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Abstract Let p,.(n) be the Ramanujan’s partition function in its general form where n and r
denotes non-negative integer and non-zero integer respectively. Certain supplementary congru-

ence for p, (n) with the application of theta function identities which are attributed to Ramanujan
where are discussed here subsequently.

1 Introduction

In 1991, Bruce C Berndt [3, p. 34] discussed the general theta function developed by Ramanujan,
which is denoted as f(a, b), in which |ab| < 1 and mathematically it is represented as

flab) = D aFED/2pk=n/2,

k=—o0
By using Jacobi’s triple product identity [3, p. 35], the function f(a,b) can be written as
f(a,b) := (—a;ab) o (—b; ab) oo (ab; ab) .

Here and throughout the paper, we assume that |¢| < 1 and employ the standard notation

oo

(a:0)oc = [T (1 = ad®).

k=0
A principal case of f(a,b) is the Euler’s pentagonal number theorem,

oo

f(=q) = f(=¢, =) = > (=1)*¢"* D7 = (g;9).

k=—o00

For convenience, we write f,, := f(—q").
In 1918 Ramanujan [4, p. 192-193] set forth the discussion of the general partition function for
any non-negative and non-zero integer represented as n and r and denoted by p,.(n) as

> 1
()" = ——— 1. 1.1
ngop (n)q @ lq| < (1.1)

For value of r being 1, p;(n) represents the partition function which is unrestricted in nature
and counts the number of unrestricted partition of any given non-negative integer n respectively.
For simplification p;(n) can be denoted as p(n) and Ramanujan had worked extensively on such
function [9-11]. For example, we have Ramanujan’s so called "most beautiful identity"

'S . 5f5
n=0 1

which readily implies
p(5n+4) =0 (mod 5).
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Ramanujan [4] for asserted for a positive integer A and for any prime 7 which can be represented

as 6\ — 1, satisfies
p_4<nu V_g 1> =0 (mod7).

After Ramanujan, the congruence properties of the partition function p,(n) are studied by
Newman [7], Ramanathan [8, 9], Atkin [2], Andrews [1], Gandhi [5], Kiming and Olsson [6].
Recently, Saika and Chetry [13] and Srivatsava et al. [ 14] discussed the certain new properties of
the general partition function p,(n) by considering r to be negative. In similar lines to the above
mentioned references, we discussed an elaborate the study of infinite family of congruences
modulo 25 for p,.(n), where r € {-(25k+v), -(125k+0)}, where k is any non-negative integer
with some restrictions, v € {6,8,12,14,18,24} and ¢ € {6, 12, 18,24}.
The important observations are:
Theorem 1.1. Let r = —(25k + 6) and k = —1 (mod 25) then we have

pr(25n 4 16) = p,.(25n +22) =0 (mod 25), (1.2)

andforl1 <v <4
pr(125n 4250 +6) =0 (mod 25). (1.3)

Theorem 1.2. Let 1 = —(25k + 12) and k = —2 (mod 25) then we have
forl <v<4
pr(1250 4250 +12) =0 (mod 25). (1.4)
Theorem 1.3. Let r = —(25k + 18) and k = —3 (mod 25) then we have
pr(25n 4 13) = p,(25n + 18) = p,. (250 +23) =0 (mod 25). (1.5)
Theorem 1.4. Let r = —(25k + 24) and k = —4 (mod 25) then we have
pr(25n+24) =0 (mod 25). (1.6)
Theorem 1.5. Let r = —(25k + 8) then we have
pe(5n+3)=0 (mod 25). (1.7)
Theorem 1.6. Let r = —(25k + 14) then we have
pe(5n+4)=0 (mod 25). (1.8)
Theorem 1.7. Let r = —(125k + 6) and k = —1 (mod 25) then we have
pr(125n + 81) = p, (1250 + 106) =0 (mod 25), (1.9)

andforl1 <v <4
(6250 4+ 1250 4+ 31) =0 (mod 25). (1.10)

