fn+1 − Fn−1

Ln = Ln+1 − Ln−1

2qn = qn+1 − qn−1

2pn = pn+1 − pn−1

2
Ln = Fn+1 + Fn−1

5Fn = Ln+1 + Ln−1

2pn = qn+1 + qn−1

4qn = pn+1 + pn−1

3 Fn−1
Fn

= [0; 1, 1, . . . , 1]n
qn−1
qn

= [0; 2, 2, . . . , 2]n

4
F2n+1 = F 2

n + F 2
n+1

F2n = Ln Fn

q2n+1 = q2
n + q2

n+1

q2n = 2 pn qn

5 (2 Fn Fn+1)2 + (Fn−1 Fn+1)2 = F 2
2n+1

(2 qn qn+1)2 + (pn pn+1)2 = q2
2n+1

where the terms on the left hand side

have two consecutive numbers.

6

Fn+1 =
bn2 c∑
k=0

 n− k

k


-rising diagonal sum

of Pascal triangle.

qn+1 =
bn2 c∑
k=0

 n+ 1

2k + 1

 2k

-weighted row sum of

second alternate terms

of the Pascal triangle.

Table 2. Similarities between (Ln, Fn) and (pn, qn)

Figure 1. Graph of pair of hyperbolas

Diophantine equations[2][3] such as ax + by = ±1, x2 − 2y2 = ±1, x2 − 5y2 = ±4 and so
on have great history in number theory with interesting connection to continued fractions, accel-
eration of convergence technique and many more. Let us consider the Pell’s equation[2][3][9]
x2 −Ny2 = ±1 when N ≥ 2 is a square free positive number. The solutions are exactly integer

coordinates on the four parts of pair of hyperbolic curves namely, y = ±
√

x2∓1
N . Geometri-

cally x2 − 2y2 = ±1 form an envelope or kernel for all those four parts of pair of hyperbolas
refer fig(1). Any M− data points placed on such hyperbolas naturally are inside the kernel



310 R. Rangarajan, Mukund. R, Honnegowda. C. K and Mayura. R

x2 − 2y2 = ±1. The kernel is separated by the pair of lines x2 − 2y2 = 0. This model has moti-
vated many engineers who wish to design data analysis tools to work on multi variable functions
with values ±1. Given any M− data in the form of n− dimensional vectors, it is a challenging
problem to design kernel and the separating hyper planes which is a serious mathematical disci-
pline in machine learning[5][8]. In this context the Pell-Lucas and Pell numbers being solution
of simplest Pell’s equation have a practical significance.

Chebyshev polynomials of first and second kind[10][13] play a very significant role in deriv-
ing many combinatorial identities of certain sequences of numbers such as Binet forms, recur-
rence relations, generating functions, convolutional identities and so on. In the standard nota-
tions:

Tn(x) =
1
2
[x+

√
x2 − 1]n + [x−

√
x2 − 1]n, n = 0, 1, 2, 3, . . .

andUn−1(x) =
1

2
√
x2 − 1

[x+
√
x2 − 1]n − [x−

√
x2 − 1]n, n = 1, 2, 3, . . .

define the Chebyshev polynomials of first and second kind. They are also regarded as trigono-
metric polynomials because if −1 < x < 1,

Tn(cosθ) = cosnθ; Un(cosθ) =
sin(n+ 1)θ

sinθ

As a result, they exhibit many combinatorial identities as well as orthogonality properties. In
the recent literature one can find many applications of Chebyshev polynomials in the field of
computer science such as cryptography[1], google page ranking[12], wavelets[11] and so on. In
the present paper Chebyshev polynomials are applied to define Pell-Chebyshev twin pairs and
derive their combinatorial identities.

2 Twin pairs of Pell-Chebyshev numbers

The whole idea begins with writing the golden ratio in the form

Φ =

√
5

2
+

1
2
=

(
Φ + φ

2

)
+

√(
Φ + φ

2

)2

− 1

and its reciprocal in the form

φ =

√
5

2
− 1

2
=

(
Φ + φ

2

)
−

√(
Φ + φ

2

)2

− 1.

An immediate result is

Φ
n + φn = 2Tn

(
Φ + φ

2

)
Φ
n+1 − φn+1 = Un

(
Φ + φ

2

)

( Because 2

√(
Φ+φ

2

)2
− 1 = 1 = Φ− φ).

As a direct consequence we can split (Ln, Fn) into the following twin pairs:

(
√

5F2n−1,
√

5F2n) =

(
2T2n−1

(√
5

2

)
, U2n−1

(√
5

2

))

(L2n−1, L2n) =

(
U2n−2

(√
5

2

)
, 2T2n

(√
5

2

))
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It is an amazing result that the constant α =
√

2 + 1 and the reciprocal β =
√

2 − 1 also have
similar expressions in terms of Chebyshev polynomials.

