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Abstract The object of this paper is to study the curvature tensors of (k, µ)-Paracontact mani-
fold satisfying the conditions R(X,Y ) · C = 0, Z̃(X,Y ) · C = 0 and C(X,Y ) · C = 0.
According these cases, (k, µ)-Paracontact manifolds have been characterized such as Einstein
and η-Einstein.

1 Introduction

The study of paracontact geometry was iniated by Kaneyuki and Williams [7]. Recently, there
seems to be an increasing interest in paracontact geometry. A systematic study of paracontact
metric manifolds and their subclasses introduced by Zamkovoy [15]. Subsequently, many ge-
ometers have studied paracontact metric manifolds and obtained various important properties of
these manifolds (see, [3, 13, 14]).

Paracontact metric manifolds have been studied from different points of view. The geometry
of paracontact metric manifolds can be related to the theory of Legendre foliations. In [5], the
author introduced the class of paracontact metric manifolds for which the characteristic vektor
field ξ belongs to the (k, µ)−nullity condition for some real constants k and µ. Such manifolds
are known as (k, µ)−paracontact metric manifolds. The class of (k, µ)−paracontact metric man-
ifolds contains para-Sasakian manifolds.

The notion of semi-symmetric manifolds is defined by R(X,Y ) ·R = 0 and such works have
been studied by many authors [8, 9, 10]. The conditionsR(X,Y )·P = 0 andR(X,Y )·C̃ = 0 are
said to be projective semi-symmetric and quasi-conformal semi-symmetric, respectively, where
R(X,Y ) is considered as derivation of tensor algebra at each point of the manifold.

Yano K. and Sawaki S. introduced the notion of quasi-conformal curvature tensor which
is generalization of conformal curvature tensor[12]. It plays an important role in differential
geometry as well as in theory of relativity. Atçeken M. studied generalized Sasakian space
form satisfying certain conditions on the concircular curvature tensor [2]. De U.C., Jun J.B. and
Gazi A.K. searched Sasakian manifolds with quasi-conformal curvature tensor [6]. Arslan K.,
Murathan C. and Özgür C. produced the works on contact manifold curvature tensor [1].

Motivated by the studies of the above authors, in this paper we classify (k, µ)-paracontact
manifolds, which satify the curvature conditions R(X,Y ) · C = 0, Z̃(X,Y ) · C = 0 and
C(X,Y ) · C = 0 where Z̃ is the concircular curvature tensor, R is the Riemannian curvature
tensor and C is conformal curvature tensor.

2 Preliminaries

A contact manifold is a C∞ − (2n + 1) dimensional manifold M2n+1 equipped with a global
1-form η such that η ∧ (dη)n 6= 0 everywhere on M2n+1. Given such a form η, it is well known
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that there exists a unique vector field ξ, called the characteristic vector field, such that η(ξ) = 1
and dη(X, ξ) = 0 for every vector field X on M2n+1. A Riemannian metric g is said to be
associated metric if there exists a tensor field φ of type (1, 1) such that

φ2X = X − η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0, (2.1)

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), g(X, ξ) = η(X) (2.2)

for all vector fields X,Y on M . Then the structure (φ, ξ, η, g) on M is called a paracontact metric
structure and the manifold equipped with such a structure is called a almost paracontact metric
manifold[15].

We now define a (1, 1) tensor field h by h = 1
2Lξφ, where L denotes the Lie derivative. Then

h is symmetric and satisfies the conditions

hφ = −φh, hξ = 0, T r.h = Tr.φh = 0. (2.3)

If ∇ denotes the Levi-Civita connection of g, then we have the following relation

∇Xξ = −φX + φhX (2.4)

for all X ∈ χ(M)[15]. For a para-contact metric manifold M2n+1(φ, ξ, η, g), if ξ is a killing
vector field or equivalently, h = 0, then it is called a K-paracontact manifold.

