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Abstract Let pr(n) be the Ramanujan’s partition function in its general form where n and r
denotes non-negative integer and non-zero integer respectively. Certain supplementary congru-
ence for pr(n) with the application of theta function identities which are attributed to Ramanujan
where are discussed here subsequently.

1 Introduction

In 1991, Bruce C Berndt [3, p. 34] discussed the general theta function developed by Ramanujan,
which is denoted as f(a, b), in which |ab| < 1 and mathematically it is represented as

f(a, b) :=
∞∑

k=−∞

ak(k+1)/2bk(k−1)/2.

By using Jacobi’s triple product identity [3, p. 35], the function f(a, b) can be written as

f(a, b) := (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Here and throughout the paper, we assume that |q| < 1 and employ the standard notation

(a; q)∞ =
∞∏
k=0

(1− aqk).

A principal case of f(a, b) is the Euler’s pentagonal number theorem,

f(−q) := f(−q,−q2) =
∞∑

k=−∞

(−1)kqk(3k−1)/2 = (q; q)∞.

For convenience, we write fn := f(−qn).
In 1918 Ramanujan [4, p. 192-193] set forth the discussion of the general partition function for
any non-negative and non-zero integer represented as n and r and denoted by pr(n) as

∞∑
n=0

pr(n)q
n =

1
(q; q)r∞

, |q| < 1. (1.1)

For value of r being 1, p1(n) represents the partition function which is unrestricted in nature
and counts the number of unrestricted partition of any given non-negative integer n respectively.
For simplification p1(n) can be denoted as p(n) and Ramanujan had worked extensively on such
function [9–11]. For example, we have Ramanujan’s so called "most beautiful identity"

∞∑
n=0

p(5n+ 4)qn =
5f5

5

f6
1
,

which readily implies
p(5n+ 4) ≡ 0 (mod 5).
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Ramanujan [4] for asserted for a positive integer λ and for any prime ν which can be represented
as 6λ− 1, satisfies

p−4

(
nν − ν + 1

6

)
≡ 0 (mod ν).

After Ramanujan, the congruence properties of the partition function pr(n) are studied by
Newman [7], Ramanathan [8, 9], Atkin [2], Andrews [1], Gandhi [5], Kiming and Olsson [6].
Recently, Saika and Chetry [13] and Srivatsava et al. [14] discussed the certain new properties of
the general partition function pr(n) by considering r to be negative. In similar lines to the above
mentioned references, we discussed an elaborate the study of infinite family of congruences
modulo 25 for pr(n), where r ∈ {-(25k+ν), -(125k+δ)}, where k is any non-negative integer
with some restrictions, ν ∈ {6, 8, 12, 14, 18, 24} and δ ∈ {6, 12, 18, 24}.
The important observations are:

Theorem 1.1. Let r = −(25k + 6) and k ≡ −1 (mod 25) then we have

pr(25n+ 16) ≡ pr(25n+ 22) ≡ 0 (mod 25), (1.2)

and for 1 ≤ ν ≤ 4
pr(125n+ 25ν + 6) ≡ 0 (mod 25). (1.3)

Theorem 1.2. Let r = −(25k + 12) and k ≡ −2 (mod 25) then we have
for 1 ≤ ν ≤ 4

pr(125n+ 25ν + 12) ≡ 0 (mod 25). (1.4)

Theorem 1.3. Let r = −(25k + 18) and k ≡ −3 (mod 25) then we have

pr(25n+ 13) ≡ pr(25n+ 18) ≡ pr(25n+ 23) ≡ 0 (mod 25). (1.5)

Theorem 1.4. Let r = −(25k + 24) and k ≡ −4 (mod 25) then we have

pr(25n+ 24) ≡ 0 (mod 25). (1.6)

Theorem 1.5. Let r = −(25k + 8) then we have

pr(5n+ 3) ≡ 0 (mod 25). (1.7)

Theorem 1.6. Let r = −(25k + 14) then we have

pr(5n+ 4) ≡ 0 (mod 25). (1.8)

Theorem 1.7. Let r = −(125k + 6) and k ≡ −1 (mod 25) then we have

pr(125n+ 81) ≡ pr(125n+ 106) ≡ 0 (mod 25), (1.9)

and for 1 ≤ ν ≤ 4
pr(625n+ 125ν + 31) ≡ 0 (mod 25). (1.10)

Theorem 1.8. Let r = −(125k + 12) and k ≡ −2 (mod 25) then we have
for 1 ≤ ν ≤ 4

pr(625n+ 125ν + 62) ≡ 0 (mod 25). (1.11)

Theorem 1.9. Let r = −(125k + 18) then we have

pr(25n+ 13) ≡ pr(25n+ 18) ≡ pr(25n+ 23) ≡ 0 (mod 25). (1.12)

Theorem 1.10. Let r = −(125k + 24) then we have

pr(25n+ 9) ≡ 0 (mod 25). (1.13)



40 Murugan P and Fathima S. N.

2 Preliminaries

In this section, we collect some results in order to prove our main results.
From [3, p. 262. entry 10(iii)], we have

f1 = f25

(
1

R(q5)
− q − q2R(q5)

)
, (2.1)

where

R(q) =
(q; q5)∞(q4; q5)∞
(q2; q5)∞(q3; q5)∞

.

