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Abstract Let R be an associative ring with identity e and let F,D and T be additive maps
from R into itself. The main aim of this article is to obtain some identities involving at the most
4 terms satisfied by F,D and T on the semiprime ring R which is m-torsion free for some m
so that F,D and T become a Jordan generalized derivation, derivation and centralizer on R,
respectively.

1 Introduction

Let R be an associative ring with identity e and center Z(R). For x, y ∈ R, the Lie commutator
[x, y] = xy−yx. Recall that, if aRb = 0 implies a = 0 or b = 0, then R is prime and if aRa = 0
implies a = 0, then R is semiprime. For n > 1, R is n-torsion free if nx = 0, for all x ∈ R
implies x = 0.

An additive mapping D from R into itself is said to be a derivation if D(xy) = D(x)y +
xD(y), for all x, y ∈ R and is said to be a Jordan derivation if D(x2) = D(x)x + xD(x), for
all x ∈ R. Clearly, every derivation is a Jordan derivation but converse, in general, is not true.
Herstein [6], asserts that on a 2-torsion free prime ring every Jordan derivation is a derivation.
Further, Cusack [3] generalized Herstein’s result to 2-torsion free semiprime rings. An additive
mapping D : R → R is a Jordan triple derivation if D(xyx) = D(x)yx + xD(y)x + xyD(x),
for all x, y ∈ R. One can easily see that any derivation is a Jordan triple derivation. Bresar [2]
has proved that, on a 2-torsion free semiprime ring any Jordan triple derivation is a derivation.

An additive mapping T from R into itself is said to be a left (right) centralizer if T (xy) =
T (x)y (T (xy) = xT (y)), for all x, y ∈ R and is said to be a left (right) Jordan centralizer if
T (x2) = T (x)x (T (x2) = xT (x)), for all x ∈ R. An additive mapping T : R → R is called
a centralizer if it is both left and right centralizer. In [13], it is proved that, on a 2-torsion free
semiprime ring any left (right) Jordan centralizer is a centralizer. Further, T is a left (right)
centralizer if and only if T is of the form T (x) = αx (T (x) = xα), for some fixed α ∈ R.
Vukman and Kosi-Ulbl [10] proved that if T is an additive mapping and R is a 2-torsion free
semiprime ring such that 3T (xyx) = T (x)yx + xT (y)x + xyT (x), for all x, y ∈ R, then there
exists an element λ ∈ C such that T (x) = λx, for all x ∈ R. In [11], they proved that if
n ≥ 2 and R is a 2, n-torsion free semiprime ring such that 2T (xn+1) = T (x)xn + xnT (x),
for all x ∈ R, then T is a centralizer. Further, if R is a 2-torsion free semiprime ring such that
2T (xyx) = T (x)yx + xyT (x), for all x, y ∈ R, then T is a centralizer. In [7], it is proved
that if m,n > 1 and R is an (m+ n+ 2)!-torsion free semiprime ring such that T (xm+n+1) =
xmT (x)xn, for all x ∈ R, then T is a centralizer.

An additive mapping F from R into itself is called a generalized derivation if F (xy) =
F (x)y + xD(y), for all x, y ∈ R, where D is a derivation. We can easily see that F is a
generalized derivation if and only if F can be written in the form F = D + T , where D is
a derivation and T is a left centralizer. An additive mapping is called a generalized Jordan
derivation if F (x2) = F (x)x + xD(x), for all x ∈ R, where D is a Jordan derivation. An
additive mapping F is called a generalized Jordan triple derivation if F (xyx) = F (x)yx +
xD(y)x+ xyD(x), for all x, y ∈ R, where D is a Jordan triple derivation. Vukman [9], proved
that if R is a 2-torsion free semiprime ring and F is either a generalized Jordan derivation or a
generalized Jordan triple derivation, then F is a generalized derivation.

In [4, 5], Dhara and Sharma show that, an additive map satisfying an identity having (n+ 2)
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terms is a derivation, centralizer and Jordan generalized derivation whereas in [12], Yadav and
Sharma proved that, an additive map satisfying an identity having just five terms is a derivation,
centralizer and Jordan generalized derivation. In this article, we show that, an additive map
satisfying an identity having at most four terms is a derivation, centralizer and Jordan generalized
derivation.

2 Centralizers

First we prove some results on additive mappings which are centralizers.