A para-contact metric structure (φ, ξ, η, g) is normal, that is, satisfies [φ, φ] + 2dη ⊗ ξ = 0,
which is equivalent to

(∇Xφ)Y = −g(X,Y )ξ + η(Y )X

for any X,Y ∈ χ(M)[15]. If an almost paracontact metric manifold is normal, then it called
paracontact metric manifold. Any para -Sasakian manifold is K-paracontact, and the converse
holds when n = 1, that is, for 3-dimensional spaces. Any para-Sasakian manifold satisfies

R(X,Y )ξ = −(η(Y )X − η(X)Y ) (2.5)

for any X,Y ∈ χ(M), but this is not a sufficient condition for a paracontact manifold to be
para-Sasakian. It is clear that every para-Sasakian manifold is K-paracontact. But the converse
is not always true[4].

Definition 2.1. A paracontact manifold M is said to be η-Einstein if its Ricci tensor S of type
(0, 2) is of the from S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),where a, b are smooth functions on M .
If b = 0, then the manifold is also called Einstein[17].

Definition 2.2. A paracontact metric manifold is said to be a (k, µ)−paracontact manifold if the
curvature tensor R satisfies

R̃(X,Y )ξ = k [η(Y )X − η(X)Y ] + µ [η(Y )hX − η(X)hY ] (2.6)

for all X,Y ∈ χ(M), where k and µ are real constants.
This class is very wide containing the para-Sasakian manifolds as well as the paracontact

metric manifolds satisfying R(X,Y )ξ = 0 [16].
In particular, if µ = 0, then the paracontact metric (k, µ)−manifold is called paracontact met-

ric N(k)-manifold . Thus for a paracontact metric N(k)-manifold the curvature tensor satisfies
the following relation

R(X,Y )ξ = k(η(Y )X − η(X)Y ) (2.7)

for all X,Y ∈ χ(M). Though the geometric behavior of paracontact metric (k, µ)−spaces is
different according as k < −1, or k > −1, but there are also some common results for k < −1
and k > −1.

Lemma 2.3. There does not exist any paracontact (k, µ)−manifold of dimension greater than 3
with k > −1 which is Einstein whereas there exits such manifolds for k < −1 [5].
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In a paracontact metric (k, µ)−manifold (M2n+1φ, ξ, η, g), n > 1, the following relation
hold:

h2 = (k + 1)φ2, for k 6= −1, (2.8)

(∇̃Xφ)Y = −g(X − hX, Y )ξ + η(Y )(X − hX), (2.9)

S(X,Y ) = [2(1− n) + nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y )

+[2(n− 1) + n(2k − µ)]η(X)η(Y ), (2.10)

S(X, ξ) = 2nkη(X), (2.11)

QY = [2(1− n) + nµ]Y + [2(n− 1) + µ]hY

+[2(n− 1) + n(2k − µ)]η(Y )ξ, (2.12)

Qξ = 2nkξ, g(QX,Y ) = S(X,Y ), (2.13)

Qφ− φQ = 2[2(n− 1) + µ]hφ (2.14)

for any vector fields X,Y on M2n+1 , where Q and S denotes the Ricci operator and Ricci tensor
of (M2n+1, g), respectively[5].

The concept of quasi-conformal curvature tensor was defined by K. Yano and S. Sawaki [12].
Quasi-conformal curvature tensor of a (2n+ 1)-dimensional Riemanian manifold is defined as

C̃(X,Y )Z = aR(X,Y )Z + b{S(Y,Z)X − S(X,Z)Y
+g(Y,Z)QX − g(X,Z)QY }

− τ

2n+ 1
{ a

2n
+ 2b}{g(Y, Z)X − g(X,Z)Y } (2.15)

where a and b are arbitrary scalars, and r is the scalar curvature of the manifold. If a = 1 and
b = −1

2n−1 , then quasi conformal curvature tensor reduces to conformal curvature tensor defined
as

C(X,Y )Z = R(X,Y )Z − 1
2n− 1

{S(Y,Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY }+ τ

2n(2n− 1)
{g(Y,Z)X − g(X,Z)Y }. (2.16)

Let (M, g) be an (2n+ 1)-dimensional Riemanian manifold. Then the concircular curvature
tensor Z̃ is defined by

Z̃(X,Y )Z = R(X,Y )Z − τ

2n(2n+ 1)
{g(Y,Z)X − g(X,Z)Y }, (2.17)

for all X,Y, Z ∈ χ(M)[11].
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3 η-Einstein (k, µ)−Paracontact Spaces

In this section, we will give the main results for this paper.