Theorem 1.8. Let r = —(125k + 12) and k = —2 (mod 25) then we have
forl <v<4
pr(625n + 1250 +62) =0 (mod 25). (1.11)
Theorem 1.9. Let r = —(125k + 18) then we have
pr(25n +13) = p, (250 + 18) = p, (250 +23) =0 (mod 25). (1.12)
Theorem 1.10. Let r = —(125k + 24) then we have

pr(25n+9) =0 (mod 25). (1.13)
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2 Preliminaries

In this section, we collect some results in order to prove our main results.
From [3, p. 262. entry 10(iii)], we have

1
fi = fos <R(q5) —q- qu(qs)) : 2.1)

where

(4:0°) oo (0% ¢°) o
Rla) = (0% %) (0% )0
From [15], we have
i
S R(q)

With application of the congruence obtained from binomial theorem:

~ 11 - ¢*R(q)". 2.2)

25 = ¢35 (mod 25). (2.3)

3 Proofs of Theorems 1.1-1.10

Proof of the Theorem 1.1. Setting r = —(25k + 6) in (1.1), we observe that
D p-@skee) (n)g" = [P0 = PR, 3.1)
n=0

Applying modulo 25 in (3.1) then using (2.3), we obtain

o0

> p_siee(n)g” = f5FfF (mod 25). (32)

n=0

With application of (2.1) in (3.2) and drawing out the ¢°"*! terms from both the sides and then
dividing the resulted identity by ¢ and changing ¢° into ¢, we obtain

- 19
> P-skie (Sn+ g = it ( (g T 160t 6q2R(q)5) (mod 25). (3.3)
n=0

Using (2.2) in (3.3), we obtain

S0 skee(Sn+ gt = 19,540 = 197 1y (mod 25). (3.4)

n=0

From above identity if £ 4 1 is multiples of 25, then we obtain

> p_siee)(Sn+ 1)g" = 195 fi (mod 25). (3.5)

n=0

With application of (2.1) in (3.5) and drawing out the ¢°"*3 and ¢°"** terms from both the sides.
We establish the desired result (1.2).

Now, with application of (2.1) in (3.5) and drawing out the ¢°**! terms from both the sides and
then dividing the resulted identity by ¢ and changing ¢’ into ¢, we obtain

oo

Z P_(25k16)(25n + 6)¢" = 65! (mod 25). (3.6)
n=0
For 1 < v < 4 draw out the common terms of q5"+” which occurs on both sides. We establish
the desired result (1.3). |
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We omit the proof of Theorem 1.2 - Theorem 1.4, since its follows the same line as Theorem
1.1 by fixing r = —(25k + 12), —(25k + 18), —(25k + 24) in equation (1.1).

Proof of the Theorem 1.5. Setting r = —(25k + 8) in (1.1), we observe
pr(zsms)(n)qn = fPRS = PR fL (3.7
n=0

Applying modulo 25 in (3.7) then using (2.3), we obtain

> p_sias)(n)g” = f5FfF (mod 25). (3.8)
n=0

Using (2.1) in (3.8) and drawing out the common terms of ¢°"*3 which occurs on both sides, the

following results are established. O

We omit the proof of Theorem 1.6, since its follows the same line as Theorem 1.5 by fixing
r = —(25k + 14) in equation (1.1).

Proof of the Theorem 1.7. Setting r = —(125k + 6) in (1.1), we observe

> b (1osure) (n)g" = fPFH0 = [IPFfD. (3.9)
n=0

Applying modulo 25 in (3.9) then using (2.3), we obtain
Y Pk ()" = [T (mod 25). (3.10)
n=0

Using (2.1) in (3.10) and drawing out the common terms of ¢>**! which occurs on both sides,
then dividing the resulted identity by ¢ and changing ¢’ into ¢, we observe

= 19
> p_(oskee) (Sn+1)g" = f7F f2 ( RigF 101t 6qu(q>5) (mod 25).  (3.11)
n=0
Using (2.2) in (3.11), we obtain
> b (1osuse) (Sn+ 1)g" = 1935 ff (mod 25). (3.12)

n=0

By using (2.1) in (3.12) and drawing out the common terms of ¢°"*! which occurs on both sides,
then dividing the resulted identity by ¢ and changing ¢’ into ¢, together with (2.2), we obtain

