Derivations and Centralizers in Rings

Meena Sahai and Sheere Farhat Ansari
Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 16W25, 16R50; Secondary 16N60.
Keywords and phrases: Semiprime ring, Derivation, Centralizer, Generalized derivation.

Abstract

Let R be an associative ring with identity e and let F, D and T be additive maps from R into itself. The main aim of this article is to obtain some identities involving at the most 4 terms satisfied by F, D and T on the semiprime ring R which is m-torsion free for some m so that F, D and T become a Jordan generalized derivation, derivation and centralizer on R, respectively.

1 Introduction

Let R be an associative ring with identity e and center $Z(R)$. For $x, y \in R$, the Lie commutator $[x, y]=x y-y x$. Recall that, if $a R b=0$ implies $a=0$ or $b=0$, then R is prime and if $a R a=0$ implies $a=0$, then R is semiprime. For $n>1, R$ is n-torsion free if $n x=0$, for all $x \in R$ implies $x=0$.

An additive mapping D from R into itself is said to be a derivation if $D(x y)=D(x) y+$ $x D(y)$, for all $x, y \in R$ and is said to be a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$, for all $x \in R$. Clearly, every derivation is a Jordan derivation but converse, in general, is not true. Herstein [6], asserts that on a 2-torsion free prime ring every Jordan derivation is a derivation. Further, Cusack [3] generalized Herstein's result to 2-torsion free semiprime rings. An additive mapping $D: R \rightarrow R$ is a Jordan triple derivation if $D(x y x)=D(x) y x+x D(y) x+x y D(x)$, for all $x, y \in R$. One can easily see that any derivation is a Jordan triple derivation. Bresar [2] has proved that, on a 2-torsion free semiprime ring any Jordan triple derivation is a derivation.

An additive mapping T from R into itself is said to be a left (right) centralizer if $T(x y)=$ $T(x) y(T(x y)=x T(y))$, for all $x, y \in R$ and is said to be a left (right) Jordan centralizer if $T\left(x^{2}\right)=T(x) x\left(T\left(x^{2}\right)=x T(x)\right)$, for all $x \in R$. An additive mapping $T: R \rightarrow R$ is called a centralizer if it is both left and right centralizer. In [13], it is proved that, on a 2 -torsion free semiprime ring any left (right) Jordan centralizer is a centralizer. Further, T is a left (right) centralizer if and only if T is of the form $T(x)=\alpha x(T(x)=x \alpha$), for some fixed $\alpha \in R$. Vukman and Kosi-Ulbl [10] proved that if T is an additive mapping and R is a 2-torsion free semiprime ring such that $3 T(x y x)=T(x) y x+x T(y) x+x y T(x)$, for all $x, y \in R$, then there exists an element $\lambda \in C$ such that $T(x)=\lambda x$, for all $x \in R$. In [11], they proved that if $n \geq 2$ and R is a 2 , n-torsion free semiprime ring such that $2 T\left(x^{n+1}\right)=T(x) x^{n}+x^{n} T(x)$, for all $x \in R$, then T is a centralizer. Further, if R is a 2-torsion free semiprime ring such that $2 T(x y x)=T(x) y x+x y T(x)$, for all $x, y \in R$, then T is a centralizer. In [7], it is proved that if $m, n>1$ and R is an $(m+n+2)$!-torsion free semiprime ring such that $T\left(x^{m+n+1}\right)=$ $x^{m} T(x) x^{n}$, for all $x \in R$, then T is a centralizer.

An additive mapping F from R into itself is called a generalized derivation if $F(x y)=$ $F(x) y+x D(y)$, for all $x, y \in R$, where D is a derivation. We can easily see that F is a generalized derivation if and only if F can be written in the form $F=D+T$, where D is a derivation and T is a left centralizer. An additive mapping is called a generalized Jordan derivation if $F\left(x^{2}\right)=F(x) x+x D(x)$, for all $x \in R$, where D is a Jordan derivation. An additive mapping F is called a generalized Jordan triple derivation if $F(x y x)=F(x) y x+$ $x D(y) x+x y D(x)$, for all $x, y \in R$, where D is a Jordan triple derivation. Vukman [9], proved that if R is a 2-torsion free semiprime ring and F is either a generalized Jordan derivation or a generalized Jordan triple derivation, then F is a generalized derivation.