Let M be (2n + 1)−dimensional (k, µ)−paracontact metric manifold and we denote the
Riemannian curvature tensor of R, from (2.6), we have for later

R(ξ, Y )Z = k(g(Y, Z)ξ − η(Z)Y ) + µ(g(hY, Z)ξ − η(Z)hY ). (3.1)

In (3.1), choosing Z = ξ, we obtain

R(ξ, Y )ξ = k(η(Y )ξ − Y ) + µhY. (3.2)

Also from (3.1), we have

η(R(ξ, Y )Z) = k(g(Y, Z)− η(Y )η(Z)) + µg(hY, Z). (3.3)

In the same way, choosing X = ξ in (2.16) and (3.1), we have

C(ξ, Y )Z = (k − 2nk
2n+ 1

+
r

2n(2n− 1)
)(g(Y,Z)ξ − η(Z)Y )

+µ(g(hY, Z)ξ − η(Z)hY )− 1
2n− 1

(S(Y,Z)ξ − η(Z)QY ). (3.4)

In (3.4), choosing Z = ξ and using (2.11), we obtain

C(ξ, Y )ξ = (k − 2nk
2n+ 1

+
r

2n(2n− 1)
)(η(Y )ξ − Y )

−µhY − 1
2n− 1

(2nkη(Y ))ξ −QY ). (3.5)

In same way from (3.1) and (2.17), we get

Z̃(ξ, Y )Z = (k − r

2n(2n+ 1)
)(g(Y,Z)ξ − η(Z)Y ) + µ(g(hY, Z)ξ − η(Z)hY ) (3.6)

from which
Z̃(ξ, Y )ξ = (k − r

2n(2n+ 1)
)(η(Y )ξ − Y )− µhY. (3.7)

Theorem 3.1. Let M be a (2n+ 1)−dimensional (k, µ)-paracontact manifold. Then
C(X,Y ) · C = 0 if and only if M is an η−Einstein manifold.

Proof. Suppose that C(X,Y ) · C = 0. This implies that

(C(X,Y )C)(U,W )Z = C(X,Y )C(U,W )Z − C(C(X,Y )U,W )Z

−C(U,C(X,Y )W )Z − C(U,W )C(X,Y )Z = 0, (3.8)

for any X,Y, U,W,Z ∈ χ(M). Taking X = Z = ξ in (3.8) and making use of (3.4), (3.5),
for A = k − 2nk

2n−1 + r
2n(2n−1) , and b = − 1

2n−1 , we have

(C(ξ, Y )C)(U,W )ξ = C(ξ, Y )(A(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW )

+b(η(W )QU − η(U)QW ))− C(A(g(Y, U)ξ − η(U)Y )
+µ(g(hY, U)ξ − η(U)hY ) + b(S(Y, U)ξ − η(U)QY ),W ))ξ

−C(U,A(g(Y,W )ξ − η(W )Y ) + µ(g(hY,W )ξ − η(W )hY )

+b(S(Y,W )ξ − η(W )QY ))ξ − C(U,W )(A(η(Y )ξ − Y )
−µhY + b(2nkη(Y )ξ −QY )) = 0 (3.9)
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Taking into account (2.12), (3.4) and inner product both sides of (3.9) by Z ∈ χ(M), we obtain

Ag(C(U,W )Y, Z) + µg(C(U,W )hY, Z) + bg(C(U,W )QY,Z)

+Ab(η(W )η(Z)S(Y,U)− η(U)η(Z)S(Y,W )) +A2(g(U, Y )g(W,Z)

−η(U)η(Z)g(Y,W )) +Aµ(η(W )η(Z)g(Y, hU)− η(U)η(Z)g(Y, hW ))

+µ2(k + 1)(η(W )η(Z)g(Y,U)− η(U)η(Z)g(Y,W )) + bµ(η(W )η(Z)S(Y, hU)