From [15], we have
f6

1

f6
5
=

1

R(q)
5 − 11q − q2R(q)

5
. (2.2)

With application of the congruence obtained from binomial theorem:

f25
1 ≡ f5

5 (mod 25). (2.3)

3 Proofs of Theorems 1.1-1.10

Proof of the Theorem 1.1. Setting r = −(25k + 6) in (1.1), we observe that

∞∑
n=0

p−(25k+6)(n)q
n = f25k+6

1 = f25k
1 f6

1 , (3.1)

Applying modulo 25 in (3.1) then using (2.3), we obtain

∞∑
n=0

p−(25k+6)(n)q
n ≡ f5k

5 f6
1 (mod 25). (3.2)

With application of (2.1) in (3.2) and drawing out the q5n+1 terms from both the sides and then
dividing the resulted identity by q and changing q5 into q, we obtain

∞∑
n=0

p−(25k+6)(5n+ 1)qn ≡ f5k
1 f6

5

(
19

R(q)5 + 16q + 6q2R(q)5
)

(mod 25). (3.3)

Using (2.2) in (3.3), we obtain

∞∑
n=0

p−(25k+6)(5n+ 1)qn ≡ 19f5k+6
1 ≡ 19f5(k+1)

1 f1 (mod 25). (3.4)

From above identity if k + 1 is multiples of 25, then we obtain

∞∑
n=0

p−(25k+6)(5n+ 1)qn ≡ 19f25m
5 f1 (mod 25). (3.5)

With application of (2.1) in (3.5) and drawing out the q5n+3 and q5n+4 terms from both the sides.
We establish the desired result (1.2).
Now, with application of (2.1) in (3.5) and drawing out the q5n+1 terms from both the sides and
then dividing the resulted identity by q and changing q5 into q, we obtain

∞∑
n=0

p−(25k+6)(25n+ 6)qn ≡ 6f5m+1
5 (mod 25). (3.6)

For 1 ≤ ν ≤ 4 draw out the common terms of q5n+ν which occurs on both sides. We establish
the desired result (1.3).
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We omit the proof of Theorem 1.2 - Theorem 1.4, since its follows the same line as Theorem
1.1 by fixing r = −(25k + 12), −(25k + 18), −(25k + 24) in equation (1.1).

Proof of the Theorem 1.5. Setting r = −(25k + 8) in (1.1), we observe
∞∑
n=0

p−(25k+8)(n)q
n = f25k+8

1 = f25k
1 f8

1 . (3.7)

Applying modulo 25 in (3.7) then using (2.3), we obtain
∞∑
n=0

p−(25k+8)(n)q
n ≡ f5k

5 f8
1 (mod 25). (3.8)

Using (2.1) in (3.8) and drawing out the common terms of q5n+3 which occurs on both sides, the
following results are established.

We omit the proof of Theorem 1.6, since its follows the same line as Theorem 1.5 by fixing
r = −(25k + 14) in equation (1.1).

Proof of the Theorem 1.7. Setting r = −(125k + 6) in (1.1), we observe
∞∑
n=0

p−(125k+6)(n)q
n = f125k+6

1 = f125k
1 f6

1 . (3.9)

Applying modulo 25 in (3.9) then using (2.3), we obtain
∞∑
n=0

p−(125k+6)(n)q
n ≡ f25k

5 f6
1 (mod 25). (3.10)

Using (2.1) in (3.10) and drawing out the common terms of q5n+1 which occurs on both sides,
then dividing the resulted identity by q and changing q5 into q, we observe

∞∑
n=0

p−(125k+6)(5n+ 1)qn ≡ f25k
1 f6

5

(
19

R(q)5 + 16q + 6q2R(q)5
)

(mod 25). (3.11)

Using (2.2) in (3.11), we obtain
∞∑
n=0

p−(125k+6)(5n+ 1)qn ≡ 19f5k
5 f6

1 (mod 25). (3.12)

