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Abstract : Famous Naimark-Han-Larson dilation theorem for frames in Hilbert spaces states
that every frame for a separable Hilbert spaceH is the image of a Riesz basis under an orthogonal
projection from a separable Hilbert space H1 which contains H isometrically. In this paper, we
derive dilation result for p-approximate Schauder frames for separable Banach spaces. Our result
contains Naimark-Han-Larson dilation theorem as a particular case.

1 Introduction

Let K be the field of real numbers R or the field of complex numbers C and H be a separable
Hilbert space over K. We start with the definitions of Riesz basis and frame for H.

Definition 1.1. [3, 4] A sequence {τn}n in H is said to be a Riesz basis for H if there exists an
orthonormal basis {ωn}n for H and a bounded invertible linear operator T : H → H such that

Tωn = τn, ∀n ∈ N.

Definition 1.2. [14] A sequence {τn}n in H is said to be a frame for H if there exist a, b > 0
such that

a‖h‖2 ≤
∞∑
n=1

|〈h, τn〉|2 ≤ b‖h‖2, ∀h ∈ H.

Theory of frames found its uses in sampling theory, filter banks, wireless communication,
wavelet theory etc [29, 5, 9, 21]. It also motivates the study of framelets and multiframelets
[17, 16, 27, 13]. Dilation theory usually tries to extend operator on Hilbert space to larger Hilbert
space which are easier to handle as well as well-understood and study the original operator as
a slice of it [26, 2, 30]. As long as frame theory for Hilbert spaces is considered, following
theorem is known as Naimark-Han-Larson dilation theorem. This was proved independently by
Han and Larson in 2000 [19] and by Kashin and Kukilova in 2002 [23]. We refer the reader to
[12] for the history of this theorem.

Theorem 1.3. [19, 23] (Naimark-Han-Larson dilation theorem) Let {τn}n be a frame for H.
Then there exist a Hilbert spaceH1 which containsH isometrically and a Riesz basis {ωn}n for
H1 such that

τn = Pωn, ∀n ∈ N,

where P is the orthogonal projection from H1 onto H.

Reason for names Han and Larson in Theorem 1.3 is clearly evident whereas that of Naimark
is that Theorem 1.3 is a particular case of famous Naimark dilation theorem (see the introduction
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of the paper [12]). To the best of our knowledge, proofs of Theorem 1.3 can be found in [7],
[19], [25] and [12]. By the way, proofs of dilation theorem in the finite dimensional case can
be found in [18] and [8]. In this paper, we derive dilation theorem for p-approximate Schauder
frames for separable Banach spaces (Theorem 2.13). Theorem 1.3 then becomes a particular
case of Theorem 2.13.

2 Dilation theorem for p-approximate Schauder frames

Following theorem is the fundamental result in frame theory for Hilbert spaces which motivates
the definition of frames for Banach spaces.

Theorem 2.1. [14, 19] Let {τn}n be a frame for H. Then

(i) The map Sτ : H 3 h 7→
∑∞
n=1〈h, τn〉τn ∈ H is a well-defined bounded linear, positive and

invertible operator. Further,

(general Fourier expansion) h =
∞∑
n=1

〈h, S−1
τ τn〉τn =

∞∑
n=1

〈h, τn〉S−1
τ τn, ∀h ∈ H.

(2.1)

(ii) The map θτ : H 3 h 7→ {〈h, τn〉}n ∈ `2(N) is a well-defined bounded linear, injective
operator.

(iii) Adjoint of θτ is given by θ∗τ : `2(N) 3 {an}n 7→
∑∞
n=1 anτn ∈ H which is surjective.

(iv) Sτ = θ∗τθτ .

(v) Pτ := θτS
−1
τ θ∗τ : `2(N)→ `2(N) is an orthogonal projection onto θτ (H).

LetX be a separable Banach space andX ∗ be its dual. General Fourier expansion in Equation
(2.1) allows to define the notion of Schauder frame for X .

Definition 2.2. [6] Let {τn}n be a sequence in X and {fn}n be a sequence in X ∗. The pair
({fn}n, {τn}n) is said to be a Schauder frame for X if

x =
∞∑
n=1

fn(x)τn, ∀x ∈ X .

Notion of Schauder frame has a very natural generalization which is stated as below.