In [4, 5], Dhara and Sharma show that, an additive map satisfying an identity having $(n+2)$
terms is a derivation, centralizer and Jordan generalized derivation whereas in [12], Yadav and Sharma proved that, an additive map satisfying an identity having just five terms is a derivation, centralizer and Jordan generalized derivation. In this article, we show that, an additive map satisfying an identity having at most four terms is a derivation, centralizer and Jordan generalized derivation.

2 Centralizers

First we prove some results on additive mappings which are centralizers.
Theorem 2.1. Let R be an $(n+1)$!-torsion free semiprime ring, where $n \geq 1$ is a fixed integer. If $T: R \rightarrow R$ is an additive mapping such that $2 T\left(x^{n+1}\right)=T\left(x^{n}\right) x+x T\left(x^{n}\right)$ for all $x \in R$, then T is a centralizer.

Proof. For $x \in R$, we have

$$
\begin{equation*}
2 T\left(x^{n+1}\right)=T\left(x^{n}\right) x+x T\left(x^{n}\right) . \tag{2.1}
\end{equation*}
$$

Replacing x by $x+k e$ in (2.1), where k is any positive integer, we get

$$
2 T(x+k e)^{n+1}=T(x+k e)^{n}(x+k e)+(x+k e) T(x+k e)^{n} .
$$

Expanding the powers of $x+k e$,

$$
\begin{aligned}
& 2 T\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) \\
= & T\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right)(x+k e) \\
& +(x+k e) T\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right) .
\end{aligned}
$$

Using (2.1) and rearranging the above terms by collecting the terms involving equal powers of k, we have $\sum_{i=1}^{n} k^{i} f_{i}(x, e)=0$, for all $x \in R$. Now by putting $k=1,2, \ldots, n$, we get a system of n homogeneous equations, with coefficient matrix

$$
V=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
2 & 2^{2} & 2^{3} & \cdots & 2^{n} \\
\cdot & \cdot & \cdot & & \cdot \\
\cdot & \cdot & \cdot & & \cdot \\
n & n^{2} & n^{3} & \cdots & n^{n}
\end{array}\right]
$$

Since $|V|$ is a product of positive integers, each of which is $\leq n$ and since R is $(n+1)$!-torsion free, this system has only a trivial solution. In particular, $f_{n}(x, e)=0$ implies that

$$
2\binom{n+1}{n} T(x)=T(e) x+2\binom{n}{n-1} T(x)+x T(e)
$$

So,

$$
\begin{equation*}
2 T(x)=T(e) x+x T(e) \tag{2.2}
\end{equation*}
$$

for all $x \in R$. Now $f_{n-1}(x, e)=0$, gives

$$
2\binom{n+1}{n-1} T\left(x^{2}\right)=\binom{n}{n-1}(T(x) x+x T(x))+2\binom{n}{n-2} T\left(x^{2}\right)
$$

Multiplying both sides by 2 in the above equation, we get

$$
4 n T\left(x^{2}\right)=2 n(T(x) x+x T(x))
$$

Since R is $(n+1)$!-torsion free ring, the above equations can be reduced to

$$
\begin{equation*}
4 T\left(x^{2}\right)=2(T(x) x+x T(x)) \tag{2.3}
\end{equation*}
$$

Using (2.2) in (2.3) gives $[[T(e), x], x]=0$, for all $x \in R$. Now by [8, Theorem 2], $T(e) \in Z(R)$. Thus $T(x)=T(e) x=x T(e)$ and T is a centralizer.

