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Abstract The purpose of this paper is essentially to study some elementary concepts of
completeness in QTAG-modules. We introduce the notion of completeness, which we term
semi-complete modules and obtain some interesting results. Certain basic properties of h-pure-
complete modules are investigated with the help of h-pure submodules and socles. Also, we
define totally quasi-complete modules and study the inter relations between various type of com-
pleteness.

1 Introduction and background

The theory of abelian groups is one of the principal motives of new research in module theory.
Some results on abelian groups hold good for modules if there are certain restrictions on rings
and some hold if the modules satisfy certain conditions. In 1976 Singh [13] started the study
of TAG-modules satisfying the following two conditions while the rings were associative with
unity.

(I) Every finitely generated submodule of any homomorphic image of M is a direct sum of
uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of M , for any
submodule W of U , any non-zero homomorphism f : W → V can be extended to a
homomorphism g : U → V , provided the composition length d(U/W ) ≤ d(V/f(W )).

In 1987 Singh [14] made an improvement and studied the modules satisfying only the con-
dition (I) and called them QTAG-modules. Through a number of papers it has been seen that
the structure theory of these modules is similar to that of torsion abelian groups and that these
modules occur over any ring. Here the rings are almost restriction free and the QTAG-modules
satisfy a simple condition. Several authors investigated the various notions and structures of
QTAG-modules. They derived some interesting properties and they characterizes these mod-
ules as well. Yet there is much to explore.

All rings examined in the current paper contain unity (1 6= 0) and modules are unitalQTAG-
modules. A uniserial module M is a module over a ring R, whose submodules are totally
ordered by inclusion. This means simply that for any two submodules N1 and N2 of M , ei-
ther N1 ⊆ N2 or N2 ⊆ N1. A module M is called a serial module if it is a direct sum of
uniserial modules. An element x ∈ M is uniform, if xR is a non-zero uniform (hence unis-
erial) module and for any R-module M with a unique decomposition series, d(M) denotes
its decomposition length. For a uniform element x ∈ M, e(x) = d(xR) and HM (x) =

sup
{
d

(
yR

xR

)
| y ∈M, x ∈ yR and y uniform

}
are the exponent and height of x in M, respec-

tively. Hk(M) denotes the submodule of M generated by the elements of height at least k and
Hk(M) is the submodule of M generated by the elements of exponents at most k. Let us denote
byM1, the submodule ofM , containing elements of infinite height. The moduleM is h-divisible

if M = M1 =
∞⋂
k=0

Hk(M). The module M is called separable if M1 = 0. The module M is
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said to be bounded, if there exists an integer k such that HM (x) ≤ k for every uniform element
x ∈M . A submodule N of M is h-pure in M if N ∩Hk(M) = Hk(N), for every integer k ≥ 0.
A submodule B ⊆ M is a basic submodule of M , if B is h-pure in M , B = ⊕Bi, where each
Bi is the direct sum of uniserial modules of length i and M/B is h-divisible.

The sum of all simple submodules of M is called the socle of M , denoted by Soc(M) and
a submodule S of Soc(M) is called a subsocle of M . A subsocle S of M is called open if
Soc(Hk(M)) ⊆ S for some non-negative integer k. The cardinality of the minimal generating
set of M is denoted by g(M). For all ordinals α, fM (α) is the αth-Ulm invariant of M (see [9])
and it is equal to g

(
Soc(Hα(M))/Soc(Hα+1(M))

)
.

Imitating [10], the submodules Hk(M), k ≥ 0 form a neighborhood system of zero, thus a
topology known as h-topology arises. Closed modules are also closed with respect to this topol-

ogy. Thus, the closure ofN ⊆M is defined asN =
∞⋂
k=0

(N+Hk(M)). Therefore the submodule

N ⊆M is closed with respect to h-topology if N = N and h-dense in M if N =M .

In this paper, we focus on some elementary concepts of completeness in QTAG-modules.
The object of our study includes, the closure of h-pure submodules ofQTAG-modules. It is well
known that a class of QTAG-modules in which the closure of every h-pure submodule is again
an h-pure submodule. In [1], Ahmad et al. called such modules as quasi-complete modules and
investigated some characterizations of these modules. The concept of h-pure-complete modules,
the modules in which every subsocle supports an h-pure submodule, was introduced by Khan [7].
This concept is closely related to the concept of quasi-complete modules. A number of results on
h-pure-complete modules and its relation with quasi-complete modules have been given in [1].
Further, Khan et al. [8] introduced the concept of `-quasi-complete modules, a generalization
of quasi-complete modules, and developed the study of some other concepts for these modules.
Here we continue the similar study of completeness in QTAG-modules by generalizing some of
the results of [2, 5, 6, 12]. It is interesting to note that almost all the results which hold for TAG-
modules are also valid for QTAG-modules [11]. In what follows, all notations and terminology
are standard and will be in agreement with those used in [3, 4].