Definition 2.3. [15, 31] Let {τn}n be a sequence in X and {fn}n be a sequence in X ∗. The pair
({fn}n, {τn}n) is said to be an approximate Schauder frame (ASF) for X if

Sf,τ : X 3 x 7→ Sf,τx :=
∞∑
n=1

fn(x)τn ∈ X

is a well-defined bounded linear, invertible operator.

Recently, a particular case of Definition 2.3 was studied by same authors of this paper by
defining p-approximate Schauder frames (p-ASFs).

Definition 2.4. [24] An ASF ({fn}n, {τn}n) for X is said to be p-ASF, p ∈ [1,∞) if both the
maps

θf : X 3 x 7→ θfx := {fn(x)}n ∈ `p(N),

θτ : `p(N) 3 {an}n 7→ θτ{an}n :=
∞∑
n=1

anτn ∈ X

are well-defined bounded linear operators.
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Remark 2.5. It is known that every p-approximate Schauder frame is an approximate Schauder
frame and every Schauder frame is an approximate Schauder frame. We now give an example
to show that the set of all p-approximate Schauder frames is strictly smaller than the set of all
approximate Schauder frames. Let X = K. Define τn := 1

n2 , fn(x) = x, ∀x ∈ K, ∀n ∈ N. Then∑∞
n=1 fn(x)τn = π2

6 x, ∀x ∈ K. Therefore ({fn}n, {τn}n) is an approximate Schauder frame for
X . Let x ∈ K be a non-zero element. Then for every p ∈ [1,∞),

m∑
n=1

|fn(x)|p = m|x|p →∞ as m→∞.

Thus {fn(x)}n /∈ `p(N) for any p ∈ [1,∞) and hence ({fn}n, {τn}n) is not a p-ASF for any
p ∈ [1,∞). It is noted that there is a bijection between the set of approximate Schauder frames
and the set of all Schauder frames (for instance, Lemma 3.1 in [15]).

Advantage of p-ASF is that it gives a result similar to that of Theoerm 2.1.

Theorem 2.6. [24] Let ({fn}n, {τn}n) be a p-ASF for X . Then

(i) We have

x =
∞∑
n=1

(fnS
−1
f,τ )(x)τn =

∞∑
n=1

fn(x)S
−1
f,ττn, ∀x ∈ X .

(ii) The map θf : X 3 x 7→ {fn(x)}n ∈ `p(N) is injective.

(iii) The map θτ : `p(N) 3 {an}n 7→
∑∞
n=1 anτn ∈ X is surjective.

(iv) Sf,τ = θτθf .

(v) Pf,τ := θfS
−1
f,τθτ : `p(N)→ `p(N) is a projection onto θf (X ).

In order to derive the dilation result we must have a notion of Riesz basis for Banach space.
There are various characterizations for Riesz bases for Hilbert spaces (see Theorem 5.5.4 in [10],
Theorem 7.13 in [20], and a recent generalization by Stoeva in [28]) but they use (implicitly or
explicitly) inner product structures and orthonormal bases. These characterizations lead to the
notion of p-Riesz basis for Banach spaces using a single sequence in the Banach space (see
[1, 11]) but we do not consider that in this paper.
To define the notion of Riesz basis, which is compatible with Hilbert space situation, we first
derive an operator-theoretic characterization for Riesz basis in Hilbert spaces, which does not
use the inner product of Hilbert space. To do so, we need a result from Hilbert space frame
theory.

Theorem 2.7. [22] (Holub’s theorem) A sequence {τn}n in H is a frame for H if and only if
there exists a surjective bounded linear operator T : `2(N) → H such that Ten = τn, for all
n ∈ N, where {en}n is the standard orthonormal basis for `2(N).

In the sequel, given a space X , by IX we mean the identity mapping on X .

Theorem 2.8. For sequence {τn}n in H, the following are equivalent.

(i) {τn}n is a Riesz basis for H.