Theorem 2.2. Let R be an $(n+2)$!-torsion free semiprime ring, where $n \geq 1$ is a fixed integer. If $T: R \rightarrow R$ is an additive mapping such that $3 T\left(x^{n+2}\right)=T(x) x^{n+1}+x T\left(x^{n}\right) x+x^{n+1} T(x)$ for all $x \in R$, then T is a centralizer.

Proof. For $x \in R$, we have

$$
\begin{equation*}
3 T\left(x^{n+2}\right)=T(x) x^{n+1}+x T\left(x^{n}\right) x+x^{n+1} T(x) \tag{2.4}
\end{equation*}
$$

Replacing x by $x+k e$ in (2.4), where k is any positive integer, we get

$$
\begin{aligned}
3 T(x+k e)^{n+2}= & T(x+k e)(x+k e)^{n+1}+(x+k e) T(x+k e)^{n}(x+k e) \\
& +(x+k e)^{n+1} T(x+k e)
\end{aligned}
$$

Expanding the powers of $x+k e$, we get

$$
\begin{aligned}
& 3 T\left(x^{n+2}+\cdots+\binom{n+2}{n} k^{n} x^{2}+\binom{n+2}{n+1} k^{n+1} x+k^{n+2} e\right) \\
= & T(x+k e)\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) \\
& +(x+k e) T\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right)(x+k e) \\
& +\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) T(x+k e) .
\end{aligned}
$$

Using (2.4) and rearranging the above terms, we get $\sum_{i=1}^{n+1} k^{i} f_{i}(x, e)=0$, for all $x \in R$. Proceeding in the same way as in the proof of the Theorem 2.1, $f_{i}(x, e)=0$, for all $x \in R$ and $i \in\{1,2, \ldots, n+1\}$. In particular, $f_{n+1}(x, e)=0$ implies that

$$
\begin{aligned}
3\binom{n+2}{n+1} T(x)= & 2 T(x)+\binom{n}{n-1} T(x)+\binom{n+1}{n} T(e) x+x T(e)+T(e) x \\
& +\binom{n+1}{n} x T(e)
\end{aligned}
$$

We have,

$$
2(n+2) T(x)=(n+2)(T(e) x+x T(e))
$$

for all $x \in R$. Since R is $(n+2)$!-torsion free,

$$
\begin{equation*}
2 T(x)=T(e) x+x T(e) \tag{2.5}
\end{equation*}
$$

for all $x \in R$. Now $f_{n}(x, e)=0$, gives

$$
\begin{aligned}
3\binom{n+2}{n} T\left(x^{2}\right)= & \binom{n+1}{n} T(x) x+\binom{n+1}{n-1} T(e) x^{2}+x T(e) x+\binom{n}{n-1} x T(x) \\
& +\binom{n}{n-1} T(x) x+\binom{n}{n-2} T\left(x^{2}\right)+\binom{n+1}{n} x T(x) \\
& +\binom{n+1}{n-1} x^{2} T(e)
\end{aligned}
$$

We get,

$$
\begin{aligned}
\left(n^{2}+5 n+3\right) T\left(x^{2}\right)= & (2 n+1)(T(x) x+x T(x))+\frac{n(n+1)}{2}\left(T(e) x^{2}+x^{2} T(e)\right) \\
& +x T(e) x
\end{aligned}
$$

Multiplying both sides by 2 in the above equation and using (2.5), we get $(n+1)[[T(e), x], x]=$ 0 , which yields $[[T(e), x], x]=0$ for all $x \in R$. Now by [8, Theorem 2], $T(e) \in Z(R)$. Thus $T(x)=T(e) x=x T(e)$ and T is a centralizer.

Theorem 2.3. Let R be an $(n+2)$! and $(3 n+1)$-torsion free semiprime ring, where $n \geq 1$ is a fixed integer. If $T: R \rightarrow R$ is an additive mapping such that $2 T\left(x^{n+2}\right)=x T(x) x^{n}+x^{n} T(x) x$ for all $x \in R$, then T is a centralizer.