2 Semi-completeness

We begin by defining the following.

Definition 2.1. A QTAG-module M is called semi-complete if it is the direct sum of a closed
module and a direct sum of uniserial modules.

Now we need to prove some elementary but helpful lemmas.

Lemma 2.2. Let N be an h-pure submodule of the QTAG-module M such that M/N is h-
divisible. Then M and N have the same Ulm invariants.

Proof. If K is a submodule of M , the injection N →M induces a map

ψ : (K ∩Hα(N))/(K ∩Hα+1(N))→ (K ∩Hα(M))/(K ∩Hα+1(M))

for every finite ordinal α. SinceN is h-pure, (K∩Hα+1(M))∩(K∩Hα(N)) = (K∩Hα+1(N))
and so ψ is injective. This shows that fN (α) ≤ fM (α).

On the other hand, if x is any uniform element of K ∩Hα(M), by the h-divisibility of M/N
there exists an element y ∈ Hα(N) such that z = x − y ∈ Hα+1(M). Then z′ = −y′ ∈

Hα+2(M) ∩ N = Hα+2(N) where d
(
zR

z′R

)
= d

(
yR

y′R

)
= 1. Let t ∈ N such that t′ = −y′

where d
(
yR

y′R

)
= 1 and d

(
tR

t′R

)
= α+2. Then y+t′ ∈ K∩Hα(N) and z−t′ ∈ K∩Hα+1(M)

where d
(
tR

t′R

)
= α + 1. This shows that the coset x +K ∩Hα(M) is the image of the coset

y + t′ +K ∩Hα(N) where d
(
tR

t′R

)
= α+ 1 and so ψ is surjective. Thus fN (α) = fM (α). 2
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Lemma 2.3. Let {xi} be a sequence of elements in theQTAG-moduleM such that e({xi}) = 1.

If HM (xi) = ki such that xi = yi where d
(
yiR

xiR

)
= ki, and ki 6= kj , for i 6= j. Then the

submodule N generated by yi’s is h-pure and is the direct sum of uniserial modules generated
by yi’s.

Proof. Assuming the contrary N is not the direct sum of uniserial modules generated by yi’s,
therefore a relation

p1x1 + . . .+ pixi = 0,

with not every pi a multiple of prime. But this requires at least two of xi’s to have the same
height, which is a contradiction. This substantiates our claim.

If x ∈ N such that e(x) = 1, therefore x is a linear combination of xi’s by the above relation.
Then its height in M , and in N , is the smallest of the heights of xi’s which appear nontrivially
in the linear combination. Hence N is h-pure. 2

Lemma 2.4. Let M and M ′ be QTAG-modules without elements of infinite height and φ be
a homomorphism of M into M ′ such that for any submodule N of M and for all k, φ(N ∩
Hk(M)) 6= 0. Then there exists an h-pure submodule L of M such that the restriction of φ to the
closure L of L is an isomorphism.

Proof. For all k we have, φ(N ∩Hk(M)) 6= 0, we extract a sequence {xi} of elements ofN such
that yi = φ(xi) 6= 0 andHM (xi+1) > HM ′(yi) for every i. LetHM (xi) = ki andHM (yi) = mi,

we have k1 ≤ m1 < k2 ≤ m2 < . . . . Suppose xi ∈ M such that xi = ai where d
(
aiR

xiR

)
= ki

and yi ∈M ′ such that yi = bi where d
(
biR

yiR

)
= mi. Let L and T be the submodules of M and

M ′ generated by ai and bi, respectively. By Lemma 2.3, L and T are h-pure in M and M ′ and
are the direct sums of uniserial modules generated by ai and bi. Then φ induces an isomorphism
between N ∩ L and K ∩ T , and thus the restriction of φ to L is an isomorphism.

Notice that Hmi
(T ) ∩K = Hki(φ(L)) ∩K ∈ M ′, and both are generated by the elements

yj for j ≥ i. Now let z ∈ L such that e(z) = 1 and φ(z) = 0. Suppose zi → z where
zi ∈ L and z − zi ∈ Hmi

(M) for every i. Since L is h-pure, e(zi) = 1 for every i. Thus
−φ(zi) = φ(z − zi) ∈ Hmi(M

′) ∩ T ∩K = Hki(φ(L)) ∩K ∈ M ′. Since φ is an isomorphism
on L, zi ∈ Hki(L). This proves that z = 0. 2

We are now ready to prove the following theorem.