(ii) {τn}n is a frame for H and

θτS
−1
τ θ∗τ = I`2(N). (2.2)

Proof. (i) =⇒ (ii). It is well-known that a Riesz basis is a frame (for instance, see Proposition
3.3.5 in [10]). Now there exist an orthonormal basis {ωn}n for H and bounded invertible
operator T : H → H such that Tωn = τn, for all n ∈ N. We then have

Sτh =
∞∑
n=1

〈h, τn〉τn =
∞∑
n=1

〈h, Tωn〉Tωn

= T

( ∞∑
n=1

〈T ∗h, ωn〉ωn

)
= TT ∗h, ∀h ∈ H.
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Therefore

θτS
−1
τ θ∗τ{an}n = θτ (TT

∗)−1θ∗τ{an}n = θτ (T
∗)−1T−1θ∗τ{an}n

= θτ (T
∗)−1T−1

( ∞∑
n=1

anτn

)
= θτ (T

∗)−1T−1

( ∞∑
n=1

anTωn

)

= θτ

( ∞∑
n=1

an(T
∗)−1ωn

)
=
∞∑
k=1

〈 ∞∑
n=1

an(T
∗)−1ωn, τk

〉
ek

=
∞∑
k=1

〈 ∞∑
n=1

an(T
∗)−1ωn, Tωk

〉
ek

=
∞∑
k=1

〈 ∞∑
n=1

anωn, ωk

〉
ek = {ak}k, ∀{an}n ∈ `2(N).

(ii) =⇒ (i). From Holub’s theorem (Theorem 2.7), there exists a surjective bounded linear op-
erator T : `2(N)→ H such that Ten = τn, for all n ∈ N. Since all separable Hilbert spaces
are isometrically isomorphic to one another and orthonormal bases map into orthonormal
bases, without loss of generality we may assume that {en}n is an orthonormal basis for H
and the domain of T is H. It now reduces in showing T is invertible. Since T is already
surjective, to show it is invertible, it suffices to show it is injective. Let {an}n ∈ `2(N).
Then {an}n = θτ (S−1

τ θ∗τ{an}n). Hence θτ is surjective. We now find

θτh =
∞∑
n=1

〈h, τn〉en =
∞∑
n=1

〈h, Ten〉en = T ∗h, ∀h ∈ H.

Therefore

Ker (T ) = T ∗(H)⊥ = θτ (H)⊥ = H⊥ = {0}.

Hence T is injective.

Theorem 2.8 leads to the following definition of p-approximate Riesz basis.

Definition 2.9. A pair ({fn}n, {τn}n) is said to be a p-approximate Riesz basis for X if it is a
p-ASF for X and θfS−1

f,τθτ = I`p(N).

Example 2.10. Let X be a Banach space which admits a Schauder basis {ωn}n and let {ζn}n
be the coordinate functionals associated with {en}n. Let U, V : X → X be bounded linear
operators such that V U is invertible. Define

fn := ζnU, τn := V ωn, ∀n ∈ N.

Then ({fn}n, {τn}n) is an approximate Schauder frame forX . If V U = IX , then ({fn}n, {τn}n)
is a Schauder frame for X .

Example 2.11. Let p ∈ [1,∞) and U : X → `p(N), V : `p(N)→ X be bounded linear operators
such that V U is invertible. Let {en}n denote the canonical Schauder basis for `p(N) and {ζn}n
denote the coordinate functionals associated with {en}n respectively. Define

fn := ζnU, τn := V en, ∀n ∈ N.

Then ({fn}n, {τn}n) is a p-ASF for X .

Example 2.12. Let p ∈ [1,∞) and U : X → `p(N), V : `p(N)→ X be bounded invertible linear
operators. Let {en}n, {ζn}n, {fn}n, and {τn}n be as in Example 2.11. Then ({fn}n, {τn}n) is
a p-approximate Riesz basis for X .
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We now derive the dilation theorem.

Theorem 2.13. (Dilation theorem) Let ({fn}n, {τn}n) be a p-ASF for X . Then there exist a Ba-
nach space X1 which contains X isometrically and a p-approximate Riesz basis ({gn}n, {ωn}n)
for X1 such that

fn = gnP|X , τn = Pωn, ∀n ∈ N,

where P : X1 → X is an onto projection.

Proof. Let {en}n denote the standard Schauder basis for `p(N) and let {ζn}n denote the coordi-
nate functionals associated with {en}n. Define

X1 := X ⊕ (I`p(N) − Pf,τ )(`p(N)), P : X1 3 x⊕ y 7→ x⊕ 0 ∈ X1

and

ωn := τn ⊕ (I`p(N) − Pf,τ )en ∈ X1, gn := fn ⊕ ζn(I`p(N) − Pf,τ ) ∈ X ∗1 , ∀n ∈ N.

Then clearly X1 contains X isometrically, P : X1 → X is an onto projection and

(gnP|X )(x) = gn(P|Xx) = gn(x) = (fn ⊕ ζn(I`p(N) − Pf,τ ))(x⊕ 0) = fn(x), ∀x ∈ X ,

Pωn = P (τn ⊕ (I`p(N) − Pf,τ )en) = τn, ∀n ∈ N.

