
Palestine Journal of Mathematics

Vol. 11(2)(2022) , 395–405 © Palestine Polytechnic University-PPU 2022

HANKEL DETERMINANT FOR A SUBCLASS OF
ANALYTIC FUNCTIONS ASSOCIATED WITH

GENERALIZED STRUVE FUNCTION OF ORDER p
BOUNDED BY CONICAL REGIONS

Ezekiel Abiodun Oyekan and Timothy Oloyede Opoola

Communicated by R. K. Raina

MSC 2010 Classifications: Primary 30C45; Secondary 30C45, 33E99.

Keywords and phrases: Analytic function, univalent function, Struve function, Hankel determinant, subordination.

The authors would like to express their profound gratitude to the Editor and the Referees for their valuable comments
and suggestions that had helped the quality of this work.

Abstract In this work, new subclasses of analytic and univalent functions are defined using a
generalized Struve function of order p. The upper estimates for the second Hankel determinants
of the classes are established. Results obtained generalize some earlier known results.

1 Introduction

Let C denotes the set of complex numbers such that p, b, c ∈ C, k = p + b+2
2 6= 0,−1,−2, · · ·

and z ∈ U = {z ∈ c : |z| < 1} be a complex variable.
In the usual notation, we let A denote the class of functions f(z) which are analytic on the

unit disk and of the form

f(z) = z +
∞∑
n=2

anz
n (1.1)

and is normalized by the condition f(0) = f ′(0) − 1 = 0. Also, let S be the subclass of A
consisting of univalent functions in U .

A function f ∈ A is said to be in the class S∗ of starlike functions if it satisfies the following
condition:

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ U. (1.2)

Similarly, a function f ∈ A is said to be in the class C of convex functions if it satifies the
following condition:

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ U. (1.3)

For the two functions f(z) of the form (1.1) and h(z) = z +
∞∑
n=2

bnz
n which are analytic in

U , the convolution (or Hadamard product) of f and h is denoted by (f ∗ h)(z) and given by

(f ∗ h)(z) = z +
∞∑
n=2

anbnz
n. (1.4)

It is well known that

Hp(z) = z +
∞∑
n=0

(−1)n

Γ(n+ 3
2)Γ(p+ n+ 3

2)

(
z

2

)2n+p+1

, z ∈ C (1.5)

and

wp,b,c(z) = z +
∞∑
n=0

(−1)ncn

Γ(n+ 3
2)Γ(p+ n+ b+2

2 )

(
z

2

)2n+p+1

, z ∈ C (1.6)
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are particular solutions of certain second-order nonhomogeneous differential equations and are
respectively called Struve and generalized Struve functions. Let

up,b,c(z) = 2p
√
πΓ

(
p+

b+ 2
2

)
z

−p−1
2 wp,b,c(

√
z). (1.7)

By utilizing the Pochhammer symbol, (k)n = Γ(k+n)
Γ(k) = k(k + 1) · · · (k + n − 1), one can

write the following form of up,b,c(z):

up,b,c(z) =
∞∑
n=0

(−c4 )n

( 3
2)n(k)n

zn = b0 + b1z + b2z
2 + · · · , (1.8)

k = p+ b+2
2 6= 0,−1,−2, · · · , bn =

(−1)ncnΓ( 3
2 )Γ(k)

4nΓ(n+ 3
2 )Γ(n+k)

for n ≥ 0, b0 = 1.
We note that the function up,b,c is analytic in C, and satisfies the condition up,b,c(0) = 1. For

more information on Struve function (1.5) and its generalized form (1.6), see [[13],[18],[19],[20]].
Also, let

gp,b,c(z) = zup,b,c(z) = z +
∞∑
n=2

(−c4 )n−1

( 3
2)n−1(k)n−1

zn (1.9)

Orhan and Yagmur [13] investigated the geometric properties of the functions given by (1.9) and
they include univalency, starlikeness, and convexity properties of the functions.