ST D (oskie) (250 + 6)g" = (19)2 740 = 1175V i (mod 25). (3.13)
n=0

From above identity if k£ + 1 is multiples of 25, then we obtain

> p_(125k+6)(25n 4 6)g" = 11f37" f; (mod 25). (3.14)
n=0

With application of (2.1) in (3.14) and drawing out the ¢°"*> and ¢°"** terms from both the
sides. We establish the desired result (1.9).

Now, with application of (2.1) in (3.14) and drawing out the ¢ terms from both the sides and
then dividing the resulted identity by ¢ and changing ¢’ into ¢, we obtain

Sn+1

> p_skre) (12504 31)g" = 14£™ (mod 25). (3.15)
n=0

For 1 < v < 4 draw out the common terms of q5"+” which occurs on both sides . We establish

the desired result (1.10). |
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We omit the proof of Theorem 1.8, since its follows the same line as Theorem 1.7 by fixing
—(125k + 12) in equation (1.1).

Proof of the Theorem 1.9. Setting r = —(125k + 18) in (1.1), we observe

oo

Zp—(125k+18)(n)qn: [PRIE — fmkf . (3.16)
n=0

Applying modulo 25 in (3.16) then using (2.3), we obtain
Zp sksis)(n)g" = 2 FS (mod 25). (3.17)

Using (2.1) in (3.17) and drawing out the common terms of ¢>»3 which occurs on both sides,
then dividing the resulted identity by ¢> and changing ¢’ into ¢, we observe

= 15 5q
p_ 5n+3 qn = 25k £18 < +
570 (125k+18)( ) fi 5 R(q)[s R(q)lo
n= (3.18)

+SER@" 4106 R())  (mod 25),
Using (2.2) in (3.18), we obtain
> p_(askeis)(Sn+3)g" = 15£3F£1* (mod 25). (3.19)

n=0

With application of (2.1) in (3.18) and drawing out the common terms of ¢>"*2, ¢°"*3 and ¢>»*
which occurs on both sides. We establish the desired result (1.12). ]

We omit the proof of Theorem 1.10, since its follows the same line as Theorem 1.9 by fixing
—(125k + 24) in equation (1.1).
4 Corollaries

In this section, we obtain some Corollaries as direct consequences of our main
theorems.

Corollary 4.1.
i;ﬁ_(zsme)@n +1)¢" =19 Zp (sk+6)(n)g"  (mod 25). 4.1
nf;)]? (2sk+12)(5n +2)q" =4 Zp (sk+12) ( (mod 25). (4.2)
nz%p (2sk+18)(5n +3)¢" =15 ZP (sk+18) (mod 25). 4.3)
gp—<25k+24>(5” +4)¢" =5 ni;op-(sk+z4> (n)g" (mod 25). (4.4)
Zp (125k+6) (5 + 1)g" = 19 ZP (2sk+6)(n)g"  (mod 25). (4.5)

n=0
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nzop (125k+6) (25 + 6)¢" = 11 Zp (sk+6) (mod 25). (4.6)
nzop (125k+12) (51 +2)q" = 42]9 (25k+12)(n)¢"  (mod 25). 4.7)
niop (125k+12) (25 + T)¢" = 162]9 (sk+12)(n)g"  (mod 25). (4.8)
21’(1251%18)(571 +3)¢" =15 ZP (2sk+18)(n)g"  (mod 25). (4.9)
gp—(lzsk+24)(5n +1)¢" =5 ni;op—(zsmm (n)¢" (mod 25). (4.10)

Proof. From the identity (3.4) we obtain (4.1). Similar proof hold for identity
(4.2) - (4.4). From the identity (3.12) and (3.13) we obtain (4.5) and (4.6)
respectively. Similar proof hold for identity (4.7) - (4.10). |
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