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Abstract A right R-module M is called a Utumi module (U-module, in short) if for any
two submodules A and B of M with A ∼= B and A ∩ B = 0, there exist two summands K
and L of M such that A essential in K, B essential in L and K ⊕ L is a direct summand of M .
Rings over which every cyclic right module is Utumi, are called right CU-rings. In this work we
have characterized commutative (right duo) CU-rings. Also, it is shown that a right nonsingular
right CU-ring is a direct product of a semisimple and a reduced square-free ring; moreover, the
ring itself satisfy the internal cancellation property. Our approach is independent of the results
obtained by Ibrahim, Kosan, Qyung and Yousif recently.

1 Introduction

Throughout this article, rings are associative with unity, and modules are unital right modules.
Let R be a ring. If N is a submodule of M (denoted by N ≤ M ) then N ≤ess M (respectively,
N ≤⊕ M ) denotes that N is essential in M (N is a direct summand of M ).

For undefined terms, we refer to [3] [16], [17] and [21].
An R-module M is called a Utumi-module if for any two submodules A and B of M

with A ∼= B and A ∩ B = 0, there exist two summands K and L of M such that A ≤ess K,
B ≤ess L and K ⊕ L ≤⊕ M (see [11, Definition 2.1]). The ring R is called right Utumi if the
right module RR is Utumi. The class of Utumi-modules provides a positive answer for an open
question due to Crawley and Jónsson “whether the finite exchange property always implies the
full exchange property" (see [11, Theorem 5.2]). Furthermore, this class of modules properly
contains the class of quasi-continuous modules (a module M is known as quasi-continuous if
every submodule of M is essential in a direct summand of M and direct sum of two direct
summands of M intersecting trivially is again a direct summand of M ). Rings all of whose
(finitely generated, free, cyclic) R-modules are quasi-continuous have been studied by several
authors (see, for instance, [13]). This motivated us to study rings all of whose (finitely generated,
cyclic, free) R-modules are Utumi. Also, it is worth mentioning that in [5] rings all of whose
(finitely generated, free, cyclic) R-modules are dual-Utumi were studied.

Recall that following Azumaya a module M is said to be injective relative to the module
N orN -injective if, for any submoduleA ofN , every homomorphismA −→M can be extended
to a homomorphismN −→M . A module is injective if it is injective with respect to any module.
A module M is quasi-injective if it is M -injective. A module M is pseudo-N -injective if, for
any submodule K of N , every monomorphism K −→ M can be extended to a homomorphism
from N into M . A module M is pseudo-injective or automorphism-invariant if it is pseudo-M -
injective. A module is square-free if it does not contain a direct sum of two non-zero isomorphic
submodules. A submodule K of a module M is essential in M if K ∩ L 6= 0 for any non-zero
submodule L of M . A submodule K of the module M is closed in M if K = L for every
submodule L of M which is an essential extension of the module K. We denote by Z(M) the
singular submodule of the right R-module M , i.e., Z(M) consists of all elements m ∈ M such
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that right annihialtor of m is an essential right ideal of the ring R. A module M is nonsingular
if Z(M) = 0. Consider the following conditions on an R-module M :

(C1− condition) For every submodule A of M , there is a direct summand K ≤M such
that A ≤ess K.

(C2 − condition) If A ≤ M such that A is isomorphic to a summand of M , then A is a
summand of M .

(C3− condition) If M1 and M2 are summands of M with M1 ∩M2 = 0, then M1 ⊕M2
is a summand of M .

(C4 − condition) If M = M1 ⊕ M2, and f : M1 −→ M2 is a homomorphism with
ker(f) ≤⊕ M1, then Im(f) ≤⊕ M2.
A module M is called an extending or a CS-module if it satisfies condition C1. A module M is
called continuous if it satisfies both (C1) and (C2) conditions; M is called quasi-continuous if it
satisfies both (C1) and (C3) conditions. A module M is called pseudo-continuous if it satisfies
both (C1) and (C4) conditions (see [2], [6]). Note that every Utumi-module is a C4-module
(see [11, Lemma 2.8]).