Following (1.4) and by making use of (1.1) and (1.9), Raza and Yagmur [16] defined the
function

Tp,b,c(z) = (f ∗ gp,b,c)(z) = z +
∞∑
n=2

(−c4 )n−1

( 3
2)n−1(k)n−1

anz
n. (1.10)

For the purpose of this present work and for convenience, we shall let

Tp,b,c(z) = ϑ =

{
G : G(z) = z +

∞∑
n=2

(−c4 )n−1

( 3
2)n−1(k)n−1

anz
n, f ∈ A

}
(1.11)

ϑ is the class of generalized Struve function.
We claim that

G(z) = z − c

6k1
a2z

2 +
c2

20k2
a3z

3 − c3

56k3
a4z

4 +
c4

144k4
a5z

5 − · · · (1.12)

where

(k)1 = k1, (k)2 = k2, . . . , (k)n =
Γ(k + n)

Γ(k)
= kn; ∀n ∈ N.

The conic region Ωk was introduced and studied by Kanas and Wisniowska [5] and it was
given by

Ωk = {u+ iv : u2 > k2(u− 1)2 + k2v2}, k ≥ 0.

The above region represents the right half plane for k = 0, a hyperbola for 0 < k < 1, a parabola
for k = 1 and an ellipse for k > 1.

Now, let P denote the class of functions such that p(0) = 1 and Rep(z) > 0 for z ∈ U . The
class of functions in P are called Carathéodory functions (see [6]).

Also, let P (pk), 0 ≤ k <∞ denote the class of functions p, such that p ∈ P , and p ≺ pk in U ;
where the function pk maps the unit disk conformally onto the region Ωl : 1 ∈ Ωk. For functions
that play the role of extremal functions for these comic regions and the variant definition of Ωk,
one may see Ramachandran et al. [15] and Oladipo [12] respectively.

If the functions f(z) of the form (1.1) and h(z) = z +
∑∞
n=2 bkz

k are analytic on U , then f
is said to be subordinate to h , written as

f(z) ≺ h(z), z ∈ U

if there exits a Schwarz function w(z) analytic on U with w(0) = 0 and

|w(z)| = |z| < 1, z ∈ U
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such that
f(z) = h(w(z)), z ∈ U.

This is known as subordination principle and the details can be found in [17], [9] and [2]. In
particular, when h ∈ S,

f ≺ h ⇐⇒ f(0) = h(0) and f(U) ⊂ h(U).

As consequences of the definitions of Carathéodory functions and subordination principles,
equations (1.2) and (1.3) can be written equivalently as follows:

p(z) =
zf ′(z)

f(z)
≺ pk(z) (1.13)

and

p(z) = 1 +
zf ′′(z)

f ′(z)
≺ pk(z). (1.14)

Therefore, by virtue of (1.13) and (1.14) and the properties of the domains, we have

Re(p(z)) > Re(pk(z)) >
k

k + 1
.

The qth Hankel determinant for q ≥ 1 and n ≥ 1 is stated by Nooman and Thomas [10] as

Hq(n) =

∣∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q+1

an+1 · · · · · · an+q
...

...
...

...
an+q−1 an+q · · · an+2(q−1)

∣∣∣∣∣∣∣∣∣∣
. (1.15)

Many authors including but not limited to [11, 3, 7] have considered the determinant given by
(1.15). It is very obvious from Hq(n) that H2(1) is the Fekete-Szegö functional. For f ∈ S, and
µ a real number, Fekete and Szegö further generalized estimate |a3 − µa2

2|.
We now use the concept of starlike, convex and conic region to give the following definitions:

Definition 1.1. A function f ∈ A is said to be in the class XS∗ if the following subordinate hold

zG′(z)

G(z)
≺ pk(z), z ∈ U. (1.16)

Definition 1.2. A function f ∈ A is said to be in the class XC if the following subordination hold

1 +
zG′′(z)

G′(z)
≺ pk(z), z ∈ U. (1.17)

Thus, it follows that f ∈ XC ⇐⇒ zf ′ ∈ XS∗.