Theorem 2.5. Let M be a semi-complete QTAG-module with a decomposition M =M1 ⊕M2,
and let K be an h-pure closed submodule of M . Then there exists an integer t such that N ∩
Ht(K) ⊂M1, for every submodule N of M .

Proof. If N ∩ Ht(K) * M1 for all t, by Lemma 2.4 there exists an h-pure submodule L in K
such that the projection φ : M → M2 is an isomorphism when restricted to the closure L of L.
Now L is h-pure, and so the h-topology on L is the same as that induced on K. This means that
L is closed. But L is isomorphic to a submodule of M2 and every submodule of M2 is a direct
sum of uniserial modules, as desired. The proof is finished. 2

And so, we proceed to establish a relationship between two decompositions of a semi-
complete module.

Theorem 2.6. Let M be a semi-complete QTAG-module with the decompositions M = M1 ⊕
M2 = M3 ⊕M4. Then there exists an integer t such that Ht(M1) ∼= Ht(M3) and Ht(M2) ∼=
Ht(M4)

Proof. Applying Theorem 2.5, we deduce that for some non-negative t, we have N ∩Ht(M1) =
N ∩ Ht(M3), for any submodule N of M . Hence N ∩ Ht+i(M1) = N ∩ Ht+i(M3) for every
non-negative i. This implies that the Ulm invariants of the closed modules Ht(M1) and Ht(M3)
are equal, so that Ht(M1) ∼= Ht(M3).
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Next, to show Ht(M2) ∼= Ht(M4)), we need only to show that

N ∩Ht+i(M2)/N ∩Ht+i+1(M2) ∼= N ∩Ht+i(M4)/N ∩Ht+i+1(M4).

It follows that Ht(M2) and Ht(M4), as direct sums of uniserial modules with the same Ulm
invariants, are isomorphic. Moreover, from M = M1 ⊕ M2 we have N ∩ Ht+i(M) = N ∩
Ht+i(M1)⊕N∩Ht+i(M2). Therefore, we define the map η : N∩Ht+i(M)→ N∩Ht+i(M2)/N∩
Ht+i+1(M2) such that ker(η) = N ∩Ht+i(M1) +N ∩Ht+i+1(M). Thus

(N ∩Ht+i(M))/(N ∩Ht+i(M1) +N ∩Ht+i+1(M)) ∼= (N ∩Ht+i(M2))/(N ∩Ht+i+1(M2)).

Repeating the argument for M = M3 ⊕M4, we obtain a similar isomorphism with M1 and M2
replaced by M3 and M4. Since N ∩ Ht+i(M1) = N ∩ Ht+i(M3), the desired isomorphism is
evident, ensures our claimed. 2

Analysis. Let M2 = ΣPi and M4 = ΣQi where every Pi and Qi is a direct sum of uniserial
modules of exponent i. Also, let M1 and M3 be the closed submodules of ΠRi and ΠSi where
every Ri and Si is also a direct sum of uniserial modules of exponent i. For every i, Ri ⊕ Pi
and Si ⊕Qi are isomorphic such that each is the direct sum of fM (i− 1) copies of the uniserial
modules of exponent i. Furthermore, if t is as in Theorem 2.6, Ri ∼= Si and Pi ∼= Qi for i ≥ t.
This leads to the following result.

Corollary 2.7. Let M be a semi-complete QTAG-module with the decompositions M = M1 ⊕
M2 =M3 ⊕M4, then these two decompositions of M possess isomorphic refinements.

Towards the end of this section, we have the following result which is of particular interest.

Theorem 2.8. Let M and M ′ be semi-complete QTAG-modules with the same Ulm invariants
having decompositions M =M1 ⊕M2 and M ′ =M3 ⊕M4. Then M and M ′ are isomorphic if
and only if there is an integer t such that for every i ≥ t, fM1(i) = fM3(i) and fM2(i) = fM4(i).

3 h-pure-completeness

For facilitating the exposition and for the convenience of the readers, we recall the following
definition.

Definition 3.1. A QTAG-module M is called h-pure-complete if for every subsocle S of M
there exists an h-pure submodule N of M such that S = Soc(N).

To develop the study of h-pure-complete module, we prove the following working lemma.

Lemma 3.2. Let M and M ′ be QTAG-modules such that M ′ is bounded and S be a subsocle
of M +M ′. If N is an h-pure submodule of M supported by S ∩M , then S supports an h-pure
submodule of M +M ′ which contains N .