αn + βn = 2Tn
(
α+ β

2

)
αn+1 − βn+1 = 2Un

(
α+ β

2

)
These beautiful expressions have motivated us to define two pairs of sequences {(An, Bn), (Cn, Dn)}
given by Binet form:

Definition 2.1.

An = α2n−1 + β2n−1 = 2T2n−1(
√

2) (2.1)

Bn =
α2n−1 − β2n−1

α− β
= U2n−2(

√
2) (2.2)

Cn = α2n + β2n = 2T2n(
√

2) (2.3)

Dn =
α2n − β2n

α− β
= U2n−1(

√
2) (2.4)

are defined as twin Pell-Chebyshev pairs.

We may write each one of the above equations (2.1) to (2.4) in the form

xn = k1(α
2)n + k2(β

2)n

As a result, each one of the sequences {An} to {Dn} must satisfy the following relation:

xn+1 = (α2 + β2)xn − (α2β2)xn−1

n = 1, 2, 3 . . ., x0 = k1 + k2 and x1 = k1α
2 + k2β

2.

Theorem 2.2. For n = 1, 2, 3 . . .

(i) An+1 = 6An −An−1, A0 = A1 = 2
√

2

(ii) Bn+1 = 6Bn −Bn−1, B0 = −1, B1 = 1

(iii) Cn+1 = 6Cn − Cn−1, C0 = 2, C1 = 6

(iv) Dn+1 = 6Dn −Dn−1, D0 = 0, D1 = 2
√

2

The Pell-Chebyshev twin pairs can also be written as

(An, Bn) = (2
√

2q2n−1, p2n−1) = {(2
√

2,−1), (2
√

2, 1), (10
√

2, 7), . . .}

(Cn, Dn) = (2p2n,
√

2q2n) = {(2, 0), (6, 2
√

2), (34, 12
√

2), . . .}

Using the basic property of (pn, qn), p2
n − 2q2

n = (−1)n, we may rewrite similar expressions for
{An} to {Dn} in the following theorem:

Theorem 2.3. For n = 1, 2, 3, . . .

(i)A2
n = 4[1 +B2

n].

(ii)C2
n = 4[1 +D2

n].
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Let us note that for n = 1, 2, 3, . . .

An
2

= T2n−1(
√

2),
Cn
2

= T2n(
√

2)

Bn+1 = U2n(
√

2), Dn = U2n−1(
√

2)

and by applying standard identities satisfied by Tn(x) and Un(x)

Tn+1(x) = 2xTn(x)− Tn−1(x), T0(x) = 1, T1(x) = x, n = 1, 2, 3, . . .

Un+1(x) = 2xUn(x)− Un−1(x), U0(x) = 1, U1(x) = 2x, n = 1, 2, 3, . . .

we prove the following theorem :

Theorem 2.4. For n = 1, 2, 3, . . .

(i) 2
√

2An = Cn + Cn−1

(ii) 2
√

2Bn = Dn +Dn−1

(iii) 2
√

2Cn = An +An+1

(iv) 2
√

2Dn = Bn +Bn+1

Let us write p2n−1 = Bn, p2n = Cn

2 , q2n−1 =
An

2
√

2
, q2n = Dn√

2
, n = 1, 2, 3, . . . and let us apply

the following standard 3-term recurrence relations satisfied by (pn, qn): For n = 1, 2, 3, . . .,

pn+1 = 2pn + pn−1, qn+1 = 2qn + qn−1, pn = qn + qn−1, 2qn = pn + pn−1

one can prove the following theorem:

Theorem 2.5. For n = 1, 2, 3, . . .

(i) An = An−1 + 4Dn−1

(ii) Bn = Bn−1 + Cn−1

(iii) Cn = Cn−1 + 4Bn
(iv) Dn = Dn−1 +An

(v)
√

2An = 2Bn + Cn−1

(vi) 2
√

2Bn = An + 2Dn−1

(vii)
√

2Cn = An + 2Dn

(viii) 2
√

2Dn = 2Bn + Cn

By combining theorem 2.2, 2.4 and 2.5 one obtains the following corollary.

Corollary 2.6. For n = 1, 2, 3, . . .