Our focus in this paper is to determine Hankel coefficient estimates for the functions in the
classes XS∗ and XC.

2 Preliminaries and Definitions

Some basic results which are relevant to our main results shall be stated as lemmas to set a good
background for the works in this paper.

Arising from the definition of class P , of all functions p analytic in U for whichRe(p(z)) > 0
and for z ∈ U , we let

p(z) = 1 + c1z + c2z
2 + · · · . (2.1)

Lemma 2.1. [14] If p ∈ P , then |ck| ≤ 2 for each k.
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Lemma 2.2. [1] Let p ∈ P . Then

∣∣∣∣c2 − σ
c2

1
2

∣∣∣∣ ≤


2(1− σ), if σ ≤ 0
2, if 0 ≤ σ ≤ 2
2(σ − 1), if σ ≥ 2

Lemma 2.3. [8] Let the function p ∈ P be given by the power series (2.1), then

2c2 = c2
1 + x(4− c2

1) (2.2)

for some x, |x| ≤ 1 and

4c3 = c3
1 + 2(4− c2

1)c1x− c1(4− c2
1)x

2 + 2(4− c2
1)(1− |x|2)z (2.3)

for some z, |z| ≤ 1.

Lemma 2.4. [4] Let 0 ≤ k < ∞, be fixed and pk be the Riemann map of D ⊂ C onto Ωk,
satisfying pk(0) = 1 and Re(p′k(0)) ≥ 0. If pk(z) = 1 + P1z + P2z

2 + · · · , then

Pk(z) =


2A2

1−K2 for 0 < k < 1,
8
π2 for k = 1,

π2

4(k2−1)K2(k)(1+k)
√
k

for k > 1.
(2.4)

Lemma 2.5. For n ∈ N, k = p + b+2
2 6= 0,−1,−2. · · · and p, b ∈ C. If (k)1 = k1, (k)2 =

k2, · · · , (k)n = Γ(k+n)
Γ(k) ≡ k(k + 1) · · · (k + n− 1), then the following assertions are true:

(i) If p = −1 and b = 2, then k1 = 1,

(ii) If p = −1 and b = 2, then k2 = 2,

(iii) If p = −1 and b = 2, then k3 = 6.

Proof. (i) Let the assumption of the Lemma 2.5 holds. Then k1 = (k)1 = k. So that by
definition,

k = p+
b+ 2

2
=

2p+ b+ 2
2

= 1

when p = −1, b = 2.
(ii) Let the assumption of the Lemma 2.5 holds. Then k2 = (k)2 = k(k + 1). So that by

definition

k(k + 1) =
(

2p+ b+ 2
2

)(
2p+ b+ 2

2
+ 1
)
=

(
2p+ b+ 2

2

)(
2p+ b+ 4

2

)
= 2,

when p = −1, b = 2.
(iii) Let the assumption of the Lemma 2.5 holds. Then

k3 = (k)3 = k(k + 1)(k + 2). So that by definition

k(k + 1)(k + 2) =
(

2p+ b+ 2
2

)(
2p+ b+ 4

2

)(
2p+ b+ 2

2
+ 2
)

=

(
2p+ b+ 2

2

)(
2p+ b+ 4

2

)(
2p+ b+ 6

2

)
= 6,

when p = −1, b = 2.

In what follows, we shall state and proof the main results in this paper. We are motivated by
the results in [15].
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3 Main Results

Theorem 3.1. If f ∈ XS∗, then

|a2a4 − a2
3| ≤ ψ∇2 + σ∇+

100k2
2

c4 P 2
1

ψ = λ− µ− 7k3
16 P

2
1 + 25k2

2
4c4 P

2
1 , σ = 4µ+

(
7k3

4 −
50k2

2
c4 P

2
1

)
and

∇ =

(
200k2

2−7k3c
4

2c4

)
P 2

1−8µ

4λ−4µ−
(

7k3c
4−100k2

2
4c4

)P 2
1 .