Proof. Clearly, (S +N)/N is an open subsocle of (M +M ′)/N and hence supports an h-pure
submodule K/N of (M +M ′)/N , for any submodule K of M . Then Soc(K) = S and K is an
h-pure in M +M ′, since N and K/N are h-pure submodules of M +M ′ and (M +M ′)/N ,
respectively. 2

As a consequence, we have the following.

Theorem 3.3. Let M be an h-pure-complete QTAG-module. If M ′ is a direct sum of uniserial
modules, then M +M ′ is h-pure-complete.

Proof. Since M ′ is a direct sum of uniserial modules, M +M ′ is the union of a monotone se-
quence of h-pure submodules M+M ′

k such that M ′
k is bounded. Let S be a subsocle of M+M ′

and set Sk = S ∩ (M +M ′
k). Using Lemma 3.2 and the fact that M is h-pure-complete, we

construct a monotone sequence of h-pure submodules Nk ⊆M +M ′
k such that Soc(Nk) = Sk.

Then N =
∞⋃
k=1

Nk is an h-pure submodule of M +M ′ supported by S. 2
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Theorem 3.4. LetM be an h-pure-completeQTAG-module. IfM ′ is a closed module with finite
Ulm invariants, then M +M ′ is h-pure-complete.

Proof. Suppose M is without elements of infinite height, i.e. Hω(M) = 0. Now let S be a
subsocle of M +M ′ and let P be the projection of S into M . Since M is h-pure-complete, there
is an h-pure submodule N of M supported by P . Then S is contained in the h-pure submodule
N +M ′. Let C be the closure of N +M ′ such that C = N +M ′, where N is the closure of N
in C. Since M ′ is a closed module with finite Ulm invariants, its socle is a direct summand of
P . But (S + Soc(M ′)) ⊃ P = Soc(N). Therefore, Soc(C) = P + Soc(M ′), as desired. 2

As immediate consequence, we yield the following corollary.

Corollary 3.5. Let M be an h-pure-complete QTAG-module. If M ′ is a semi-complete module
with finite Ulm invariants, then M +M ′ is h-pure-complete.

Recall that a QTAG-module M is said to be quasi-complete if the closure N of every h-pure
submodule N of M , is h-pure in M .

Theorem 3.6. Let Mk be a quasi-complete QTAG-module such that Mk is an h-pure in Mk+1,

for each positive integer k, then M =
∞⋃
k=1

Mk is h-pure-complete.

Proof. Let S be a subsocle of M and set Sk = S ∩Mk. Now if each Sk is open, then S =
∞⋃
k=1

Sk

supports a direct sum of uniserial modules which is h-pure in M . Thus, by what we have just
shown above, in view of the Theorem 3.3, we are done. 2

The following example demonstrates that the direct sum of two h-pure-complete modules
need not be h-pure-complete.
Example. Suppose that C is an unbounded closed module with a countably generated basic

submodule B. Then C contains a proper, h-dense h-pure submodule M such that M is a quasi-
complete module and g(M) = c. Therefore, C contains an h-pure submodule M ′ such that
Soc(M ′) = Soc(M) and M ′ � M . Since M ′ is also quasi-complete and therefore both M and
M ′ are h-pure complete. However, the subsocle S ofM+M ′ consisting all elements of the form
(x, x) such that x ∈ Soc(M) = Soc(M ′) does not support an h-pure submodule of M +M ′.
Indeed, if N is an h-pure submodule of M +M ′ such that Soc(N) = S, then it is easily seen
that N is a sub-direct sum of M and M ′ with zero kernels, contrary to the fact that M and M ′

are not isomorphic.

4 Totally quasi-completeness

Following [8], a submodule N of a QTAG-module M is called imbedded if there exists a func-
tion ` : Z+ → Z+ such that N ∩ H`(k)(M) ⊆ Hk(N) for each k ∈ Z+. Here, ` is called an
imbedding function for N in M . Let ` be an imbedding function for N in M then N is called
`-imbedded submodule of M . A QTAG-module M is called `-quasi-complete if the closure N
of every `-imbedded submodule N of M , is an imbedded submodule of M .

Let F(`) be the family of `-quasi-complete modules for arbitrary `. We note that F(`1) ⊂
F(`2) if and only if `2 ≤ `1. In particularF(I) contains every `-quasi-complete module for every
`. Let C denote the family of closed modules. It is well known that C ⊂ F(I). The following
theorem is the rather interesting result that C ⊂ F(`) for every `.

Theorem 4.1. Let M be a closed QTAG-module. Then M is `-quasi-complete every `.

