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Abstract In this article, the concepts of invariant arithmetic convergence, lacunary invari-
ant arithmetic convergence, invariant arithmetic statistically convergence and lacunary invariant
arithmetic statistically convergence have been investigated. Finally, we give some relations be-
tween lacunary invariant arithmetic statistical convergence and invariant arithmetic statistical
convergence.

1 Introduction

The idea of arithmetic convergence was firstly originated by Ruckle [1]. Then, it was further
investigated by many authors, e.g. Yaying and Hazarika ( [2], [3], [4], [5]).

A sequence x = (xm) is called arithmetically convergent if for each ε > 0, there is an integer
n such that for every integer m we have |xm − x〈m,n〉| < ε, where the symbol 〈m,n〉 denotes
the greatest common divisior of two integers m and n. We denote the sequence space of all
arithmetic convergent sequence by AC.

Statistical convergence of a real number sequence was firstly originated by Fast [7]. It became
a notable topic in summability theory after the work of Fridy [8] and Šalát [9].

By a lacunary sequence we mean an increasing integer sequence θ = {kr} such that k0 = 0
and hr = kr − kr−1 → ∞ as r → ∞. Throughout this paper the intervals determined by
θ will be denoted by Ir = (kr−1, kr], and ratio kr

kr−1
will be abbreviated by qr. The space of

lacunary convergent sequenceNθ was introduced by Freedman [10]. Also, in [10] the connection
between the strongly Cesàro summable sequences space and the strongly lacunary summable
sequences space was established. Connor [11] gave the relationships between the concepts of
strongly p-Cesàro convergence and statistical convergence of sequences. The notion of lacunary
convergence has been investigated by Çolak [12], Fridy and Orhan ( [13], [14]), Li [15] and
many others in the recent years.

Several authors have studied invariant convergent sequences (see, [16], [17], [18], [19], [20],
[21]).

Let σ be a one-to-one mapping of the set of positive integers into itself such that σm (n) =(
σm−1 (n)

)
, m = 1, 2, 3, .... A continuous linear functional Φ on l∞, the space of real bounded

sequences, is said to be an invariant mean or a σ mean, if and only if,
(1) Φ (x) ≥ 0, for all sequences x = (xn) with xn ≥ 0 for all n;
(2) Φ (e) = 1, where e = (1, 1, 1, ...) ;
(3) Φ

(
xσ(n)

)
= Φ (x) for all x ∈ l∞.

The mapping Φ are assumed to be one-to-one such that σm (n) 6= n for all positive integers
n and m, where σm (n) denotes the mth iterate of the mapping σ at n. Thus, Φ extends the limit
functional on c, the space of convergent sequences, in the sense that Φ (x) = limx, for all x ∈ c.
In case σ is translation mapping σ (n) = n + 1, the σ mean is often called a Banach limit and
Vσ, the set of bounded sequences all of whose invariant means are equal, is the set of almost
convergent sequences.

A set E of positive integers said to have uniform invariant density of zero if and only if the
number of elements of E which lie in the set

{
σ (m) , σ2 (m) , ..., σn (m)

}
is o (n) as n → ∞,

uniformly in m.
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By using uniform invariant density, following notions were given in [16] and [17].
The arithmetic statistically convergence and lacunary arithmetic statistically convergence was

examined by Yaying and Hazarika [6].
A sequence x = (xm) is said to be arithmetic statistically convergent if for ε > 0, there is an

integer n such that

lim
t→∞

1
t
|{m ≤ t : |xm − x〈m,n〉| ≥ ε}| = 0.

We shall use ASC to denote the set of all arithmetic statistical convergent sequences. Thus, for
ε > 0 and integer n

ASC =

{
x = (xm) : lim

t→∞

1
t
|{m ≤ t : |xm − x〈m,n〉| ≥ ε}| = 0

}
.

We shall write ASC − limxm = x〈m,n〉 to denote the sequence (xm) is arithmetic statistically
convergent to x〈m,n〉.

A sequence x = (xm) is said to be lacunary arithmetic statistically convergent if for ε > 0
there is an integer n such that

lim
r→∞

1
hr
|
{
m ∈ Ir : |xm − x〈m,n〉| ≥ ε

}
= 0.

We shall write

ASCθ =

{
x = (xm) : lim

r→∞

1
hr
|
{
m ∈ Ir : |xm − x〈m,n〉| ≥ ε

}
= 0

}
.

We will use ASCθ − limxm = x〈m,n〉 to denote the sequence (xm) is lacunary arithmetic statis-
tically convergent to x〈m,n〉.