Proof. Let f ∈ XS∗, then

z
G′(z)

G(z)
≺ pk(z) (3.1)

where
pk(z) = 1 + P1z + P2z

2 + · · ·

By virtue of subordination relation (3.1), it can be seen that the function p(z) given by

p(z) =
1 + p−1

k (q(z))

1− p−1
k (q(z))

= 1 + c1z + c2z
2 + · · · , q(0) = 0, |q(z)| < 1

is analytic and has positive real part in U . We also have that

z
G′(z)

G(z)
= pk

(
p(z)− 1
p(z) + 1

)
, z ∈ U (3.2)

is analytic and has positive real part in U .
From (3.2), we have that

zG′(z) = G(z)pk

(
p(z)− 1
p(z) + 1

)
, z ∈ U. (3.3)

By simple calculation, we get

1− c

3k1
a2z +

3c2

20k2
a3z

2 − c3

14k3
a4z

3 +
5c4

144k4
a5z

4 − · · ·

=

(
1− c

6k1
a2z +

c2

20k2
a3z

2 − c3

56k3
a4z

3 +
c4

144k4
a5z

4 − · · ·
)

×
[

1 +
p1c1

2
z +

(
p1c2

2
−
p1c

2
1

4
+
p2c

2
1

4

)
z2
]
. (3.4)

In order to determine a2, a3 and a4, we equate the like terms in (3.4) as follows: for a2, we have

− c

3k1
a2z =

(
3k1P1c1 − 2ca2

6k1

)
z, (3.5)

for a3, we have

3c2

20k2
a3z

2 =
c2

20k2
a3z

2 − cP1c1

12k1
a2z

2 +

(
P1c2

2
−
P1c

2
1

4
+
P2c

2
1

4

)
z2 (3.6)

and for a4, we have

− c3

14k3
a4z

3 =
c2P1c1

40k2
a3z

3 − c3

56k3
a4z

3 − c

6k1
a2

(
P1c2

2
−
P1c

2
1

4
+
P2c

2
1

4

)
z3. (3.7)
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A little computation on (3.5), (3.6) and (3.7) yields the following:

a2 =−
3k1P1c1

c

a3 =
5

2c2 (P
2
1 − P1 + P2)k2c

2
1 +

5
c2 k2P1c2

a4 =
7k3

6c3k1

[
4P2 − 2P3 − 2P1 − P 3

1 + 3P 2
1 − 3P1P2

]
c3

1

− 7k3

6c2k1

[
4P2 − 4P1 + 3P 2

1

]
c1c2 −

7k3

6k1
P1c3.

For the purpose of brevity, we let

A(P ) = P 2
1 − P1 + P2, B(P ) = 4P2 − 2P3 − 2P1 − P 3

1 + 3P 2
1 − 3P1P2

and C(P ) = 4P2 − 4P1 + 3P 2
1 , so that

a2 = −
3k1P1c1

c
(3.8)

a3 =
5

2c2A(P ) +
5
c2 k2P1c2 (3.9)

a4 =
7k3

6c3k1
B(P )c3

1 −
7k3

6c2k1
C(P )c1c2 −

7k3

6k1
P1c3. (3.10)

Now, from (3.8), (3.9) and (3.10), we have that

a2a4 = −
7k3

4c3 B(P )P1c
4
1 +

7k3

4c2 C(P )P1c
2
1c2 +

7k3

4
P 2

1 c1c3 (3.11)

a2
3 =

25
4c4A(P )

2k2
2c

4
1 +

25
c4

(
A(P )k2

2P1c
2
1c2 + k2

2P
2
1 c

2
2

)
. (3.12)

Therefore,

a2a4 − a2
3 =

(
−7k3

4c3 B(P )P1 −
25
4c4A(P )

2k2
2

)
c4

1

+

(
7k3

4c2 C(P )P1 −
25
4c4A(P )P1k

2
2

)
c2

1c2 −
25
4c4P

2
1 k

2
2c

2
2 +

7k3

4
P 2

1 c1c3. (3.13)