Proof. Let N be `-imbedded in M . We show that N ∩ H`(k)(M) ⊂ Hk(N) for each k. Let
x be any uniform element in N ∩ H`(k)(M). Then x ∈ Socm(N) for some m. By [8, Lemma
1.11], Socm(N) ⊂ Socm(N). Thus x is the limit of a Cauchy sequence in Socm(N). Let
{xn} ⊂ Socm(N) be subsequence of that sequence satisfying

(i) x1 ∈ H`(k)(M)
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(ii) xn+1 − xn ∈ H`(k+n)(M) for every n.

Since N is `-imbedded, x1 ∈ Hk(N) and xn+1 − xn ∈ H(k+n)(N). Let y1 ∈ N such that

d

(
y1R

x1R

)
= k and {zn} ⊂ N such that d

(
znR

(xn+1 − xn)R

)
= k + n. Then {yn} is a bounded

Cauchy sequence inN such that {yn} ⊂ Sock+m(N), so there exists y ∈ N such that lim yn = y,

since M is closed. Now limxn = x and, since d
(
ynR

xnR

)
= k, therefore limxn = y′ where

d

(
yR

y′R

)
= k. But limits are unique since M1 = 0. Thus x = y′ ∈ Hk(N) where d

(
yR

y′R

)
= k,

as required. Hence N is `-imbedded and M is `-quasi-complete. 2

Let F = ∩` F(`). Then every module in F has the property that the closure of an `-imbedded
submodule is again `-imbedded for every `. This motivates us to make the following definition:

Definition 4.2. A QTAG-module M is called totally quasi-complete if it is `-quasi-complete for
every `.

Remark 4.3. It is easy to see that every closed module is totally quasi-complete.

We establish the relation among quasi-complete, `-quasi-complete and totally quasi-complete
modules.

Theorem 4.4. Let M be a separable QTAG-module. Then the following are equivalent:

(i) M is quasi-complete;

(ii) M is `-quasi-complete;

(ii) M is totally quasi-complete.

Proof. The implications (iii)⇒ (ii) and (ii)⇒ (i) are obvious, because the identity function is
an imbedding function for h-pure submodules.

(i) ⇒ (iii). Let M be quasi-complete. If N ⊂ M such that N is bounded, then N ⊂ M .
Now, assume that N is unbounded and `-imbedded in M , where `(1) = n. Let x ∈ M and

x′ ∈ N such that d
(
xR

x′R

)
= n. Let B be a basic submodule of M and B is closure of B

in M , N/N = (B/N)1. Since B is totally quasi-complete, N ⊂ B, so N/N = (B/N)1 is
h-divisible by [8, Lemma 1.10]. Thus there exist y ∈ N, z ∈ N such that z′ = x′ + y where

d

(
xR

x′R

)
= d

(
zR

z′R

)
= n. Now, consider a ∈ N such that a′ = b′ where d

(
aR

a′R

)
= 1,

d

(
bR

b′R

)
= n and b = z − x. Therefore, z′ − (x′ + a) ∈ Soc(B) = Soc(M) + Soc(N), where

d

(
xR

x′R

)
= d

(
zR

z′R

)
= n− 1. Hence, there exist u ∈ Soc(M), v ∈ Soc(N) such that z′ − v =

x′ + u+ a ∈ N ∩M where d
(
xR

x′R

)
= d

(
zR

z′R

)
= n− 1. Now H1((x′ + u+ a)R) = x′ + a′

where d
(
xR

x′R

)
= n and d

(
aR

a′R

)
= 1, therefore x′ + u+ a where d

(
xR

x′R

)
= n − 1, is a so-

lution of w ≡ x′(mod N) where d
(
xR

x′R

)
= n. Hence, any element of (M/N)1 = (N ∩M)/N

is h-divisible in (N ∩ M)/N , so (N ∩ M)/N = H1((N ∩M)/N). That is, (N ∩ M)/N is
h-divisible and hence h-pure in M/N . Thus by [8, Lemma 1.5], ` is an imbedding function for
N ∩M in N . The proof is over. 2

5 Open problems

In closing, we pose the following questions of interest:
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Problem 1. If M and M ′ are semi-complete, is M ⊕M ′ as well?

Problem 2. Does every h-dense subsocle of a closed module support an h-pure submodule
which is h-pure complete?

Problem 3. Suppose M is a QTAG-module with an imbedded submodule N which belongs
to the family F of quasi-complete modules. If (M/N)1 is h-divisible, then whether or not M
belongs to F .

Investigate with a priority when F coincide with the family of semi-complete modules and
h-pure-complete modules, respectively.
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