We have the following implications for the above mentioned module theoretic properties
which are of interest to us:

Utumipseudo− continuous

quasi− continuous continuous

quasi− injectiveinjective

pseudo− injective

square− free

The paper is organized as follows. In Section 2, we study various rings whose modules are Utumi
and review the known results on the subclass (e.g. injective modules) of the class of Utumi
modules and prove similar results for Utumi modules. Section 3 is devoted to those rings over
which all cyclic modules are Utumi. A characterization for the commutative (duo) rings over
which all cyclic modules are Utumi is obtained in Corollary 3.15, which tells us that precisely
these are the arithmetical rings, that is, the distributive law A ∩ (B + C) = (A ∩ B) + (A ∩ C)
holds for any three ideals A, B, C of such a ring R. In Theorem 3.20, we prove that if a ring
R is right (respectively, left) nonsingular and if every cyclic right (respectively, left) R-module
is Utumi, then R can be decomposed as S ⊕ T such that S is semisimple and T is a reduced
square-free ring.

2 From injective modules to Utumi modules

Let us consider the following:

Question 2.1. : Let n ≥ 1. What is the structure of a ring R over which every n-generated right
R-module is Utumi ?

In order to answer the above question we make a few observations about the class of
Utumi modules and note them below.

Lemma 2.2. (cf. [11, Proposition 3.6]) Let N and M be R-modules and f : N −→M be an R-
monomorphism. If N ⊕M is a Utumi-module, then Im(f) is a quasi-injective direct summand
of M .

Proof. Let L = N ⊕M be a Utumi-module. By [11, Lemma 2.8], Im(f) is a direct summand
of M . It follows that N ⊕ N is isomorphic to a direct summand of L and hence N ⊕ N is
also a Utumi-module by [11, Proposition 3.2]. Thus, Im(f) is quasi-injective by [11, Corollary
3.7].

The following remark was included in [6, Remark 2.31].

Remark 2.3. It is not difficult to show that a ring R is semisimple iff the direct sum of any two
C4-modules is a C4-module, R is right hereditary iff every factor module of an injective right
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R-module is a C4-module, R is regular iff every 2-generated submodule of a projective right
R-module is a C4-module iff every two generated right ideal of R is a C4-module, and R is right
noetherian iff every direct sum of injective right R-modules is a C4-module.

Now we shall incorporate the above remark for Utumi-modules.
Recall that a ring R is called right V-ring if every simple right R-module is injective. A

ring R is called right hereditary if every submodule of a projective right R-module is projective,
equivalently, if every factor module of an injective right R-module is injective.

Theorem 2.4. Let R be a ring.

(i) R is a right V-ring if and only if every finitely cogenerated right R-module is Utumi.

(ii) R is a right hereditary ring if and only if every factor module of an injective rightR-module
is a Utumi-module.

Proof. (1) LetM be a simple rightR-module. SinceM⊕E(M) is finitely cogenerated (see [16,
Exercise 19.(7)]) it must be a Utumi-module by our assumption. Then M is injective by Lemma
2.2. Thus R is a right V-ring. The converse is clear.
(2) Let M be injective and K ≤M . Then M

K ⊕E
(
M
K

)
is a homomorphic image of M ⊕E

(
M
K

)
.

Hence M
K ≤

⊕ E
(
M
K

)
by Lemma 2.2. Therefore, M

K = E
(
M
K

)
as required. The converse is

clear.

A module M is called Π-quasi-injective if every direct product M I of copies of M is
quasi-injective.

Proposition 2.5. The following statements are equivalent:

(i) Every factor ring of R is right hereditary.

(ii) Every factor module of a Π-quasi-injective right R-module is quasi-injective.

(iii) Every factor module of a Π-quasi-injective right R-module is a Utumi-module.

Proof. The proof is analogous to that of [2, Proposition 2.15] (also refer to [22, Theorem 6]).

It is noted that the class of rings R for which every free right (respectively, left) R-module
is Utumi, is exactly that of quasi-Frobenius rings.

Theorem 2.6. Let R be a ring. The following statements are equivalent:

(i) R is a quasi-Frobenius ring;

(ii) Every free R-module is a Utumi-module;

(iii) Every projective R-module is a Utumi-module;

(iv) Every flat R-module is a Utumi-module.