Substituting for c2 and c3 from Lemma 2.3 into (3.13) and letting c1 = t we get

a2a4 − a2
3 =

[
−7k3

4c3 B(P )P1 −
25
4c4A(P )

2k2
2 +

7k3

8c2 C(P )P1 −
25
2c4A(P )P1k

2
2

+

(
7k3c

4 − 100k2
2

16c4

)
P 2

1

]
t4

+

[
7k3

8c2 C(P )P1 −
25
2c4A(P )P1k

2
2 +

(
7k3

8
−

25k2
2

2c4

)
P 2

1

]
t2(4− t2)x

− 7k3

16
P 2

1 (4− t2)t2x2 −
25k2

2
4c4 P

2
1 (4− t2)2x2

+
7k3

8
P 2

1 t(4− t2)(1− |x|2)z. (3.14)

Since |t| = |c1| ≤ 2 by making use of Lemma 2.1, we may assume without restriction that
0 ≤ t ≤ 2. Then using the triangle inequality with ρ = |x|, we obtain

|a2a4 − a2
3| ≤λt4 + µt2(4− t2)ρ+ 7k3

16
P 2

1 t
2(4− t2)ρ2

+
25k2

2
4c4 P

2
1 (4− t2)2ρ2 +

7k3

8
P 2

1 t(4− t2)(1− ρ2)

= F (t, ρ, kn), (n = 2, 3) (3.15)
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where

λ =
−7k3

4c3 B(P )P1 −
25
4c4A(P )

2k2
2 +

7k3

8c2 C(P )P1

− 25
2c4A(P )P1k

2
2 +

(
7k3c

4 − 100k2
2

16c4

)
P 2

1

and

µ =
7k3

8c2 C(P )P1 −
25
2c4A(P )P1k

2
2 +

(
7k3

8
−

25k2
2

2c4

)
P 2

1 .

Then

∂F

∂ρ
= µt2(4− t2) + 7k3

8
P 2

1 t
2(4− t2)ρ+

25A(P )k2
2

2c4 P 2
1 t

2(4− t2)ρ− 7k3

4
P 2

1 t(4− t2)ρ.

Clearly, ∂F∂ρ > 0 which shows that F (t, kn, ρ) is an increasing function on the interval [0, 1]. This
implies that the maximum occurs at ρ = 1. Therefore

maxF (t, kn, ρ) = F (t, kn, 1) = H(t, kn).

Now,

F (t, kn, 1) = H(t, kn) = λt4 + µt2(4− t2) + 7k3

16
P 2

1 t
2(4− t2) +

25k2
2

4c4 P
2
1 (4− t2)2

=

(
λ− µ− 7k3

16
P 2

1 +
25k2

2
4c4 P

2
1

)
t4 +

[
4µ+

(
7k3

4
−

50k2
2

c4

)
P 2

1

]
t2 +

100k2
2

c4 P 2
1 . (3.16)

Now,

H(t, kn) = ψt4 + σt2 +
100k2

2
c4 P 2

1 , (3.17)

where

ψ = λ− µ− 7k3

16
P 2

1 +
25k2

2
4c4 P

2
1

σ = 4µ+

(
7k3

4
−

50k2
2

c4

)
P 2

1 .

Ht = 4ψt3 + 2σt (3.18)

Htt = 12ψt2 + 2σ < 0. (3.19)

For optimum value of H(t, kn), we consider Ht = 0 so that

t2 =

(
200k2

2−7k3c
4

2c4

)
P 2

1 − 8µ

4λ− 4µ−
[

7k3c4−100k2
2

4c4

]
P 2

1

= ∇. (3.20)

Substituting the value of t2 from (3.20) in (3.19), it is possible to show that

Htt = 12
[
λ− µ−

7k3P
2
1

4
+

257k2
2P

2
1

4c4

]
∇+ 2

[
4µ+

(
7k3

4
−

50k2
2

c4

)
P 2

1

]
.