−η(U)η(Z)S(Y, hW )) + b2(η(W )η(Z)S(Y,QU)− η(U)η(Z)S(Y,QW ))

+Aµ(g(Y,U)g(hW,Z)− g(Y,W )g(hU,Z)) + 2nkAb(η(U)η(Z)g(Y,W )

−η(W )η(Z)g(Y,U)) +Ab(g(Y,U)S(W,Z)− g(Y,W )S(U,Z))

+Aµ(g(hY, U)g(W,Z)− g(hY,W )g(U,Z)) + µ2(g(hY, U)g(hW,Z)

−g(hY,W )g(hU,Z)) + 2nkbµ(η(U)η(Z)g(Y, hW )− η(W )η(Z)g(Y, hU))

+bµ(g(hY, U)S(W,Z)− g(hY,W )S(U,Z)) +Ab(S(Y, U)g(W,Z)

−S(Y,W )g(U,Z)) + bµ(S(Y,U)g(hW,Z)− S(Y,W )g(hU,Z))

+2nkb2(η(U)η(Z)S(Y,W )− η(W )η(Z)S(Y,U))

+b2(S(Y, U)S(W,Z)− S(Y,W )S(U,Z)) = 0. (3.10)

In (3.10), using (2.1), (2.8), (2.16) and choosing W = Y = ei, ξ, 1 ≤ i ≤ n, for orthonormal
basis of χ(M), we arrive

(A+ b[2(1− n) + nµ]− br

2n(2n+ 1)
)S(U,Z) + (µ+ b[2(n− 1) + µ]− b2)S(U, hZ)

+(
Ar

2n− 1
+ 2nµb(k + 1)b[2(n− 1) + µ] +

br2

2n(2n− 1)
+A2 + µ2(k + 1)

+b2r[2(1− n) + nµ] + 2n(1 + k) + b2[2(n− 1) + µ]2

+2nkb2[2(n− 1) + n(2k − µ)])g(U,Z)

+(bµ[2(n− 1) + n(2k − µ)]− µr

2n(2n− 1)
− 2nAµ− µbr)g(U, hZ)

+(−A2(2n+ 1)− 2nµ2(1 + k)− 4nbµ(1 + k)[2(n− 1) + µ]−Abr
−(2nkb)2 + 2nkAb(2n+ 1) + 2nkb2(r + [2(1− n) + µ])− µ2(k + 1)

−b2r[2(1− n) + µ]− 2nb2(1 + k)[2(n− 1) + µ]2)η(U)η(Z) = 0. (3.11)

Replacing hZ of Z in (3.11) and using (2.8), we get

(A+ b[2(1− n) + nµ]− br

2n(2n+ 1)
)S(U, hZ)

+(1 + k)(µ+ b[2(n− 1) + µ]− b2)S(U,Z)

−2nk(1 + k)(µ+ b[2(n− 1) + µ]− b2)η(U)η(Z)

+(
Ar

2n− 1
+ 2nµb(k + 1)b[2(n− 1) + µ] +

br2

2n(2n− 1)
+A2

+µ2(k + 1) + b2r[2(1− n) + nµ] + 2n(1 + k) + b2[2(n− 1) + µ]2

+2nkb2[2(n− 1) + n(2k − µ)])g(U, hZ)

+(1 + k)(bµ[2(n− 1) + n(2k − µ)]− µr

2n(2n− 1)
− 2nAµ− µbr)g(U,Z)

−(1 + k)(bµ[2(n− 1) + n(2k − µ)]

− µr

2n(2n− 1)
− 2nAµ− µbr)η(U)η(Z) = 0. (3.12)

From (3.11), (3.12) and also using (2.10), for the sake of brevity, we put
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a = (A+ b[2(1− n) + nµ]− br

2n(2n+ 1)
),

f = (µ+ b[2(n− 1) + µ]− b2),

c = (
Ar

2n− 1
+ 2nµb(k + 1)b[2(n− 1) + µ] +

br2

2n(2n− 1)
+A2 + µ2(k + 1)