Proof. (1) =⇒ (2) =⇒ (3) are clear.
(3) =⇒ (1) Let M be a projective R-module. Then M ⊕M is a Utumi-module, and so M is
quasi-injective by Lemma 2.2. Hence R is quasi-Frobenius by [4, Corollary 2.3].
(4) =⇒ (1) Let M be a projective module. Then by hypothesis M is a Utumi-module. Hence
by preceding argument R is quasi-Frobenius.
(1) =⇒ (4) Suppose R is quasi-Frobenius, then by [2, Theorem 2.28 and Corollary 2.32] R
is right perfect. Hence the result follows from the well-known fact due to Bass, that every flat
modules over a perfect ring are projective (see, [3, Theorem 28.4]).

A ring is called right (respectively, left) uniserial if the lattice of right (respectively, left)
ideals is linearly ordered.

Theorem 2.7. Let R be a ring. The following statements are equivalent:

(i) R is uniserial;

(ii) Every quasi-projective R-module is a Utumi-module.
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Proof. We only need to show that (2) =⇒ (1). To see, (2) =⇒ (1) let M be a quasi-
projective R-module. Then M ⊕M is quasi-projective by [21, 18.1 and 18.2(2)] and hence a
Utumi-module. Then M is quasi-injective by Lemma 2.2. Thus R is uniserial by [4, Proposition
2.8].

A module M is called (countably) Σ-(quasi-)injective if every (countable) direct sum of
copies of M is (quasi-)injective. Analogously, M is called a (countably) Σ−Utumi-module if
every (countable) direct sum of copies of M is a Utumi-module. A result of Faith and Walker
(see [3, Theorem 25.8]) asserts that a ring R is right noetherian if and only if every injective
right R-module is Σ–injective, equivalently, as shown by Fuller [3], if every quasi-injective right
R-module is Σ-quasi-injective.

Theorem 2.8. The following conditions are equivalent for a ring R:

(i) R is right Noetherian;

(ii) Every direct sum of injective right R-modules is a Utumi-module;

(iii) Every countable direct sum of injective right R-modules is a Utumi-module;

(iv) Every injective right R-module is a countably Σ-Utumi-module;

(v) Every quasi-injective right R-module is a countably Σ-Utumi-module.

Proof. (1) =⇒ (2) is well-known. (2) =⇒ (3), (3) =⇒ (4) and (4) =⇒ (5) are clear.
(5) =⇒ (1) We show that every countable direct sum of injective right R-module is injective.
Let L = ⊕i≥1Mi, where each Mi is an injective right R-module. Suppose further that M0 =
E(L), K = Πi≥0Mi and I = N ∪ {0}. By (5) the R-module KI is Utumi. Clearly, for each
i ≥ 0, K ∼= Mi ⊕ Ti, where Ti = Πj 6=iMj . It follows that L ⊕ E(L) is a Utumi-module as it is
isomorphic to a direct summand of KI . The proof is now complete by Lemma 2.2.

We shall now include a complete answer to the Question 2.1.

Proposition 2.9. The following are equivalent for any ring R:

(i) R is a semisimple ring;

(ii) Every right (respectively, left) R-module is Utumi;

(iii) Every finitely generated (respectively, left) R-module is Utumi;

(iv) Every 2-generated right (respectively, left) R-module is Utumi.

(v) Every direct sum of two cyclic right (respectively, left) R-module is Utumi.

(vi) Every direct sum of two Utumi right (respectively, left) R-module is Utumi.

Proof. We need to show that (5) =⇒ (1) and (6) =⇒ (1). Assume that (5) hold. Then
C⊕C is Utumi for every cyclic right R-module C. Hence C is a quasi-injective right R-module.
Therefore the right uniform dimension of R is finite by ([16, Lemma 6.43 and Corollary 6.45]).
On the other hand, for all x ∈ R, xR⊕R is Utumi which implies that xR is a direct summand of
R. That means R is a (von Neumann) regular ring with finite uniform dimension, proving that R
is semisimple. Now let us assume that (6) holds. If K is either a semisimple or a uniform right
R-module. Then by (6), K ⊕ E(K) is Utumi and so K is an injective R-module. Thus every
uniform R-module is injective and this in turn implies that every uniform R-module is simple
and injective. Also R is a Noetherian ring because semisimple R-modules are injective. This
shows that R is semisimple.

3 Rings over which all cyclic modules are Utumi

From Proposition 2.9, it is clear that if every n-generatedR-module is Utumi, then every (n−1)-
generated R-module is Utumi. Hence taking this fact into account, the following question arise
naturally.
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Question 3.1. : What is the structure of a ring R over which every cyclic right R-module is
Utumi ?