Since the operator I`p(N) − Pf,τ is idempotent, it follows that (I`p(N) − Pf,τ )(`p(N)) is a closed
subspace of `p(N) and hence a Banach space. Therefore X1 is a Banach space. Let x ⊕ y ∈ X1
and we shall write y = {an}n ∈ `p(N). We then see that

∞∑
n=1

(ζn(I`p(N) − Pf,τ ))(y)τn =
∞∑
n=1

ζn(y)τn −
∞∑
n=1

ζn(Pf,τ (y))τn

=
∞∑
n=1

ζn({ak}k)τn −
∞∑
n=1

ζn(θfS
−1
f,τθτ ({ak}k))τn

=
∞∑
n=1

anτn −
∞∑
n=1

ζn

(
θfS

−1
f,τ

( ∞∑
k=1

akτk

))
τn =

∞∑
n=1

anτn −
∞∑
n=1

ζn

( ∞∑
k=1

akθfS
−1
f,ττk

)
τn

=
∞∑
n=1

anτn −
∞∑
n=1

ζn

( ∞∑
k=1

ak

∞∑
r=1

fr(S
−1
f,ττk)er

)
τn

=
∞∑
n=1

anτn −
∞∑
n=1

∞∑
k=1

ak

∞∑
r=1

fr(S
−1
f,ττk)ζn(er)τn

=
∞∑
n=1

anτn −
∞∑
n=1

∞∑
k=1

akfn(S
−1
f,ττk)τn =

∞∑
n=1

anτn −
∞∑
k=1

ak

∞∑
n=1

fn(S
−1
f,ττk)τn

=
∞∑
n=1

anτn −
∞∑
k=1

akτk = 0 and
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∞∑
n=1

fn(x)(I`p(N) − Pf,τ )en =
∞∑
n=1

fn(x)en −
∞∑
n=1

fn(x)Pf,τen

=
∞∑
n=1

fn(x)en −
∞∑
n=1

fn(x)θfS
−1
f,τθτen =

∞∑
n=1

fn(x)en −
∞∑
n=1

fn(x)θfS
−1
f,ττn

=
∞∑
n=1

fn(x)en −
∞∑
n=1

fn(x)
∞∑
k=1

fk(S
−1
f,ττn)ek =

∞∑
n=1

fn(x)en −
∞∑
n=1

∞∑
k=1

fn(x)fk(S
−1
f,ττn)ek

=
∞∑
n=1

fn(x)en −
∞∑
k=1

∞∑
n=1

fn(x)fk(S
−1
f,τ τn)ek =

∞∑
n=1

fn(x)en −
∞∑
k=1

fk

( ∞∑
n=1

fn(x)S
−1
f,τ τn

)
ek

=
∞∑
n=1

fn(x)en −
∞∑
k=1

fk(x)ek = 0.

By using previous two calculations, we get

Sg,ω(x⊕ y) =
∞∑
n=1

gn(x⊕ y)ωn =
∞∑
n=1

(fn ⊕ ζn(I`p(N) − Pf,τ ))(x⊕ y)(τn ⊕ (I`p(N) − Pf,τ )en)

=
∞∑
n=1

(fn(x) + (ζn(I`p(N) − Pf,τ ))(y))(τn ⊕ (I`p(N) − Pf,τ )en)

=

( ∞∑
n=1

fn(x)τn +
∞∑
n=1

(ζn(I`p(N) − Pf,τ ))(y)τn

)
⊕

( ∞∑
n=1

fn(x)(I`p(N) − Pf,τ )en +
∞∑
n=1

(ζn(I`p(N) − Pf,τ ))(y)(I`p(N) − Pf,τ )en

)

= (Sf,τx+ 0)⊕

(
0 + (I`p(N) − Pf,τ )

∞∑
n=1

ζn((I`p(N) − Pf,τ )y)en

)
= Sf,τx⊕ (I`p(N) − Pf,τ )(I`p(N) − Pf,τ )y = Sf,τx⊕ (I`p(N) − Pf,τ )y

= (Sf,τ ⊕ (I`p(N) − Pf,τ ))(x⊕ y).