Therefore, by the second derivative test, H(t, kn) has maximum value at t, where t2 is given by
(3.20). Substituting the obtained value of t2 in the expression (3.16), which gives the maximum
value of H(t, kn) as

|a2a4 − a2
3| ≤ ψ∇2 + σ∇+

100k2
2

c4 P 2
! .
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Theorem 3.2. If f ∈ XC, then

|a2a4 − a2
3| ≤ ψ1∇2

1 + σ1∇1 +
100k2

2
9c4 P 2

1

ψ1 = λ2 − µ2 −
(

7k3
128 + 25k2

2
36c4

)
P 2

1 , σ1 = 4µ2 +
(

7k3
32 −

50k2
2

9c4

)
P 2

1 and

∇1 =

(
1600k2

2−63k3C
4

144c4

)
P 2

1−8µ2

4λ2−4µ2−
[

63k3c
4−800k2

2
288c4

]P 2
1 .

Proof. Going by the definition of the class S∗ and C, it follows that the function f ∈ XC if and
only if zf ′ ∈ XS∗. Therefore by replacing an by nan, in (3.8), (3.9) and (3.10), we obtain

a2 = −
3k1P1c1

2c
(3.21)

a3 =
5

6c2A(P )k2c
2
1 +

5
3c2 k2P1c2 (3.22)

a4 =
7k3

24c3k1
B(P )c3

1 −
7k3

24c2k1
C(P )c1c2 −

7k3

24k1
P1c3. (3.23)

where A(P ), B(P ) and C(P ) are as defined earlier under the proof of Theorem 3.1.
From (3.21), (3.22) and (3.23) we have that

a2a4 − a2
3 =

(
− 7k3

32c3B(P )P1 −
25

36c4A(P )
2k2

2

)
c4

1

+

(
7k3

32c2C(P )P1 −
25
9c4A(P )P1k

2
2

)
c2

1c2 −
25
9c4P

2
1 k

2
2c

2
2 +

7k3

32
P 2

1 c1c3. (3.24)

Substituting for c2 and c3 from Lemma 2.3 into (3.24) and letting c1 = t we get

a2a4 − a2
3 =

[
−7k3

32c3 B(P )P1 −
25

36c4A(P )
2k2

2 +
7k3

64c2C(P )P1 −
25

18c4A(P )P1k
2
2

+

(
63k3c

4 − 800k2
2

1152c4

)
P 2

1

]
t4

+

[
7k3

64c2C(P )P1 −
25

18c4A(P )P1k
2
2 +

(
7k3

64
−

25k2
2

18c4

)
P 2

1

]
t2(4− t2)x

− 7k3

128
P 2

1 (4− t2)t2x2 −
25k2

2
36c4 P

2
1 (4− t2)2x2

+
7k3

64
P 2

1 t(4− t2)(1− |x|2)z. (3.25)

Since |t| = |c1| ≤ 2 by making use of Lemma 2.1, we may assume without restriction that
0 ≤ t ≤ 2. Then using the triangle inequality with ρ = |x|, we obtain

|a2a4 − a2
3| ≤λ2t

4 + µ2t
2(4− t2)ρ+ 7k3

128
P 2

1 t
2(4− t2)ρ2

+
25k2

2
36c4 P

2
1 (4− t2)2ρ2 +

7k3

64
P 2

1 t(4− t2)(1− ρ2)

= F2(t, ρ, kn), (n = 2, 3) (3.26)

where

λ2 =
−7k3

32c3 B(P )P1 −
25

36c4A(P )
2k2

2 +
7k3

64c2C(P )P1

− 25
18c4A(P )P1k

2
2 +

(
63k3c

4 − 800k2
2

1152c4

)
P 2

1
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and

µ2 =
7k3

64c2C(P )P1 −
25

18c4A(P )P1k
2
2 +

(
7k2

64
−

25k2
2

18c4

)
P 2

1 .

Then

∂F2

∂ρ
= µ2t

2(4− t2) + 7k3

64
P 2

1 t
2(4− t2)ρ+

25k2
2

18c4 P
2
1 (4− t2)ρ−

7k3

32
P 2

1 t(4− t2).