Before we try to address Question 3.1, we make a key observation for Utumi-modules.
For any module MR, we denote L(MR) for the lattice of all submodules of MR.

Proposition 3.2. (i) Suppose thatM andN areR-modules with a lattice isomorphism L(MR)
θ∼=

L(NR) such that the R-modules θ(K1) and θ(K2) are isomorphic whenevere K1 ∼= K2.
Then MR is Utumi-module if and only if NR is so.

(ii) Being Utumi-module is a Morita-invariant property.

Proof. (1) This has a routine argument.
(2) This is obtained by (1) and [3, Proposition 21.7].

Now we introduce the following definition in the context of Question 3.1.

Definition 3.3. (cf. [9, Definition 2.1]) A ring R is called a right CU-ring if every cyclic right
R-module is a Utumi-module.

Remarks and Examples 3.4. (i) In [18, Proposition 1.1], Stephenson proved that a module
M is distributive iff every homomorphic image of M is square-free iff Hom( A

A∩B ,
B

A∩B ) =
0 for all submodules A and B of M . Thus every right distributive ring R is right CU-ring.

(ii) If R is a semiprime right duo ring, then RR is square-free. For xR ∼= yR with xR∩yR = 0
then xRy = 0 which implies that yRy = 0. Hence y = 0 by our assumption on R.

(iii) By (2), any strongly regular (≡ reduced and regular) ring is a right (left) CU-ring. For
example, any direct product of division rings is a right CU-ring.

Although Proposition 3.2 shows that Utumi condition is a Morita-invariant property for
modules, in the following Theorem we observe that the right fully Utumi condition (i.e., all fac-
tors are Utumi) is not a Morita-invariant property for rings. However, Proposition 3.7 shows that
if R is right CU then so is eRe for any full idempotent e ∈ R.

Theorem 3.5. The following conditions on a ring R are equivalent:

(i) R is a semisimple ring;

(ii) The matrix ringMn(R) is a right CU-ring for some n ≥ 2;

(iii) The matrix ringM2(R) is a right CU-ring.

Proof. The result follows from Proposition 3.2 and the fact that under the natural Morita equiv-
alences between R andMn(R), every n-generated R-module corresponds to cyclic modules.

Corollary 3.6. If R is a right CU-ring, then R(n)
R 6∼= RR for every n ≥ 2.

Proof. This is obtained by Theorem 3.5 and the fact that semisimple rings have invariant basis
number property.

For the next result we use usual arguments (see, for instance, [12, Lemma 3.14.]).
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Proposition 3.7. Let e be an idempotent of R with ReR = R. If R is a right CU-ring, then so is
eRe.

Proof. Write S = eRe and P = (eR)R. Then it is well-known that
HomR(P,−) : Mod − R −→ Mod − S and − ⊗S P : Mod − S −→ Mod − R are naturally
equivalent functors and defines a Morita equivalence between Mod − R and Mod − S. Since
the Morita equivalence property is preserved for Utumi-modules (Proposition 3.2), every factor
module of the right S-module HomR(SPR, R) is a Utumi-module. But, HomR(SPR, R) ∼=
(Re)S = [(1− e)Re⊕ eRe]S . So every factor module of SS is a Utumi-module.

Lemma 3.8. Let R be a ring and M be a right R-module. If I is an ideal with MI = 0.

(i) MR is Utumi if and only if MR/I is Utumi.

(ii) If R is a right CU-ring then R/I is a right CU-ring for each ideal I of R.

Proof. These have routine arguments.

Corollary 3.9. Let {Si}i∈N be an infinite family of rings and R = Πi∈NMni
(Si). If R is a right

CU-ring then the set {ni | ni ≥ 2} is finite. Consequently, an infinite direct product of right
CU-rings need not be a right FU-ring.

Proof. Let S = Πni≥2Mni
(Si). For each ni ≥ 2, let ei be the matrix in Mni

(Si) whose (1, 1)
and (2, 2)-entries are 1 and all other entries are zero, and let e = (ei) ∈ S. Then e2 = e and
SeS = S. By Lemma 3.8, S is a right CU-ring. So, by Proposition 3.7, eSe ∼= Πni≥2M2(Si) ∼=
M2(Πni≥2Si) is a right CU-ring. By Theorem 3.5, we deduce that Πni≥2Si is a semisimple ring.
Thus the set {ni | ni ≥ 2} must be finite. The last statement is now clear.