Proof. For $x \in R$, we have

$$
\begin{equation*}
2 T\left(x^{n+2}\right)=x T(x) x^{n}+x^{n} T(x) x . \tag{2.6}
\end{equation*}
$$

Replacing x by $x+k e$ in (2.6) and expanding the powers of $x+k e$, we get

$$
\begin{aligned}
& 2 T\left(x^{n+2}+\cdots+\binom{n+2}{n} k^{n} x^{2}+\binom{n+2}{n+1} k^{n+1} x+k^{n+2} e\right) \\
= & (x+k e) T(x+k e)\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right) \\
& +\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right) T(x+k e)(x+k e) .
\end{aligned}
$$

Using (2.6) and rearranging the above terms, we get $\sum_{i=1}^{n+1} k^{i} f_{i}(x, e)=0$, for all $x \in R$. Hence $f_{i}(x, e)=0$ for all $x \in R$ and $i \in\{1,2, \ldots, n+1\}$. In particular, $f_{n+1}(x, e)=0$ implies that

$$
2(n+1) T(x)=(n+1)(T(e) x+x T(e))
$$

for all $x \in R$. Since R is $(n+2)$!-torsion free, we get

$$
\begin{equation*}
2 T(x)=T(e) x+x T(e) \tag{2.7}
\end{equation*}
$$

for all $x \in R$. Now $f_{n}(x, e)=0$, gives

$$
\begin{aligned}
2\binom{n+2}{n} T\left(x^{2}\right)= & x T(x)+\binom{n}{n-1} x T(e) x+\binom{n}{n-1} T(x) x+\binom{n}{n-2} T(e) x^{2}+ \\
& T(x) x+\binom{n}{n-1} x T(e) x+\binom{n}{n-1} x T(x)+\binom{n}{n-2} x^{2} T(e)
\end{aligned}
$$

That is,

$$
\begin{aligned}
(n+2)(n+1) T\left(x^{2}\right)= & (n+1)(x T(x)+T(x) x)+2 n x T(e) x+ \\
& \frac{n(n-1)}{2}\left(T(e) x^{2}+x^{2} T(e)\right) .
\end{aligned}
$$

Multiplying both sides by 2 in the above equation and using (2.7), we get

$$
\begin{equation*}
(3 n+1)[[T(e), x], x]=0 \tag{2.8}
\end{equation*}
$$

Since R is $(n+2)$! and $(3 n+1)$-torsion free, $[[T(e), x], x]=0$, for all $x \in R$. Now by [8, Theorem 2], $T(e) \in Z(R)$ and (2.7) implies that T is a centralizer.

3 Derivations

In this section, we discuss derivations and Jordan derivations.
Theorem 3.1. Let R be an $(n+1)$!-torsion free semiprime ring, where $n \geq 1$ is a fixed integer. If $D: R \rightarrow R$ is an additive mapping such that $D\left(x^{n+1}\right)=D\left(x^{n}\right) x+x^{n} D(x)$ for all $x \in R$, then D is a derivation.

Proof. For $x \in R$, we have

$$
\begin{equation*}
D\left(x^{n+1}\right)=D\left(x^{n}\right) x+x^{n} D(x) \tag{3.1}
\end{equation*}
$$

Replacing x by e in (3.1), we get $D(e)=2 D(e)$ which implies $D(e)=0$. Further, replacing x by $x+k e$ and expanding the powers of $x+k e$, we get

$$
\begin{aligned}
& D\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) \\
= & D\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right)(x+k e) \\
& +\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right) D(x+k e) .
\end{aligned}
$$

Using (3.1), rearranging the above terms and using the fact that $D(e)=0$, we get $\sum_{i=1}^{n} k^{i} f_{i}(x)=$ 0 , for all $x \in R$. So $f_{i}(x)=0$, for all $x \in R$ and $i \in\{1,2, \ldots, n\}$. In particular, $f_{n-1}(x)=0$ implies that

$$
\binom{n+1}{n-1} D\left(x^{2}\right)=\binom{n}{n-1} D(x) x+\binom{n}{n-2} D\left(x^{2}\right)+\binom{n}{n-1} x D(x) .
$$