(i) An =
An+1 +An−1

6
=
Bn+1 −Bn−1

2
√

2
=
Cn + Cn−1

2
√

2
= Dn −Dn−1

(ii) Bn =
An+1 −An−1

8
√

2
=
Bn+1 +Bn−1

6
=
Cn − Cn−1

4
=
Dn +Dn−1

2
√

2

(iii) Cn =
An+1 +An

2
√

2
= Bn+1 −Bn =

Cn+1 + Cn−1

6
=
Dn+1 −Dn−1

2
√

2

(iv) Dn =
An+1 −An

4
=
Bn+1 +Bn

2
√

2
=
Cn+1 − Cn−1

8
√

2
=
Dn+1 +Dn−1

6
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There is a determinant connection between {Xn}(Xn = An or Bn or Cn or Dn) and
{Yn}(Yn = F2n−1 or F2n or L2n−1 or L2n) given by

Theorem 2.7. ∣∣∣∣∣Xn+1 Xn

Yn+1 Yn

∣∣∣∣∣+
∣∣∣∣∣Xn−1 Xn

Yn−1 Yn

∣∣∣∣∣ = 3

∣∣∣∣∣Xn 0
0 Yn

∣∣∣∣∣
The proof is a simple consequence of the 3-term recurrence relations

Xn+1 +Xn−1 = 6Xn

Yn+1 + Yn−1 = 3Yn.

If X(t) =
∞∑
n=0

Xnt
n and if Xn+1 = 6Xn −Xn−1, then

X(t) =
X0 + (X1 − 6X0)t

1− 6t+ t2
.

As a result we obtain the generating functions of {An}, {Bn}, {Cn}, {Dn} given in the following
theorem:

Theorem 2.8.

(i)
∑∞
n=0 Ant

n =
2
√

2(1− 5t)
1− 6t+ t2

(ii)
∑∞
n=0 Bnt

n =
−1 + 7t

1− 6t+ t2

(iii)
∑∞
n=0 Cnt

n =
2− 6t

1− 6t+ t2

(iv)
∑∞
n=0 Dnt

n =
2
√

2t
1− 6t+ t2

3 Convolutional Identities

In the literature we can find many convolution identities of Fibonacci Numbers and Lucas Num-
bers [17][19]. The first three such identities are [6][16]:

(i)
n∑
k=0

LkLn−k = (n+ 1)Ln + 2Fn+1

(ii)
n∑
k=0

LkFn−k =
n∑
k=0

FkLn−k = (n+ 1)Fn

(iii)
n∑
k=0

FkFn−k =
1
5
(n+ 1)Ln −

2
5
Fn+1

In the present section many similar identities of the twin pair are worked out.
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Theorem 3.1.

(i)
n∑
k=0

Ak = Dn +D1

(ii) 4
n∑
k=0

Bk = Cn − C1

(iii)
n∑
k=0

Ck = Bn+1 +B1

(iv) 4
n∑
k=0

Dk = An+1 −A1

Proof. The theorem follows by splitting the left hand side sum into two geometric series in the
power of α2 and β2 respectively and applying the definition of Dn, Cn, Bn and An respectively.

Theorem 3.2.

(i)
n∑
k=0

(nk)Ak =

{
(2
√

2)2m+1Cm if n = 2m+ 1
(2
√

2)2mAm if n = 2m

(ii)
n∑
k=0

(nk)Bk =

{
(2
√

2)2m+1Dm if n = 2m+ 1
(2
√

2)2mBm if n = 2m

(iii)
n∑
k=0

(nk)Ck =

{
(2
√

2)2m−1Am if n = 2m− 1
(2
√

2)2mCm if n = 2m

(iv)
n∑
k=0

(nk)Dk =

{
(2
√

2)2m−1Bm if n = 2m− 1
(2
√

2)2mDm if n = 2m

Proof. The idea of proof for this theorem is quite similar to that of previous theorem. Here
one has to make sum using binomial theorem with powers in α2 or β2 and one has to split
each sum into even and odd number of terms which show directly what is suitable among
{An, Bn, Cn, Dn} to fit into the situation.

Theorem 3.3.

(i)
n∑
k=0

Ak An−k = (n+ 1) Cn−1 +
1√
2
Dn+1

(ii) 4
n∑
k=0

Bk Bn−k = (n+ 1) Cn−1 −
1√
2
Dn+1

(iii)
n∑
k=0

Ck Cn−k = (n+ 1) Cn +
1√
2
Dn+1

(iv) 4
n∑
k=0

Dk Dn−k = (n+ 1) Cn −
1√
2
Dn+1

(v)
n∑
k=0

Ak Bn−k =
n∑
k=0

Bk An−k = (n+ 1)Dn−1

(vi)
n∑
k=0

Ck Dn−k =
n∑
k=0

Dk Cn−k = (n+ 1)Dn

(vii)
n∑
k=0

Ak Cn−k =
n∑
k=0

Ck An−k = (n+ 1)An +Dn+1
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(viii) 4
n∑
k=0

Bk Dn−k = 4
n∑
k=0

Dk Bn−k = (n+ 1)An −Dn+1

(ix)
n∑
k=0

Ak Dn−k =
n∑
k=0

Dk An−k = (n+ 1)Bn +
1

2
√

2
Dn+1

(x)
n∑
k=0

Bk Cn−k =
n∑
k=0

Ck Bn−k = (n+ 1)Bn −
1

2
√

2
Dn+1

Proof. The left hand side of each convolution identity takes one of the following forms:

n∑
k=0

C(α, β)[αr ± βr][αs ± βs]

Where C(α, β) = 1 or 1
α−β or 1

(α−β)2 and (r, s) = (2k − 1, n − 2k − 1) or (2k − 1, n − 2k) or
(2k, n − 2k − 1) or (2k, n − 2k). The sum splits into three terms. Where Xn = Cn−1 or Cn or
Dn−1 or Dn or An or Bn. The otherwise terms involve summing a finite geometric series with
powers of either αβ or

β
α . A duly simplified form takes to right hand side of each identity.