Lemma 3.10. Let R1, R2 be rings and Mi be Ri-module (i = 1, 2). Then the R1 ⊕ R2-module
M1 ⊕M2 is Utumi if and only if each Mi is a Utumi Ri-module.

Proof. (⇒) By Lemma 3.8.
(⇐) Let T = R1 ⊕ R2, e1 = (1, 0), e2 = (0, 1) and X,Y be T -submodules of M := M1 ⊕M2
such that X ∼= Y with X ∩ Y = 0. Replace Mi with Mei. Then for each i = 1, 2 we have
Xei ∼= Y ei as Ri-modules and Xei ∩ Y ei = 0. Thus by hypothesis, there are direct summands
Ei, Vi of Mi such that Ei ⊕ Vi is direct summand Mi and Xei , Y ei are essential in Ei , Vi
respectively. Let E = E1 + E2 and V = V1 + V2, then X = Xe1 +Xe2 is essential in ET and
Y = Y e1 +Y e2 is essential in VT such that E+V = (E1 +V1)+(E2 +V2) is a direct summand
of MT . This proves that MT is Utumi.

Corollary 3.11. Let R = R1 ⊕ · · · ⊕ Rn where Ri, i = 1, ..., n are rings. Then R is a right
CU-ring iff each Ri, i = 1, ..., n is a right CU-ring.

Proof. By Lemma 3.10 and the fact that M1⊕M2 is a cyclic R1⊕R2-module if and only if each
Mi is a cyclic Ri-module.

In the following we show that for any ring R the triangular ring Tn(R) (n ≥ 2) is not a
right Utumi ring.

Proposition 3.12. Let R =

(
A M

0 B

)
be a formal triangular matrix ring where A, B are rings

and AMB is a bimodule. If there exists a nonzero right B-monomorphism f : M → B, then R
is not a right Utumi ring.
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Proof. Write R = I1 ⊕ I2, where I1 =

(
A M

0 0

)
is an ideal in R and I2 =

(
0 0
0 B

)
is a

right ideal of R. Note that HomR(I1, I2) = 0. Now, if R is a right Utumi ring, then by [11,
Proposition 3.1], I1 and I2 are relatively pseudo-injective right R-modules. Hence if f : M → B

is a rightB-monomorphism (equivalently, there is a correspondingR-monomorphism

(
0 M

0 0

)
→ I2), then we must have a non-zero f̄ ∈ HomR(I1, I2), a contradiction.

Corollary 3.13. Let n ≥ 2. For any ring R the triangular ring Tn(R) is not a right Utumi ring.

Recall that a submodule K of M is called fully invariant if for every f ∈ EndR(M),
f(K) ≤ K; a module M is called a duo module, if every submodule of M is fully invariant. The
ring R is called a right duo ring if the right R-module R is a duo module. Note that a ring R is a
right duo ring if and only if every right ideal of R is a two-sided ideal.

Proposition 3.14. Let M be a quasi-projective duo module. Then every homomorphic image of
M is Utumi if and only if M is distributive.

Proof. We apply Remarks and Examples 3.4(1). Assume that every homomorphic image of M
is Utumi. Then by [11, Theorem 3.13], for anyK �M , we have M

K = Q
K ⊕

T
K where Q

K is quasi-
injective and T

K is a square-free module. Moreover, Q
K = A

K ⊕
B
K ⊕

D
K such that A

K
∼=θ B

K and
D
K is isomorphic to a summand of A

K ⊕
B
K . Thus there exists θ̄ ∈ End

(
M
K

)
such that θ̄ | A

K
= θ.

Now M being quasi-projective, there exists f ∈ End(M) such that θ̄(m + K) = f(m) + K.
Thus θ(a+K) = f(a) +K ≤ A+K = A for all a ∈ A. It follows that θ

(
A
K

)
≤ A

K ∩
B
K = 0.

Therefore, MK = T
K is square-free.

Corollary 3.15. Let R be a right duo ring. Then R is a right CU-ring if and only if R is a right
distributive ring.

Proof. This is obtained by Proposition 3.14.

Lemma 3.16. Let R be a ring, MR be quasi-injective and N is fully invariant submodule of M .