2 Main Results

Definition 2.1. A sequence x = (xp) is said to be invariant arithmetic convergent if for an integer
n

lim
m→∞

1
m

m∑
p=1

xσp(s) = x〈p,n〉 uniformly in s = 1, 2, ... .

In this case we write xp → x〈p,n〉 (AVσ) and the set of all invariant arithmetic convergent se-
quences will be demostrated by AVσ.

Definition 2.2. A sequence x = (xp) is said to be strongly invariant arithmetic convergent if for
an integer n

lim
m→∞

1
m

m∑
p=1

|xσp(s) − x〈p,n〉| = 0 uniformly in s = 1, 2, ... .

In this case we write xp → x〈p,n〉 [AVσ] to denote the sequence (xp) is strongly invariant arith-
metic convergent to x〈p,n〉 and the set of all invariant arithmetic convergent sequences will be
demostrated by [AVσ] .

Definition 2.3. A sequence x = (xp) is said to be invariant arithmetic statistically convergent if
for every ε > 0, there is an integer n such that

lim
m→∞

1
m
|{p ≤ m : |xσp(s) − x〈p,n〉| ≥ ε}| = 0 uniformly in s = 1, 2, ... .

We shall use ASσC to denote the set of all invariant arithmetic statistical convergent sequences.
Thus, we define

ASσC =
{
x = (xp) : for some x〈p,n〉, ASσC − limxp = x〈p,n〉

}
.

In this case we write ASσC − limxp = x〈p,n〉 or xp → x〈p,n〉 (ASσC) .
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Definition 2.4. A sequence x = (xp) is called to be lacunary invariant arithmetic statistical
convergent if for every ε > 0, there is an integer n such that

lim
r→∞

1
hr
|{p ∈ Ir : |xσp(s) − x〈p,n〉| ≥ ε}| = 0 uniformly in s = 1, 2, ... .

We shall use ASσθC to indicate the set of all lacunary invariant arithmetic statistical convergent
sequences. Thus, we define

ASσθC =
{
x = (xp) : for some x〈p,n〉, ASσθC − limxp = x〈p,n〉

}
.

In this case we write ASσθC − limxp = x〈p,n〉 or xp → x〈p,n〉 (ASσθC) .

Definition 2.5. A sequence x = (xp) is said to be strongly lacunary invariant arithmetic conver-
gent if for an integer n

lim
r→∞

1
hr

∑
p∈Ir

|xσp(s) − x〈p,n〉| = 0 uniformly in s = 1, 2, ... .

In this case we write xp → x〈p,n〉 (ALσθ) to denote the sequence (xp) is strongly lacunary
invariant arithmetic convergent to x〈p,n〉 and the set of all strongly lacunary invariant arithmetic
convergent sequences will be denoted by (ALσθ) .

Now, we give some inclusion relations between ALσθ-convergence and ASσθC-convergence
and demonstrate that these are equivalent for bounded sequences. We also study relation between
ASσθC-convergence and ASσC-convergence.

Theorem 2.6. Let θ = {kr} be a lacunary sequence.

(i) xp → x〈p,n〉 (ALσθ) implies xp → x〈p,n〉 (ASσθC),

(ii) x ∈ l∞ and xp → x〈p,n〉 (ASσθC) imply xp → x〈p,n〉 (ALσθ),

(iii) ASσθC ∩ l∞ = ALσθ.

Proof. (i) Let ε > 0 and xp → x〈p,n〉 (ALσθ). Then, we can write∑
p∈Ir
|xσp(s) − x〈p,n〉| ≥

∑
p∈Ir

|xσp(s)−x〈p,n〉|≥ε

|xσp(s) − x〈p,n〉|

≥ ε.
∣∣{p ∈ Ir : |xσp(s) − x〈p,n〉| ≥ ε

}∣∣
which gives the result.

(ii) Assume that xp → x〈p,n〉 (ASσθC) and x ∈ l∞. If x ∈ l∞, then, there exists a positive
integer M such that

|xσp(s) − x〈p,n〉| ≤M

for all p and s.
Given ε > 0, we get

1
hr

∑
p∈Ir
|xσp(s) − x〈p,n〉| =

1
hr

∑
p∈Ir

|xσp(s)−x〈p,n〉|≥ε

|xσp(s) − x〈p,n〉|

+
1
hr

∑
p∈Ir

|xσp(s)−x〈p,n〉|<ε

|xσp(s) − x〈p,n〉|

≤ M

hr

∣∣{p ∈ Ir : |xσp(s) − x〈p,n〉| ≥ ε
}∣∣+ ε
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from which the result follows.
Let θ = {kr} be given and define xp to be 1, 2, ...,

[√
hr
]

for p = σt (s), t = kr−1 + 1,
kr−1 + 2, ..., kr−1 +

[√
hr
]

; s ≥ 1, and xp = 0 otherwise (where [.] denotes the greatest integer
function). Note that x is not bounded.