Since the operator I`p(N) − Pf,τ is idempotent, I`p(N) − Pf,τ becomes the identity operator on
the space (I`p(N) − Pf,τ )(`p(N)). Hence we get that the operator Sg,ω = Sf,τ ⊕ (I`p(N) − Pf,τ )
is bounded invertible from X1 onto itself. We next show that ({gn}n, {ωn}n) is a p-approximate
Riesz basis for X1. For this, first we find θg and θω. Consider

θg(x⊕ y) = {gn(x⊕ y)}n = {(fn ⊕ ζn(I`p(N) − Pf,τ ))(x⊕ y)}n
= {fn(x) + ζn((I`p(N) − Pf,τ )y)}n = {fn(x)}n + {ζn((I`p(N) − Pf,τ )y)}n

= θfx+
∞∑
n=1

ζn((I`p(N) − Pf,τ )y)en = θfx+ (I`p(N) − Pf,τ )y, ∀x⊕ y ∈ X1

and

θω{an}n =
∞∑
n=1

anωn =
∞∑
n=1

an(τn ⊕ (I`p(N) − Pf,τ )en)

=

( ∞∑
n=1

anτn

)
⊕

( ∞∑
n=1

an(I`p(N) − Pf,τ )en

)

= θτ{an}n ⊕ (I`p(N) − Pf,τ )

( ∞∑
n=1

anen

)
= θτ{an}n ⊕ (I`p(N) − Pf,τ ){an}n, ∀{an}n ∈ `p(N).
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Therefore

Pg,ω{an}n = θgS
−1
g,ωθω{an}n = θgS

−1
g,ω(θτ{an}n ⊕ (I`p(N) − Pf,τ ){an}n)

= θg(S
−1
f,τ ⊕ (I`p(N) − Pf,τ ))(θτ{an}n ⊕ (I`p(N) − Pf,τ ){an}n)

= θg(S
−1
f,τθτ{an}n ⊕ (I`p(N) − Pf,τ )2{an}n)

= θg(S
−1
f,τθτ{an}n ⊕ (I`p(N) − Pf,τ ){an}n)

= θf (S
−1
f,τθτ{an}n) + (I`p(N) − Pf,τ )(I`p(N) − Pf,τ ){an}n

= Pf,τ{an}n + (I`p(N) − Pf,τ ){an}n = {an}n, ∀{an}n ∈ `p(N).

Following dilation result of Han and Larson [19] is a particular case of Theorem 2.13.

Corollary 2.14. [19, 23] Let {τn}n be a frame forH. Then there exist a Hilbert spaceH1 which
contains H isometrically and a Riesz basis {ωn}n for H1 such that

τn = Pωn, ∀n ∈ N,

where P is the orthogonal projection from H1 onto H.

Proof. Let {τn}n be a frame for H. Define

fn : H 3 h 7→ fn(h) := 〈h, τn〉 ∈ K, ∀n ∈ N.

Then θf = θτ . Note that ({fn}n, {τn}n) is a 2-approximate frame for H. Theorem 2.13 now
says that there exist a Banach space X1 which contains H isometrically and a 2-approximate
Riesz basis ({gn}n, {ωn}n) for X1 = H⊕ (I`2(N) − Pτ )(`2(N)) such that

fn = gnP|H, τn = Pωn, ∀n ∈ N,

where P : X1 → H is an onto projection. Since (I`2(N) − Pτ )(`2(N)) is a closed subspace of
the Hilbert space `2(N), X1 now becomes a Hilbert space. From the definition of the operator P
we get that it is an orthogonal projection. Now to prove Theorem 1.3, we are left with proving
{ωn}n is a Riesz basis for X1. To show {ωn}n is a Riesz basis for X1, we use Theorem 2.8. Since
{τn}n is a frame for H there exist a, b > 0 such that

a‖h‖2 ≤
∞∑
n=1

|〈h, τn〉|2 ≤ b‖h‖2, ∀h ∈ H.