By using (2.1) in (3.12) and drawing out the common terms of q5n+1 which occurs on both sides,
then dividing the resulted identity by q and changing q5 into q, together with (2.2), we obtain

∞∑
n=0

p−(125k+6)(25n+ 6)qn ≡ (19)2f5k+6
1 ≡ 11f5(k+1)

1 f1 (mod 25). (3.13)

From above identity if k + 1 is multiples of 25, then we obtain
∞∑
n=0

p−(125k+6)(25n+ 6)qn ≡ 11f25m
5 f1 (mod 25). (3.14)

With application of (2.1) in (3.14) and drawing out the q5n+3 and q5n+4 terms from both the
sides. We establish the desired result (1.9).
Now, with application of (2.1) in (3.14) and drawing out the q5n+1 terms from both the sides and
then dividing the resulted identity by q and changing q5 into q, we obtain

∞∑
n=0

p−(25k+6)(125n+ 31)qn ≡ 14f5m+1
5 (mod 25). (3.15)

For 1 ≤ ν ≤ 4 draw out the common terms of q5n+ν which occurs on both sides . We establish
the desired result (1.10).
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We omit the proof of Theorem 1.8, since its follows the same line as Theorem 1.7 by fixing
r = −(125k + 12) in equation (1.1).

Proof of the Theorem 1.9. Setting r = −(125k + 18) in (1.1), we observe

∞∑
n=0

p−(125k+18)(n)q
n = f125k+18

1 = f125k
1 f18

1 . (3.16)

Applying modulo 25 in (3.16) then using (2.3), we obtain

∞∑
n=0

p−(125k+18)(n)q
n ≡ f25k

5 f18
1 (mod 25). (3.17)

Using (2.1) in (3.17) and drawing out the common terms of q5n+3 which occurs on both sides,
then dividing the resulted identity by q3 and changing q5 into q, we observe

∞∑
n=0

p−(125k+18)(5n+ 3)qn ≡f25k
1 f18

5

(
15

R(q)15 +
5q

R(q)10

+5q5R(q)10 + 10q6R(q)15
)

(mod 25),

(3.18)

Using (2.2) in (3.18), we obtain

∞∑
n=0

p−(125k+18)(5n+ 3)qn ≡ 15f5k
5 f18

1 (mod 25). (3.19)

With application of (2.1) in (3.18) and drawing out the common terms of q5n+2, q5n+3 and q5n+4

which occurs on both sides. We establish the desired result (1.12).

We omit the proof of Theorem 1.10, since its follows the same line as Theorem 1.9 by fixing
r = −(125k + 24) in equation (1.1).

4 Corollaries

In this section, we obtain some Corollaries as direct consequences of our main
theorems.

Corollary 4.1.
∞∑
n=0

p−(25k+6)(5n+ 1)qn = 19
∞∑
n=0

p−(5k+6)(n)q
n (mod 25). (4.1)

∞∑
n=0

p−(25k+12)(5n+ 2)qn = 4
∞∑
n=0

p−(5k+12)(n)q
n (mod 25). (4.2)

∞∑
n=0

p−(25k+18)(5n+ 3)qn = 15
∞∑
n=0

p−(5k+18)(n)q
n (mod 25). (4.3)

∞∑
n=0

p−(25k+24)(5n+ 4)qn = 5
∞∑
n=0

p−(5k+24)(n)q
n (mod 25). (4.4)

∞∑
n=0

p−(125k+6)(5n+ 1)qn = 19
∞∑
n=0

p−(25k+6)(n)q
n (mod 25). (4.5)
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∞∑
n=0

p−(125k+6)(25n+ 6)qn = 11
∞∑
n=0

p−(5k+6)(n)q
n (mod 25). (4.6)

∞∑
n=0

p−(125k+12)(5n+ 2)qn = 4
∞∑
n=0

p−(25k+12)(n)q
n (mod 25). (4.7)

∞∑
n=0

p−(125k+12)(25n+ 7)qn = 16
∞∑
n=0

p−(5k+12)(n)q
n (mod 25). (4.8)

∞∑
n=0

p−(125k+18)(5n+ 3)qn = 15
∞∑
n=0

p−(25k+18)(n)q
n (mod 25). (4.9)

∞∑
n=0

p−(125k+24)(5n+ 1)qn = 5
∞∑
n=0

p−(25k+24)(n)q
n (mod 25). (4.10)

Proof. From the identity (3.4) we obtain (4.1). Similar proof hold for identity
(4.2) - (4.4). From the identity (3.12) and (3.13) we obtain (4.5) and (4.6)
respectively. Similar proof hold for identity (4.7) - (4.10).
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