We have

$$
D\left(x^{2}\right)=D(x) x+x D(x)
$$

for all $x \in R$. Thus D is a Jordan Derivation. Therefore by [3, Theorem 6], D is a derivation.
Theorem 3.2. Let R be an $(n+2)$! and $(2 n+1)$-torsion free semiprime ring, where $n \geq 1$ is a fixed integer. If $D: R \rightarrow R$ is an additive mapping such that $D\left(x^{n+2}\right)=D(x) x^{n+1}+$ $x D\left(x^{n}\right) x+x^{n+1} D(x)$ for all $x \in R$, then D is a derivation.

Proof. For $x \in R$, we have

$$
\begin{equation*}
D\left(x^{n+2}\right)=D(x) x^{n+1}+x D\left(x^{n}\right) x+x^{n+1} D(x) . \tag{3.2}
\end{equation*}
$$

Replacing x by e in (3.2) gives, $2 D(e)=0$. But R is 2-torsion free, so $D(e)=0$. Now, replacing x by $x+k e$ in (3.2) and expanding the powers of $x+k e$, we get

$$
\begin{aligned}
& D\left(x^{n+2}+\cdots+\binom{n+2}{n} k^{n} x^{2}+\binom{n+2}{n+1} k^{n+1} x+k^{n+2} e\right) \\
= & D(x+k e)\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) \\
& +(x+k e) D\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right)(x+k e) \\
& +\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) D(x+k e) .
\end{aligned}
$$

Using (3.2), rearranging the above terms and using the fact that $D(e)=0$, we get $\sum_{i=1}^{n} k^{i} f_{i}(x)=$ 0 , for all $x \in R$. So $f_{i}(x)=0$ for all $x \in R$ and $i \in\{1,2, \ldots, n\}$. In particular, $f_{n}(x)=0$ implies that

$$
\begin{aligned}
\binom{n+2}{n} D\left(x^{2}\right)= & \binom{n+1}{n} D(x) x+\binom{n}{n-1} D(x) x+\binom{n}{n-1} x D(x)+ \\
& \binom{n}{n-2} D\left(x^{2}\right)+\binom{n+1}{n} x D(x) .
\end{aligned}
$$

After simplification, we get $(2 n+1)\left\{D\left(x^{2}\right)-D(x) x-x D(x)\right\}=0$ for all $x \in R$ which yields $D\left(x^{2}\right)=D(x) x+x D(x)$. Thus, D is a Jordan Derivation and by [3, Theorem 6], a derivation.

Theorem 3.3. Let R be an $(n+2)$! and $(2 n+1)$-torsion free semiprime ring, where $n \geq 1$ is a fixed integer. If $F, D: R \rightarrow R$ are additive mappings such that $F\left(x^{n+2}\right)=F(x) x^{n+1}+$ $x D\left(x^{n}\right) x+x^{n+1} D(x)$ for all $x \in R$, then D is a Jordan derivation and F is a Jordan generalised derivation.

Proof. For $x \in R$, we have

$$
\begin{equation*}
F\left(x^{n+2}\right)=F(x) x^{n+1}+x D\left(x^{n}\right) x+x^{n+1} D(x) \tag{3.3}
\end{equation*}
$$

Replacing x by e, we get $2 D(e)=0$ and so $D(e)=0$. Now, replacing x by $x+k e$ in (3.3) and expanding the powers of $x+k e$, we get

$$
\begin{aligned}
& F\left(x^{n+2}+\cdots+\binom{n+2}{n} k^{n} x^{2}+\binom{n+2}{n+1} k^{n+1} x+k^{n+2} e\right) \\
= & F(x+k e)\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) \\
& +(x+k e) D\left(x^{n}+\cdots+\binom{n}{n-2} k^{n-2} x^{2}+\binom{n}{n-1} k^{n-1} x+k^{n} e\right)(x+k e) \\
& +\left(x^{n+1}+\cdots+\binom{n+1}{n-1} k^{n-1} x^{2}+\binom{n+1}{n} k^{n} x+k^{n+1} e\right) D(x+k e) .
\end{aligned}
$$