Let h⊕ (I`2(N) − Pf,τ ){ak}k ∈ X1. Then by noting b ≥ 1, we get
∞∑
n=1

|〈h⊕ (I`2(N) − Pτ ){ak}k, ωn〉|2 =
∞∑
n=1

|〈h⊕ (I`2(N) − Pτ ){ak}k, τn ⊕ (I`2(N) − Pτ )en〉|2

=
∞∑
n=1

|〈h, τn〉|2 +
∞∑
n=1

|〈(I`2(N) − Pτ ){ak}k, (I`2(N) − Pτ )en〉|2

=
∞∑
n=1

|〈h, τn〉|2 +
∞∑
n=1

|〈(I`2(N) − Pτ )(I`2(N) − Pτ ){ak}k, en〉|2

=
∞∑
n=1

|〈h, τn〉|2 +
∞∑
n=1

|〈(I`2(N) − Pτ ){ak}k, en〉|2

=
∞∑
n=1

|〈h, τn〉|2 + ‖(I`2(N) − Pτ ){ak}k‖2

≤ b‖h‖2 + ‖(I`2(N) − Pτ ){ak}k‖2

≤ b(‖h‖2 + ‖(I`2(N) − Pτ ){ak}k‖2)

= b‖h⊕ (I`2(N) − Pτ ){ak}k‖2.
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Previous calculation tells that {ωn}n is a Bessel sequence for X1. Hence Sω : X1 3 x⊕{ak}k 7→∑∞
n=1〈x⊕ {ak}k, ωn〉ωn ∈ X1 is a well-defined bounded linear operator. Next we claim that

gn(x⊕ {ak}k) = 〈x⊕ {ak}k, ωn〉, ∀ x⊕ {ak}k ∈ X1,∀n ∈ N. (2.3)

Consider

gn(x⊕ {ak}k) = (fn ⊕ ζn(I`2(N) − Pτ ))(x⊕ {ak}k)

= fn(x) + ζn((I`2(N) − Pτ ){ak}k) = fn(x) + ζn ({ak}k)− ζn(Pτ{ak}k)

= fn(x) + ζn ({ak}k)− ζn(θτS−1
τ θ∗τ{ak}k)

= fn(x) + an − ζn

(
θτS

−1
τ

( ∞∑
k=1

akτk

))

= fn(x) + an − ζn

( ∞∑
k=1

akθτS
−1
τ τk

)

= fn(x) + an − ζn

( ∞∑
k=1

ak

∞∑
r=1

〈S−1
τ τk, τr〉er

)

= fn(x) + an −
∞∑
k=1

ak〈S−1
τ τk, τn〉 = 〈x, τn〉+ an −

∞∑
k=1

ak〈S−1
τ τk, τn〉

and

〈x⊕ {ak}k, ωn〉 = 〈x⊕ {ak}k, τn ⊕ (I`2(N) − Pτ )en〉

= 〈x, τn〉+ 〈{ak}k, (I`2(N) − Pτ )en〉 = 〈x, τn〉+ 〈{ak}k, en〉+ 〈{ak}k, Pτen〉

= 〈x, τn〉+ an −
〈
{ak}k, θτS−1

τ θ∗τen
〉
= 〈x, τn〉+ an −

〈
{ak}k, θτS−1

τ τn
〉

= 〈x, τn〉+ an − 〈{ak}k, {〈S−1
τ τn, τk〉}k〉 = 〈x, τn〉+ an −

∞∑
k=1

ak〈S−1
τ τn, τk〉

= 〈x, τn〉+ an −
∞∑
k=1

ak〈τk, S−1
τ τn〉 = 〈x, τn〉+ an −

∞∑
k=1

ak〈S−1
τ τk, τn〉.

Thus Equation (2.3) holds. Therefore for all x⊕ {ak}k ∈ X1,

Sg,ω(x⊕ {ak}k) =
∞∑
n=1

gn(x⊕ {ak}k)ωn =
∞∑
n=1

〈x⊕ {ak}k, ωn〉ωn = Sω(x⊕ {ak}k).

Since Sg,ω is invertible, Sω becomes invertible. Clearly Sω is positive. Therefore

1
‖Sω‖−1 ‖g‖

2 ≤ 〈Sωg, g〉 ≤ ‖Sω‖‖g‖2, ∀g ∈ X1.

Hence

1
‖Sω‖−1 ‖g‖

2 ≤
∞∑
n=1

|〈g, ωn〉|2 ≤ ‖Sω‖‖g‖2, ∀g ∈ X1.