(i) If EndR(M) is a right CU-ring, then the ring EndR(N) is right CU.

(ii) If MR is nonsingular and N is essential submodule of M , then EndR(M) ∼= EndR(N).

Proof. Note that the mapping f → f |N is a surjective ring homomorphism from EndR(M) to
EndR(N), and is an isomorphism if MR is nonsingular and N is essential. Hence (1) follows
from Lemma 3.8(2).

Proposition 3.17. If R is a right self-injective right CU ring, then every homogenous component
of Soc(RR) has a finite length.

Proof. Let M be a homogenous component of Soc(RR). By Lemma 3.16, T := EndR(M) is a
right FU-ring. Now if length(MR) is infinite then M ∼=M (2). Hence T ∼=M2(T ) and so T must
be a semisimple ring by Theorem 3.5. This follows that MR is finitely generated, contradiction.
Therefore length(MR) is finite.

Recall that a ring R is called directly finite if ab = 1 in R implies ba = 1 for all a, b ∈ R.
An idempotent e in a regular ring R is called an abelian idempotent if the ring eRe is abelian,
and is called a directly finite idempotent if the ring eRe is directly finite. An idempotent e in
a (von Neumann) regular right self-injective ring is called a faithful idempotent if 0 is the only
central idempotent orthogonal to e. A (von Neumann) regular right self-injective ring is: of Type
If if it contains a faithful abelian idempotent and is directly finite; of Type IIf if it contains a
faithful directly finite idempotent but contains no nonzero abelian idempotents and is directly
finite; and purely infinite if it contains no nonzero directly finite central idempotents (see [8, pp.
111–115]). Two R-modules M and N are called orthogonal to each other, if they do not contain
nonzero isomorphic submodules.



CYCLICS ARE UTUMI MODULES 369

Proposition 3.18. Let R be a regular right self-injective ring.

(i) (See the proof of [12, Theorem 4.6] and [13, Lemma 6.23]) If Soc(RR) = 0 then R is a
right CU-ring if and only if R is strongly regular.

(ii) If Soc(RR) is an essential right ideal of RR, then R is a right CU-ring if and only if R ∼=
R1 ×R2 such that R1 is a semisimple ring and R2 is a direct product of division rings.

Proof. (1) One direction is obtained by Remarks 3.4 (3). Conversely, let R be a right CU-ring.
By [8, Theorem 10.21] R is a direct product of directly finite and purely infinite rings. Corollary
3.6 and [8, Theorem 10.16] show that purely infinite rings are not right CU. Thus R must be
directly finite. Now by [8, Theorem 10.22] R is a direct product of rings of types If and IIf .
However if R is of type IIf then by [8, Theorem 10.16], R ∼= M (2) for some R-module M .
This in turn implies that Soc(RR) 6= 0 by Theorem 3.5. Therefore R is of type If . Hence by
[8, Theorem 10.24], R is a direct product of matrix rings over strongly regular rings. Since
Soc(RR) = 0 the size of each matrix ring in the product must be 1, proving that R is strongly
regular.
(2) (⇒). By Proposition 3.17, we may assume that Soc(RR) ∼=

⊕
i S

(ni) where each Si is a
simple right R-module, ni ≥ 1 and Si 6∼= Sj for all i 6= j. Now applying Lemma 3.16(2), we
have R = ΠiMni(Di) where each Di

∼= EndR(Si) is a division ring. The result is now obtained
by Corollary 3.9.
(⇐) By Corollary 3.11 and Remarks and Examples 3.4.

Lemma 3.19. If R = R1 ×R2 then R1 and R2 are orthogonal as R-modules.

Proof. Consider e1 = (1, 0), e2 = (0, 1) and X1
f∼= X2 where each Xi’s are R-submodules of

Ri. Then f(X1) = f(X1)e1 ⊆ X2e1 = 0.

Theorem 3.20. Let R be a right nonsingular, right CU-ring. Then R = S × T , where S is a
semisimple ring and T is a reduced square-free ring.