Clearly, ∂F2
∂ρ > 0 which shows that F2(t, kn, ρ) is an increasing function on the interval [0, 1].

This implies that the maximum occurs at ρ = 1. Therefore

maxF2(t, kn, ρ) = F2(t, kn, 1) = H2(t, kn).

Now,

F2(t, kn, 1) = H2(t, kn)

= λ2t
4 + µ2t

2(4− t2) + 7k3

128
P 2

1 t
2(4− t2) +

25k2
2

36c4 P
2
1 (4− t2)2

=

(
λ2 − µ2 −

7k3

128
P 2

1 +
25k2

2
36c4 P

2
1

)
t4 +

[
4µ2 +

(
7k3

32
−

50k2
2

9c4

)
P 2

1

]
t2

+
100k2

2
9c4 P 2

1 . (3.27)

Now,

H2(t, kn) = ψ1t
4 + σ1t

2 +
100k2

2
9c4 P 2

1 , (n = 2, 3) (3.28)

where

ψ1 = λ2 − µ2 −
7k3

128
P 2

1 +
25k2

2
36c4 P

2
1

σ1 = 4µ2 +

(
7k3

32
−

50k2
2

9c4

)
P 2

1 .

(H2)t = 4ψ1t
3 + 2σ1t (3.29)

(H2)tt = 12ψ1t
2 + 2σ1 < 0. (3.30)

For optimum value of H2(t, kn), we consider (H2)t = 0. So that

t2 =

(
1600k2

2−63k3c
4

144c4

)
P 2

1 − 8µ2

4λ2 − 4µ2 −
[

63k3c4−800k2
2

288c4

]
P 2

1

= ∇1. (3.31)

Substituting the value of t2 from (3.31) in (3.30), it is possible to show that

(H2)tt = 12ψ1∇1 + 2σ1

=

[
12λ2 − 12µ2 −

(
21k3

62
−

25k2
2

3c4

)
P 2

1

]
∇1 +

[
8µ2 +

(
7k3

16
−

100k2
2

9c4

)
P 2

1

]
< 0.

Therefore, by the second derivative test, H2(t, kn) has maximum value at t, where t2 is given by
(3.31). Substituting the obtained value of t2 in the expression (3.28), which gives the maximum
value of H2(t, kn) as

|a2a4 − a2
3| ≤ ψ1∇2

1 + σ1∇1 +
100k2

2
9c4 P 2

! .
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4 Applications

In this section, we shall exhibit some interesting consequences of our results as applications.
By making use of Lemma 2.5 and letting c = 2 in Theorem 3.1 and Theorem 3.2 we have the

following:

Corollary 4.1. If f ∈ ES∗, then

|a2a4 − a2
3| ≤ ψ∇2 + σ∇+ 25P 2

1

ψ = λ− µ− 17
16P

2
1 , σ = 4µ− 2P 2

1 and ∇ = 4p2
1−8µ

4λ−4µ− 17
4 P

2
1

.

Which corresponds to the result in Ramachandran et al. [[15], Theorem 1] when ψ = η,
σ = ϑ and ∇ = B.

Corollary 4.2. If f ∈ EC, then

|a2a4 − a2
3| ≤ ψ1∇2

1 + σ1∇1 +
25
9
P 2

1

ψ1 = λ2 − µ2 − 89
576P

2
1 , σ1 = 4µ2 − 11

144P
2
1 and ∇1 =

11
72P

2
1−8µ2

4λ2−4µ2− 89
144P

2
1

.

Which corresponds to the result in Ramachandran et al. [[15], Theorem 2] when ψ = η,
σ = ϑ and ∇1 = B1.

5 Conclusion

Generalized Struve function has been used to define new subclasses of analytic and univalent
functions and the upper bounds for the second Hankel determinants are obtained. The upper
estimates obtained are the best possible. Some earlier known results, which are special cases of
the results obtained are pointed out as applications.
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