Theorem 3.4.

(i)
n∑
k=0

(
n

k

)
Ak An−k = 2nCn−1 + 2 6n

(ii) 4
n∑
k=0

(
n

k

)
Bk Bn−k = 2nCn−1 − 2 6n

(iii)
n∑
k=0

(
n

k

)
Ck Cn−k = 2nCn + 2 6n

(iv) 4
n∑
k=0

(
n

k

)
Dk Dn−k = 2nCn − 2 6n

(v)
n∑
k=0

(
n

k

)
Ak Bn−k =

n∑
k=0

(
n

k

)
Bk An−k = 2nDn−1

(vi)
n∑
k=0

(
n

k

)
Ck Dn−k =

n∑
k=0

(
n

k

)
Dk Cn−k = 2nDn

(vii)
n∑
k=0

(
n

k

)
Ak Cn−k =

n∑
k=0

(
n

k

)
Ck An−k = 2nAn + 2

√
2 6n

(viii) 4
n∑
k=0

(
n

k

)
Bk Dn−k =

n∑
k=0

(
n

k

)
Dk Bn−k = 2nAn − 2

√
2 6n

(ix)
n∑
k=0

(
n

k

)
Ak Dn−k =

n∑
k=0

(
n

k

)
Dk An−k = 2nBn + 6n

(x)
n∑
k=0

(
n

k

)
Bk Cn−k =

n∑
k=0

(
n

k

)
Ck Bn−k = 2nBn − 6n

Proof. The proof is similar and simpler than that of previous theorem and the only difference is
instead of the geometric sum we do the sum using the binomial theorem.
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It gives always a rich experience when one works convolution identities with classical Fi-
bonacci and Lucas numbers. Finite power series with coefficients Fk and Lk, k = 0, 1, 2, . . . , n
can be summed with the help of 3−term recurrence relation satisfied by them in the following
forms:

n∑
k=0

Xk t
k =

X0 + (X1 −X0)t− (Xn +Xn−1)tn+1 −Xnt
n+2

1− t− t2

where Xk = FkorLk. Similar proof techniques adopted to this nontrivial situation and a careful
simplification yields the following beautiful theorem.

Theorem 3.5.

(i)
n∑
k=0

FkAn−k =
n∑
k=0

AkFn−k =
1
31

[2An+1 − 5An + 6
√

2Fn+1 + 46
√

2Fn]

(ii)
n∑
k=0

FkBn−k =
n∑
k=0

BkFn−k =
1

31
[2Bn+1 − 5Bn − 7Fn+1 − 33Fn]

(iii)
n∑
k=0

FkCn−k =
n∑
k=0

CkFn−k =
1
31

[2Cn+1 − 5Cn − 2Fn+1 + 26Fn]

(iv)
n∑
k=0

FkDn−k =
n∑
k=0

DkFn−k =
1

31
[2Dn+1 − 5Dn − 4

√
2Fn+1 − 10

√
2Fn]

(v)
n∑
k=0

LkAn−k =
n∑
k=0

AkLn−k =
1
31

[12An+1 +An + 6
√

2Ln+1 + 46
√

2Ln]

(vi)
n∑
k=0

LkBn−k =
n∑
k=0

BkLn−k =
1
31

[12Bn+1 +Bn − 7Ln+1 − 33Ln]

(vii)
n∑
k=0

LkCn−k =
n∑
k=0

CkLn−k =
1
31

[12Cn+1 + Cn − 2Ln+1 + 26Ln]

(viii)
n∑
k=0

LkDn−k =
n∑
k=0

DkLn−k =
1
31

[12Dn+1 +Dn − 4
√

2Ln+1 − 10
√

2Ln]

The above theorem shows more scope to workout many more convolution identities involv-
ing convolution sum of more than two factors of the same or different entities.

In closing, we indicate two possible directions for future work. In the abstract we have
mentioned that one twin number pair is defined, and we called them as Pell-Chebyshev twin
number pairs. It is possible to consider some more such twin pairs motivated by Fibonacci and
Lucas numbers. Also in theorem 2.2 we have selected particular initial conditions. One can
consider other interesting initial conditions and work out the results of this paper.
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