Theorem 2.1. Let R be an (n+ 1)!-torsion free semiprime ring, where n ≥ 1 is a fixed integer.
If T : R → R is an additive mapping such that 2T (xn+1) = T (xn)x + xT (xn) for all x ∈ R,
then T is a centralizer.

Proof. For x ∈ R, we have

2T (xn+1) = T (xn)x+ xT (xn). (2.1)

Replacing x by x+ ke in (2.1), where k is any positive integer, we get

2T (x+ ke)n+1 = T (x+ ke)n(x+ ke) + (x+ ke)T (x+ ke)n.

Expanding the powers of x+ ke,

2T
(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
=T

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
(x+ ke)

+ (x+ ke)T

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
.

Using (2.1) and rearranging the above terms by collecting the terms involving equal powers of
k, we have

∑n
i=1 k

ifi(x, e) = 0, for all x ∈ R. Now by putting k = 1, 2, . . . , n, we get a system
of n homogeneous equations, with coefficient matrix

V =


1 1 1 · · · 1
2 22 23 · · · 2n

. . . .

. . . .

n n2 n3 · · · nn

 .

Since |V | is a product of positive integers, each of which is ≤ n and since R is (n+ 1)!-torsion
free, this system has only a trivial solution. In particular, fn(x, e) = 0 implies that

2
(
n+ 1
n

)
T (x) = T (e)x+ 2

(
n

n− 1

)
T (x) + xT (e).

So,
2T (x) = T (e)x+ xT (e) (2.2)

for all x ∈ R. Now fn−1(x, e) = 0, gives

2
(
n+ 1
n− 1

)
T (x2) =

(
n

n− 1

)(
T (x)x+ xT (x)

)
+ 2
(

n

n− 2

)
T (x2).

Multiplying both sides by 2 in the above equation, we get

4nT (x2) = 2n(T (x)x+ xT (x)).



Derivations and Centralizers in Rings 415

Since R is (n+ 1)!-torsion free ring, the above equations can be reduced to

4T (x2) = 2(T (x)x+ xT (x)). (2.3)

Using (2.2) in (2.3) gives [[T (e), x], x] = 0, for all x ∈ R. Now by [8, Theorem 2], T (e) ∈ Z(R).
Thus T (x) = T (e)x = xT (e) and T is a centralizer.

Theorem 2.2. Let R be an (n+ 2)!-torsion free semiprime ring, where n ≥ 1 is a fixed integer.
If T : R → R is an additive mapping such that 3T (xn+2) = T (x)xn+1 + xT (xn)x+ xn+1T (x)
for all x ∈ R, then T is a centralizer.

Proof. For x ∈ R, we have

3T (xn+2) = T (x)xn+1 + xT (xn)x+ xn+1T (x). (2.4)

Replacing x by x+ ke in (2.4), where k is any positive integer, we get

3T (x+ ke)n+2 =T (x+ ke)(x+ ke)n+1 + (x+ ke)T (x+ ke)n(x+ ke)

+ (x+ ke)n+1T (x+ ke).

Expanding the powers of x+ ke, we get

3T
(
xn+2 + · · ·+

(
n+ 2
n

)
knx2 +

(
n+ 2
n+ 1

)
kn+1x+ kn+2e

)
=T (x+ ke)

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
+ (x+ ke)T

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
(x+ ke)

+

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
T (x+ ke).

Using (2.4) and rearranging the above terms, we get
∑n+1

i=1 k
ifi(x, e) = 0, for all x ∈ R. Pro-

ceeding in the same way as in the proof of the Theorem 2.1, fi(x, e) = 0, for all x ∈ R and
i ∈ {1, 2, . . . , n+ 1}. In particular, fn+1(x, e) = 0 implies that

3
(
n+ 2
n+ 1

)
T (x) =2T (x) +

(
n

n− 1

)
T (x) +

(
n+ 1
n

)
T (e)x+ xT (e) + T (e)x

+

(
n+ 1
n

)
xT (e).

We have,
2(n+ 2)T (x) = (n+ 2)(T (e)x+ xT (e))

for all x ∈ R. Since R is (n+ 2)!-torsion free,

2T (x) = T (e)x+ xT (e) (2.5)

for all x ∈ R. Now fn(x, e) = 0, gives

3
(
n+ 2
n

)
T (x2) =

(
n+ 1
n

)
T (x)x+

(
n+ 1
n− 1

)
T (e)x2 + xT (e)x+

(
n

n− 1

)
xT (x)

+

(
n

n− 1

)
T (x)x+

(
n

n− 2

)
T (x2) +

(
n+ 1
n

)
xT (x)

+

(
n+ 1
n− 1

)
x2T (e).
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We get,

(n2 + 5n+ 3)T (x2) =(2n+ 1)(T (x)x+ xT (x)) +
n(n+ 1)

2
(T (e)x2 + x2T (e))

+ xT (e)x.