Proof. Following [11, Proposition 3.22], we have a ring decomposition R = A ⊕ B, where A
is a right self-injective ring and B is a square-free ring. Since A is a right nonsingular self-
injective ring, it is a (von Neumann) regular ring. Now A being injective, Soc(AA) is essential
in a direct summand D (say) of AA. Write A = D ⊕ H for some right ideal H of A. Then it
is easy to verify that D and H are ideals in A (notice that D and H are orthogonal A-modules,
so there are no nonzero homomorphisms between them) and A ∼= D × H as rings. Now by
Proposition 3.18, A = S ⊕ T1 where S is a semisimple ring and T1 is a strongly regular (hence
square-free) ring. Let T = T1 × B. By Lemma 3.19 and [11, Lemma 2.17], T is a square-free
ring. Hence any closed right ideal of T is an ideal (see [7, Theorem 6(i)]) and so T (note that
Z(RR) = 0 =⇒ Z(TT ) = 0) is a reduced ring by [19, Lemma 2.4].

Corollary 3.21. A (von Neumann) regular ring is right (respectively, left) CU-ring if and only if
it is a direct product of a semisimple and a reduced ring.

Proof. This follows from Theorem 3.20 and the fact that regular reduced rings are CU.

Recall that an R-module M is said to have internal cancellation property (IC for short)
if, given internal decompositions

M = A⊕X = B ⊕ Y

where A ∼= B, then X ∼= Y . If RR has IC, R is said to be a right IC ring (see [14, 1.4]). In the
following we let Z2(R) = B when Z(R/Z(RR)) = B/Z(RR).

Proposition 3.22. (cf. [11, Proposition 4.8] and [10, Proposition 4.9].) Every square-free right
CU-ring is a right IC ring.



370 Soumitra Das and Ardeline M. Buhphang

Proof. Let R be a square-free right CU-ring. Since every Utumi module is a C4-module, every
cyclic right R-module is C4. Hence RR is C3 by [1, Proposition 4.8]. Therefore, by [10,
Proposition 4.9], RR satisfy the internal cancellation property.

Corollary 3.23. Let R be a right CU-ring. If either Z2(R) ⊆ J(R) or R is a right self-injective
ring. Then R is a right IC ring.

Proof. It is well-known that the internal cancellation property is closed under direct products (see
[14, Paragraph before Proposition 5.1]). Thus if R is a ring that is isomorphic to a direct product
of a semisimple ring and a square-free right CU-ring then R is a right IC ring by Proposition
3.22. Now let R be a right CU-ring with the above hypothesis. To show that R is right IC, we
apply [14, Proposition 5.2(1)] and show that R/I is a right IC ring for some suitable ideal I ⊆
J(R). Note that for any ring R, the ring R/Z2(R) is a right nonsingular ring and if R is a right
self-injective ring then R/J(R) is a regular ring. Therefore, the result is obtained by Theorem
3.20 and Corollary 3.21.

Corollary 3.24. Let R be a right nonsingular, right CU-ring. Then R is a right U∗ ring (i.e., all
right ideals of R are Utumi).

Proof. Follows from Theorem 3.20, [10, Theorem 3.2] and Lemma 3.19.

Remark 3.25. (i) The converse of Corollary 3.24 is not true in general. For this, consider
R = Z[x]. Then R being a commutative integral domain (reduced ≡ nonsingular), R is
uniform and hence a U∗-ring. ButR is not a CU-ring by Corollary 3.15 and [20, Proposition
4.31]. This example shows that the property of being “Fully-Utumi" on a ring R does not
extend to the polynomial ring R[x].

(ii) A right nonsingular, right CU-ring need not be a right a-ring (rings having the property that
every right ideal is automorphism-invariant, see [15]). For instance, the ring of integers Z
being a distributive ring is an CU-ring by Corollary 3.15. But Z is not an a-ring, since the
injective hull of Z isQ and Z is not invariant under every non-zero element ofQ. However,
Z is a U∗-ring.

(iii) A (right nonsingular) right a-ring need not be a right CU-ring. For this, note that any com-
mutative self-injective ring R is an a-ring, however R need not necessarily be a distributive
ring. For instance,
(i) Let R = Πp (Z/pZ), where p runs over all distinct prime integers. Then the injective
hull of R is R itself and hence R is a commutative (von Neumann) regular, a-ring. But R
cannot be an CU-ring by Corollary 3.15 and [18, Remark on Page 295].
(ii) Consider the group ring FG, where F is a field of order 2 and G is the direct product
of two groups of order 2. Then FG is a self-injective, local ring which is not uniserial and
hence can not be distributive (see [20, 3.23]).
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