+b2r[2(1− n) + nµ] + 2n(1 + k) + b2[2(n− 1) + µ]2

+2nkb2[2(n− 1) + n(2k − µ)]),

d = (bµ[2(n− 1) + n(2k − µ)]− µr

2n(2n− 1)
− 2nAµ− µbr),

e = (−A2(2n+ 1)− 2nµ2(1 + k)− 4nbµ(1 + k)[2(n− 1) + µ]−Abr
−µ2(k + 1)− (2nkb)2 + 2nkAb(2n+ 1) + 2nkb2(r + [2(1− n) + µ])

−b2r[2(1− n) + µ]− 2nb2(1 + k)[2(n− 1) + µ]2)

and

E = fd(1 + k)− ac)− [2(n− 1) + µ]− (fc− ad)[2(1− n) + nµ],

D = (a2 − f2)[2(n− 1) + µ]− fc+ ad,

F = (ad− fc)[2(n− 1) + n(2k − µ)]− (ae+ fd(1 + k) + 2nkf2)[2(n− 1) + µ]

we conclude

DS(U,Z) = Eg(U,Z) + Fη(U)η(Z).

So, M is an η−Einstein manifold. The converse is obvious.

Theorem 3.2. Let M be a (2n+ 1)−dimensional (k, µ)-paracontact manifold. Then
Z̃(X,Y ) · C = 0 if and only if M is an Einstein manifold.

Proof. Suppose that Z̃(X,Y ) · C = 0. Then we have

(Z̃(X,Y )C)(U,W )Z = Z̃(X,Y )C(U,W )Z − C(Z̃(X,Y )U,W )Z

−C(U, Z̃(X,Y )W )Z − C(U,W )Z̃(X,Y )Z = 0, (3.13)

for any X,Y, U,W,Z ∈ χ(M). Taking X = Z = ξ in (3.13) and using (3.4), for
A = k − 2nk

2n−1 + r
2n(2n−1) , B = k − r

2n(2n+1) and b = − 1
2n−1 , we obtain

(Z̃(ξ, Y )C)(U,W )ξ = Z̃(ξ, Y )(A(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW
+b(η(W )QU − η(U)QW ))− C(B(g(Y,U)ξ − η(U)Y )
+µ(g(hY, U)ξ − η(U)hY ),W )ξ − C(U,B(g(Y,W )ξ

−η(W )Y ) + µ(g(hY,W )ξ − η(W )hY ))ξ

−C(U,W )(B(η(Y )ξ − Y )− µhY ) = 0. (3.14)

Taking into account that (3.4), (3.6) and inner product both sides of (3.14) by Z ∈ χ(M),
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we get

Bg(C(U,W )Y, Z) + µg(C(U,W )hY, Z)

+µB(η(W )η(Z)g(Y, hU)− η(U)η(Z)g(Y, hW )

+µ2(1 + k)(η(W )η(Z)g(Y,U)− η(U)η(Z)g(Y,W ))

+Bb(η(W )η(Z)S(Y,U)− η(U)η(Z)S(Y,W ))

+µb(η(W )η(Z)S(hY,U)− η(U)η(Z)S(hY, U))
+AB(g(Y, U)g(W,Z)− g(Y,W )g(U,Z))

+µB(g(Y, U)g(hW,Z)− g(Y,W )g(hU,Z)

+Bb(g(Y,U)S(W,Z)− g(Y,W )S(U,Z))

+Aµ(g(hY, U)g(W,Z)− g(hY,W )g(U,Z))

+2nkBb(η(U)η(Z)g(Y,W )− η(W )η(Z)g(Y,U))

+µ2(g(hY, U)g(hW,Z)− g(hY,W )g(hU,Z))

+bµ(g(hY, U)S(W,Z)− g(hY,W )S(U,Z))

+2nkbµ(η(U)η(Z)g(hY,W )− η(W )η(Z)g(hY, U)) = 0. (3.15)

In (3.15), using (2.1), (2.16) and choosing U = Z = ei, ξ for orthonormal basis of χ(M),
1 ≤ i ≤ n, we arrive