That is, {ωn}n is a frame for X1.
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Finally we show Equation (2.2) in Theorem 2.8 for the frame {ωn}n. Consider

θωS
−1
ω θ∗ω{an}n = θωS

−1
ω

( ∞∑
n=1

anωn

)
= θω

( ∞∑
n=1

anS
−1
ω ωn

)

=
∞∑
k=1

〈 ∞∑
n=1

anS
−1
ω ωn, ωk

〉
=
∞∑
k=1

∞∑
n=1

an〈S−1
ω ωn, ωk〉

=
∞∑
k=1

∞∑
n=1

an〈(S−1
τ ⊕ (I`2(N) − Pτ ))(τn ⊕ (I`2(N) − Pτ )en), τk ⊕ (I`2(N) − Pτ )ek〉

=
∞∑
k=1

∞∑
n=1

an〈(S−1
τ τn ⊕ (I`2(N) − Pτ )2)en, τk ⊕ (I`2(N) − Pτ )ek〉

=
∞∑
k=1

∞∑
n=1

an(〈S−1
τ τn, τk〉+ 〈(I`2(N) − Pτ )en, (I`2(N) − Pτ )ek〉)

=
∞∑
k=1

〈 ∞∑
n=1

anS
−1
τ τn, τk

〉
+
∞∑
k=1

∞∑
n=1

an〈(I`2(N) − Pf,τ )en, (I`2(N) − Pτ )ek〉

= Pτ{an}n +
∞∑
k=1

∞∑
n=1

an〈(I`2(N) − Pτ )en, ek〉

= Pτ{an}n +
∞∑
k=1

∞∑
n=1

an〈en, ek〉 −
∞∑
k=1

∞∑
n=1

an〈Pτen, ek〉

= Pτ{an}n +
∞∑
k=1

akek −
∞∑
k=1

∞∑
n=1

an〈θτS−1
τ θ∗τen, ek〉

= Pτ{an}n +
∞∑
k=1

akek −
∞∑
k=1

∞∑
n=1

an〈S−1
τ τn, θ

∗
τek〉

= Pτ{an}n +
∞∑
k=1

akek −
∞∑
k=1

∞∑
n=1

an〈S−1
τ τn, τk〉

= Pτ{an}n +
∞∑
k=1

akek − Pτ{an}n = {an}n, ∀{an}n ∈ `2(N).

Thus {ωn}n is a Riesz basis for X1 which completes the proof.

We now illustrate Theorem 2.13 with an example.

Example 2.15. Let p ∈ [1,∞). Let {en}n denote the canonical Schauder basis for `p(N) and
{ζn}n denote the coordinate functionals associated with {en}n respectively. Define

R : `p(N) 3 (xn)
∞
n=1 7→ (0, x1, x2, . . . ) ∈ `p(N),

L : `p(N) 3 (xn)
∞
n=1 7→ (x2, x3, x4, . . . ) ∈ `p(N).

Then LR = I`p(N). Example 2.12 says that ({fn := ζnR}n, {τn := Len}n) is a p-ASF for `p(N).
Note that θf = R and θτ = L. Therefore Sf,τ = LR = I`p(N) and Pf,τ = RL. Then

(I`p(N) − Pf,τ )(xn)∞n=1 = (xn)
∞
n=1 −RL(xn)∞n=1

= (xn)
∞
n=1 − (0, x2, x3, . . . ) = (x1, 0, 0, . . . ), ∀(xn)∞n=1 ∈ `p(N)

which says that (I`p(N) − Pf,τ )(`p(N)) ∼= K. Using Theorem 2.13,

X1 = `p(N)⊕ (I`p(N) − Pf,τ )(`p(N)) ∼= `p(N)⊕K ∼= `p(N ∪ {0})

P : `p(N ∪ {0}) 3 (xn)
∞
n=0 7→ (xn)

∞
n=1 ∈ `p(N),
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ω1 = τ1 ⊕ (I`p(N) − Pf,τ )τ1 = Le1 ⊕ (I`p(N) − Pf,τ )Le1 = 0⊕ 0,

ω2 = τ2 ⊕ (I`p(N) − Pf,τ )τ2 = Len ⊕ (I`p(N) − Pf,τ )Le2

= e1 ⊕ (I`p(N) − Pf,τ )e1 = e1 ⊕RLe1 = e1 ⊕ 0,

ωn = τn ⊕ (I`p(N) − Pf,τ )τn = Len ⊕ (I`p(N) − Pf,τ )Len
= en−1 ⊕ (I`p(N) − Pf,τ )en−1 = en−1 ⊕RLen−1 = en−1 ⊕ en−1, ∀n ≥ 3,

gn = fn ⊕ ζn(I`p(N) − Pf,τ ) = ζnR⊕ ζnRL = ζnR(I`p(N) ⊕ L), ∀n ∈ N

and ({gn}n, {ωn}n) is a p-approximate Riesz basis for `p(N).
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