Multiplying both sides by 2 in the above equation and using (2.5), we get (n+ 1)[[T (e), x], x] =
0, which yields [[T (e), x], x] = 0 for all x ∈ R. Now by [8, Theorem 2], T (e) ∈ Z(R). Thus
T (x) = T (e)x = xT (e) and T is a centralizer.

Theorem 2.3. Let R be an (n+ 2)! and (3n+ 1)-torsion free semiprime ring, where n ≥ 1 is a
fixed integer. If T : R → R is an additive mapping such that 2T (xn+2) = xT (x)xn + xnT (x)x
for all x ∈ R, then T is a centralizer.

Proof. For x ∈ R, we have

2T (xn+2) = xT (x)xn + xnT (x)x. (2.6)

Replacing x by x+ ke in (2.6) and expanding the powers of x+ ke, we get

2T
(
xn+2 + · · ·+

(
n+ 2
n

)
knx2 +

(
n+ 2
n+ 1

)
kn+1x+ kn+2e

)
=(x+ ke)T (x+ ke)

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
+

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
T (x+ ke)(x+ ke).

Using (2.6) and rearranging the above terms, we get
∑n+1

i=1 k
ifi(x, e) = 0, for all x ∈ R. Hence

fi(x, e) = 0 for all x ∈ R and i ∈ {1, 2, . . . , n+ 1}. In particular, fn+1(x, e) = 0 implies that

2(n+ 1)T (x) = (n+ 1)(T (e)x+ xT (e))

for all x ∈ R. Since R is (n+ 2)!-torsion free, we get

2T (x) = T (e)x+ xT (e) (2.7)

for all x ∈ R. Now fn(x, e) = 0, gives

2
(
n+ 2
n

)
T (x2) =xT (x) +

(
n

n− 1

)
xT (e)x+

(
n

n− 1

)
T (x)x+

(
n

n− 2

)
T (e)x2+

T (x)x+

(
n

n− 1

)
xT (e)x+

(
n

n− 1

)
xT (x) +

(
n

n− 2

)
x2T (e).

That is,

(n+ 2)(n+ 1)T (x2) =(n+ 1)(xT (x) + T (x)x) + 2nxT (e)x+

n(n− 1)
2

(T (e)x2 + x2T (e)).

Multiplying both sides by 2 in the above equation and using (2.7), we get

(3n+ 1)[[T (e), x], x] = 0. (2.8)

Since R is (n + 2)! and (3n + 1)-torsion free, [[T (e), x], x] = 0, for all x ∈ R. Now by [8,
Theorem 2], T (e) ∈ Z(R) and (2.7) implies that T is a centralizer.
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3 Derivations

In this section, we discuss derivations and Jordan derivations.

Theorem 3.1. Let R be an (n+ 1)!-torsion free semiprime ring, where n ≥ 1 is a fixed integer.
If D : R → R is an additive mapping such that D(xn+1) = D(xn)x + xnD(x) for all x ∈ R,
then D is a derivation.

Proof. For x ∈ R, we have

D(xn+1) = D(xn)x+ xnD(x). (3.1)

Replacing x by e in (3.1), we get D(e) = 2D(e) which implies D(e) = 0. Further, replacing x
by x+ ke and expanding the powers of x+ ke, we get

D

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
=D

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
(x+ ke)

+

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
D(x+ ke).

Using (3.1), rearranging the above terms and using the fact thatD(e) = 0, we get
∑n

i=1 k
ifi(x) =

0, for all x ∈ R. So fi(x) = 0, for all x ∈ R and i ∈ {1, 2, . . . , n}. In particular, fn−1(x) = 0
implies that(

n+ 1
n− 1

)
D(x2) =

(
n

n− 1

)
D(x)x+

(
n

n− 2

)
D(x2) +

(
n

n− 1

)
xD(x).

We have
D(x2) = D(x)x+ xD(x)

for all x ∈ R. Thus D is a Jordan Derivation. Therefore by [3, Theorem 6], D is a derivation.