BS(W,Y ) + µS(W,hY )− 2nkBg(W,Y )− 2nkµg(W,hY ) = 0. (3.16)

Replacing hY of Y in (3.16) and making use of (2.8), we obtain

BS(W,hY ) + µ(1 + k)S(W,Y )− 2nkBg(W,hY )− 2nkµ(1 + k)g(W,Y ) = 0. (3.17)

From (3.16), (3.17) and using (2.11), we have

S(W,Y ) = 2nkg(W,Y ). (3.18)

Thus, M is an Einstein manifold. The converse is obvious. From (3.18), we conclude that

µ = 2(k + 1− 1
n
).

Theorem 3.3. Let M be a (2n + 1)−dimensional (k, µ)-paracontact manifold. Then M is a
conformal semi-symmetric if and only if M is an Einstein manifold.

Proof. Suppose that R(X,Y ) · C = 0. This means that

(R(X,Y )C)(U,W )Z = R(X,Y )C(U,W )Z − C(R(X,Y )U,W )Z

−C(U,R(X,Y )W )Z − C(U,W )R(X,Y )Z = 0, (3.19)

for any X,Y, U,W,Z ∈ χ(M). Setting X = Z = ξ in (3.19) and making use of (3.1), for
A = k − 2nk

2n−1 + r
2n(2n−1) and b = − 1

2n−1 , we obtain

(R(ξ, Y )C)(U,W )ξ = R(ξ, Y )(A(η(W )U − η(U)W ) + µ(η(W )hU − η(U)hW )

+b(η(W )QU − η(U)QW ))− C(k(g(Y, U)ξ − η(U)Y )
+µ(g(hY, U)ξ − η(U)hY,W )ξ − C(U, k(g(Y,W )ξ

−η(W )Y ) + µ(g(hY,W )ξ − η(W )hY ))ξ

−C(U,W )(k(η(Y )ξ − Y )− µhY ) = 0. (3.20)
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Inner product both sides of (3.20) by Z ∈ χ(M) and using of (3.1) and (3.4), we arrive

kg(C(U,W )Y,Z) + µg(C(U,W )hY, Z)

+kµ(η(W )η(Z)g(Y, hU)− η(U)η(Z)g(Y, hW ))

+µ2(1 + k)(η(W )η(Z)g(Y, U)− η(U)η(Z)g(Y,W ))

+bk(η(W )η(Z)S(Y,U)− η(U)η(Z)S(Y,W ))

+bµ(η(W )η(Z)S(hY, U)− η(U)η(Z)S(hY,W ))

+Ak(g(Y, U)g(W,Z)− g(Y,W )g(U,Z))

+kµ(g(Y, U)g(hW,Z)− g(Y,W )g(hU,Z))

+bk(g(Y,U)S(W,Z)− g(Y,W )S(U,Z))

+bµ(g(hY, U)S(W,Z)− g(hY,W )S(U,Z))

+µ2(g(hY, U)g(hW,Z)− g(hY,W )g(hU,Z))

+Aµ(g(hY, U)g(W,Z)− g(hY,W )g(U,Z))

+2nkbµ(η(U)η(Z)g(hY,W )− η(W )η(Z)g(hY, U))

+2nk2b(η(U)η(Z)g(Y,W )− η(W )η(Z)g(Y,U)) = 0. (3.21)

Making use of (2.8), (2.16) and choosing U = Z = ei, ξ, 1 ≤ i ≤ n, for orthonormal basis of
χ(M) in (3.21), we have

kS(W,Y ) + µS(W,hY )− 2nk2g(Y,W )− 2nkµg(W,hY ) = 0. (3.22)

Replacing hY of Y in (3.22) and taking into account (2.8), we get

kS(W,hY ) + µ(1 + k)S(W,Y )− 2nk2g(hY,W )− 2nkµg(W,Y ) = 0. (3.23)

From (3.22), (3.23) and by using (2.11), we have

S(Y,W ) = 2nkg(Y,W ).

Thus, M is an Einstein manifold. The converse is obvious.
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