Further, for 0 < ε < 1 we get

1
hr
|{p ∈ Ir : |xσp(s) − 0| ≥ ε}| =

[√
hr
]

√
hr
→ 0 as r →∞,

i.e. xp → 0 (ASσθC) . But

1
hr

∑
p∈Ir

|xσp(s) − 0| = 1
hr

([√
hr
] ([√

hr
]
+ 1
)

2

)
→ 1

2
6= 0 as r →∞,

hence, xp 9 0 (ALσθ). Thus, inclusion (i) is proper and this example denotes that the bounded-
ness condition can not be omitted from the hypothesis (ii) .

(iii) This is an immediate consequence of (i) and (ii).

We now give a lemma which will be used in the proof of Theorem 2.8.

Lemma 2.7. Assume for given ε1 > 0 and every ε > 0, there exists m0 and s0 and there is an
integer n such that

1
m
|{0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}| < ε1

for all m ≥ m0 and s ≥ s0, then, x = (xp) ∈ ASσC.

Proof. Let ε1 > 0 be given. For each ε > 0, select m′0, s0 such that

1
m
|{0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}| <

ε1

2
(2.1)

for all m ≥ m′0 and s ≥ s0. It is enough to prove that there exists m′′0 such that for m ≥ m′′0 and
0 ≤ s ≤ s0,

1
m
|{0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}| < ε1. (2.2)

Since taking m0 = max {m′0,m′′0}, (2.2) will hold for m ≥ m0 and for all s, which gives the
result.

Once s0 has been choosen, 0 ≤ s ≤ s0, s0 is fixed. So put

T = |{0 ≤ p ≤ s0 − 1 : |xσp(s) − x〈p,n〉| ≥ ε}|.

Now taking 0 ≤ s ≤ s0 and m ≥ s0, by (2.1) we have

1
m |{0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}|

≤ 1
m |{0 ≤ p ≤ s0 − 1 : |xσp(s) − x〈p,n〉| ≥ ε}|

+ 1
m |{s0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}|

≤ T
m + 1

m |{s0 ≤ p ≤ m− 1 : |xσp(s0) − x〈p,n〉| ≥ ε}| ≤
T
m + ε1

2 ,

and taking m, sufficiently large, we can write T
m + ε1

2 < ε1, which gives (2.2), and therefore, the
result follows.

Theorem 2.8. ASσθC = ASσC for every lacanary sequence θ.
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Proof. Let x ∈ ASσθC. Then, from Definition 2.4, given ε1 > 0, there exist r0 and x〈p,n〉 such
that

1
hr
|{0 ≤ p ≤ hr − 1 : |xσp(s) − x〈p,n〉| ≥ ε}| < ε1

for r ≥ r0 and s = kr−1 + 1 + u, u ≥ 0.
Let m ≥ hr, write m = ihr + q, where 0 ≤ q ≤ hr, i is an integer. Since m ≥ hr, i ≥ 1.

Now
1
m |{0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}|

≤ 1
m |{0 ≤ p ≤ (i+ 1)hr − 1 : |xσp(s) − x〈p,n〉| ≥ ε}|

= 1
m

i∑
j=0
|{jhr ≤ p ≤ (j + 1)hr − 1 : |xσp(s) − x〈p,n〉| ≥ ε}|

≤ 1
m (i+ 1)hrε1 ≤ 2ihr ε1

m , (i ≥ 1)

for hrm ≤ 1, and since ihr
m ≤ 1,

1
m
|{0 ≤ p ≤ m− 1 : |xσp(s) − x〈p,n〉| ≥ ε}| ≤ 2ε1.

Then, by the Lemma 2.7, ASσθC ⊂ ASσC. It is easy to see that ASσC ⊂ ASσθC.

By using the same techniques as in Theorem 2.8, we can prove the following theorem.

Theorem 2.9. ALσθ ⇐⇒ [AVσ] for every lacanary sequence θ.

When σ (s) = s+ 1, from Definitions 2.3 and 2.4 we get the definitions of arithmetic almost
statistically convergence and lacunary almost arithmetic statistically convergence of a sequence.
So, similar inclusions to Theorems 2.7 and 2.8 hold between strongly almost arithmetic conver-
gent sequences and almost arithmetic statistical convergent sequences, which have not appeared
anywhere by this time.
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