Theorem 3.2. Let R be an (n + 2)! and (2n + 1)-torsion free semiprime ring, where n ≥ 1
is a fixed integer. If D : R → R is an additive mapping such that D(xn+2) = D(x)xn+1 +
xD(xn)x+ xn+1D(x) for all x ∈ R, then D is a derivation.

Proof. For x ∈ R, we have

D(xn+2) = D(x)xn+1 + xD(xn)x+ xn+1D(x). (3.2)

Replacing x by e in (3.2) gives, 2D(e) = 0. ButR is 2-torsion free, soD(e) = 0. Now, replacing
x by x+ ke in (3.2) and expanding the powers of x+ ke, we get

D

(
xn+2 + · · ·+

(
n+ 2
n

)
knx2 +

(
n+ 2
n+ 1

)
kn+1x+ kn+2e

)
=D(x+ ke)

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
+ (x+ ke)D

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
(x+ ke)

+

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
D(x+ ke).

Using (3.2), rearranging the above terms and using the fact thatD(e) = 0, we get
∑n

i=1 k
ifi(x) =

0, for all x ∈ R. So fi(x) = 0 for all x ∈ R and i ∈ {1, 2, . . . , n}. In particular, fn(x) = 0
implies that(

n+ 2
n

)
D(x2) =

(
n+ 1
n

)
D(x)x+

(
n

n− 1

)
D(x)x+

(
n

n− 1

)
xD(x)+(

n

n− 2

)
D(x2) +

(
n+ 1
n

)
xD(x).
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After simplification, we get (2n + 1){D(x2) − D(x)x − xD(x)} = 0 for all x ∈ R which
yields D(x2) = D(x)x + xD(x). Thus, D is a Jordan Derivation and by [3, Theorem 6], a
derivation.

Theorem 3.3. Let R be an (n + 2)! and (2n + 1)-torsion free semiprime ring, where n ≥ 1
is a fixed integer. If F,D : R → R are additive mappings such that F (xn+2) = F (x)xn+1 +
xD(xn)x+xn+1D(x) for all x ∈ R, thenD is a Jordan derivation and F is a Jordan generalised
derivation.

Proof. For x ∈ R, we have

F (xn+2) = F (x)xn+1 + xD(xn)x+ xn+1D(x). (3.3)

Replacing x by e, we get 2D(e) = 0 and so D(e) = 0. Now, replacing x by x+ ke in (3.3) and
expanding the powers of x+ ke, we get

F

(
xn+2 + · · ·+

(
n+ 2
n

)
knx2 +

(
n+ 2
n+ 1

)
kn+1x+ kn+2e

)
=F (x+ ke)

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
+ (x+ ke)D

(
xn + · · ·+

(
n

n− 2

)
kn−2x2 +

(
n

n− 1

)
kn−1x+ kne

)
(x+ ke)

+

(
xn+1 + · · ·+

(
n+ 1
n− 1

)
kn−1x2 +

(
n+ 1
n

)
knx+ kn+1e

)
D(x+ ke).

Using (3.3), rearranging the above terms and using the fact thatD(e) = 0, we get
∑n+1

i=1 k
ifi(x, e) =

0, for all x ∈ R. Hence, fi(x, e) = 0 for all x ∈ R and i ∈ {1, 2, . . . , n + 1}. In particular,
fn+1(x) = 0 implies that

(n+ 1)F (x) = (n+ 1){F (e)x+D(x)} = 0

for all x ∈ R. Since R is (n+ 2)!-torsion free,

F (x) = F (e)x+D(x) (3.4)

for all x ∈ R. Now fn(x, e) = 0, gives(
n+ 2
n

)
F (x2) =

(
n+ 1
n

)
F (x)x+

(
n+ 1
n− 1

)
F (e)x2 +

(
n

n− 1

)
xD(x)+(

n

n− 1

)
D(x)x+

(
n

n− 2

)
D(x2) +

(
n+ 1
n

)
xD(x).

Using (3.4), we get (2n + 1){D(x2) −D(x)x − xD(x)} = 0 which yields D(x2) = D(x)x +
xD(x) for all x ∈ R. Hence D is a Jordan derivation. Again by (3.4), we have F (x2) =
F (e)x2 +D(x2) = F (e)x2 +D(x)x+xD(x) = F (x)x+xD(x) for all x ∈ R and F is a Jordan
generalized derivation.
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