Using (3.3), rearranging the above terms and using the fact that $D(e)=0$, we get $\sum_{i=1}^{n+1} k^{i} f_{i}(x, e)=$ 0 , for all $x \in R$. Hence, $f_{i}(x, e)=0$ for all $x \in R$ and $i \in\{1,2, \ldots, n+1\}$. In particular, $f_{n+1}(x)=0$ implies that

$$
(n+1) F(x)=(n+1)\{F(e) x+D(x)\}=0
$$

for all $x \in R$. Since R is $(n+2)$!-torsion free,

$$
\begin{equation*}
F(x)=F(e) x+D(x) \tag{3.4}
\end{equation*}
$$

for all $x \in R$. Now $f_{n}(x, e)=0$, gives

$$
\begin{aligned}
\binom{n+2}{n} F\left(x^{2}\right)= & \binom{n+1}{n} F(x) x+\binom{n+1}{n-1} F(e) x^{2}+\binom{n}{n-1} x D(x)+ \\
& \binom{n}{n-1} D(x) x+\binom{n}{n-2} D\left(x^{2}\right)+\binom{n+1}{n} x D(x) .
\end{aligned}
$$

Using (3.4), we get $(2 n+1)\left\{D\left(x^{2}\right)-D(x) x-x D(x)\right\}=0$ which yields $D\left(x^{2}\right)=D(x) x+$ $x D(x)$ for all $x \in R$. Hence D is a Jordan derivation. Again by (3.4), we have $F\left(x^{2}\right)=$ $F(e) x^{2}+D\left(x^{2}\right)=F(e) x^{2}+D(x) x+x D(x)=F(x) x+x D(x)$ for all $x \in R$ and F is a Jordan generalized derivation.

Acknowledgements

The financial assistance provided to the second author in the form of a Senior Research Fellowship from the University Grants Commission, INDIA is gratefully acknowledged.

References

[1] M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc. 37, 321-322 (1988).
[2] M. Bresar, Jordan mappings of semiprime rings, J. Algebra 127, 218-228 (1989).
[3] J. M. Cusack, Jordan derivation on rings, Proc. Amer. Math. Soc. 53 (2), 321-324 (1975).
[4] B. Dhara and R. K. Sharma, On additive mapping in semiprime rings with left identity, Algebra Groups Geom. 25, 175-180 (2008).
[5] B. Dhara and R. K. Sharma, On additive mappings in rings with identity element, Int. Math. Forum 4(15), 727-732 (2009).
[6] I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc. 8 (6), 1104-1110 (1957).
[7] I. Kosi-Ulbl, A remark on centralizers in semiprime rings, Glas. Mat. Ser. III 39(1), 21-26 (2004).
[8] C. Lanski, An engel condition with derivation for left ideal, Proc. Amer. Math. Soc. 125(2), 339-345 (1997).
[9] J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11(2), 367-370 (2007).
[10] J. Vukman and I. Kosi-Ulbl, An equation related to centralizers in semiprime rings, Glas. Mat. Ser.III 38(2), 253-261 (2003).
[11] J. Vukman and I. Kosi-Ulbl, On centralizers of semiprime rings, Aequationes Math. 66, 277-283 (2003).
[12] V. K. Yadav and R. K. Sharma, On additive mappings in rings with identity element, Rend. Circ. Math. Palermo, II. Ser. 66(3), 355-360 (2017).
[13] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae 32 (4), 609-614 (1991).

Author information

Meena Sahai and Sheere Farhat Ansari, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, U.P. 226007, India.
E-mail: meena_sahai@hotmail.com
Received: January 18, 2021
Accepted: September 9, 2021

