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Abstract A Roman dominating function on a graph G = (V,E) is a function f : V (G) →
{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least
one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value
W (f(V )) =

∑
u∈V (G)

f(u). The minimum weight of a Roman dominating function on a graph G

is called the Roman domination number of G and is denoted by γR(G). In [8], we have intro-
duced and established the study of the Roman domination polynomial of graphs and obtained
some important properties about the polynomial and we have computed the polynomial for some
specific graphs and graph operations. In this paper, as a continuing of this study, we study the
Roman domination polynomial of a path Pn on n vertices. Exact formula for the polynomial,
important properties of its coefficients and interesting results have obtained.

1 Introduction

Let G = (V,E) be a simple graph, where V and E are the set of vertices and edges of G, respec-
tively. The open neighborhood and the closed neighborhood of a vertex v ∈ V (G) are defined
by N(v) = {u ∈ V (G) : uv ∈ E} and N [v] = N(v) ∪ {v}, respectively. The cardinality of
N(v) is called the degree of the vertex v and denoted by deg(v) in G. For more terminology and
notations about graph, the reader is referred to [6, 9].

A subset D of V (G) is a dominating set of G, if for every vertex v ∈ V −D, there exists a
vertex u ∈ D such that v is adjacent to u. A dominating set of G of cardinality γ(G) is called
the domination number of G. For more details about domination of graphs, we refer to [10].

A Roman dominating function of a graph G = (V,E) (or in brief RDF of G ) is a function
f : V (G)→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent
to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the
value W (f(V )) =

∑
u∈V (G)

f(u). A Roman dominating function of a graph G with weight γR(G)

is called the Roman domination number of G. For more details about Roman domination and its
properties, the reader is referred to [7]. The next proposition obtained the exact value of γR of a
path Pn and a cycle Cn on n vertices.

Proposition 1.1 ([7]). For the classes of paths Pn and cycles Cn,

γR(Pn) = γR(Cn) =

⌈
2n
3

⌉
.

The domination polynomial D(G, x) of a graph G is defined by D(G, x) =
n∑

i=γ(G)

d(G, i)xi,

where d(G, i) is the number of all the dominating sets of G of size i [5]. The dominating sets
and the domination polynomial of graphs have been studied extensively in [5, 3, 4, 2]. Recently,
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the injective domination polynomial of graphs has been studied in [1].

In [8], we have introduced the Roman domination polynomial of graph asR(G, x) =
2n∑

j=γR(G)

r(G, j)xj ,

where r(G, j) is the number of Roman dominating functions of G of weight j. We have estab-
lished this study by obtaining some important properties of the polynomial and its coefficients,
and determining the exact formula of the polynomial for some families of graphs and graph
operations.

In the next proposition, we obtain some important properties of R(G, x) of a graph G which
we need to use in this paper.

Proposition 1.2 ([8]). Let G be a non trivial graph on n vertices. Then

(i) R(G, x) has no constant term.

(ii) R(G, x) has no term of degree one.

(iii) Zero is a root of R(G, x), with multiplicity γR(G).

(iv) R(G, x) never equal xp for any 2 ≤ p ≤ 2n.

(v) For any graph G, r(G, 2n) = 1 and r(G, 2n− 1) = n.

(vi) r(G, j) = 0 if and only if j < γR(G) or j > 2n.

(vii) R(G, x) is a strictly increasing function in [0,∞).

(viii) The only polynomial of degree two can R(G, x) be equal is x2 + x if and only if G ∼= K1.

(ix) Let H be any induced subgraph of G. Then

deg
(
R(G, x)

)
≥ deg

(
R(H,x)

)
.

In this paper, we study the Roman domination polynomial of a path Pn on n vertices. Exact
formula for R(Pn, x), important properties and relations between the coefficient of R(Pn, x) are
obtained.

2 Roman domination polynomial of a path

In [4], Alikhani and Peng have showed that the number of all dominating sets with cardinality
i of a path Pn equal to the sum of the number of all dominating sets of the path Pn−1 with
cardinality i − 1, the path Pn−2 with cardinality i − 1 and the path Pn−3 with cardinality i − 1,
and then they have found the exact formula of the domination polynomial of paths, as following.

Theorem 2.1 ([4]).

(i) If Pin is the family of all dominating sets with cardinality i of a path Pn, then

|Pin| = |Pi−1
n−1|+ |P

i−1
n−2|+ |P

i−1
n−3|.

(ii) For every n ≥ 4,

D(Pn, x) = x
[
D(Pn−1, x) +D(Pn−2, x) +D(Pn−3, x)

]
,

with initial values D(P1, x) = x, D(P2, x) = x2 + 2x and D(P3, x) = x3 + 3x2 + x.

In this section, we find the Roman domination polynomial of a path Pn on n vertices, and
then we study some of its properties, and finally, we illustrate in a table the coefficients of all
Roman domination polynomials of paths Pn with n ≤ 10.

Let Pjn be the set of all RDFs of Pn with weight j. Actually, to find a RDF of Pn, we do not
need to consider RDFs of Pn−4 with weight j − 2 (weight j − 1 is impossible here), that’s what
we will show in the next lemma. Note that, when we talk about a RDF f with weight j − 1 or
j − 2 in Pn−r, where r = 1, 2, 3 such that f ∈ Pjn, we mean a RDF f of Pn minus only one
vertex v ∈ Pn \ Pn−r taking a value f(v) = 1 or f(v) = 2, respectively.
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Lemma 2.2. Let f ∈ Pjn. Then, if f ∈ Pj−2
n−4, this implies that f ∈ Pj−2

n−3.

Proof. Suppose f ∈ Pj−2
n−4. Then for the vertex v ∈ V (Pn−4) labeled n − 4, either f(v) = 0 or

1 or 2. Now, if f(v) = 0 or 1, then f /∈ Pjn, a contradiction. Therefore, f(v) = 2 and hence
f ∈ Pj−2

n−3.

In the next theorem, according to Theorem 2.1 part (i) (since every RDF of a graph G it just
a labeling on some dominating set of the graph G itself) and Lemma 2.2, we state the Roman
domination polynomial of Pn in terms of the Roman domination polynomial of Pn−1, Pn−2 and
Pn−3.

Theorem 2.3. Let Pn be a path on n ≥ 4 vertices. Then

R(Pn, x) = (x2 + x)R(Pn−1, x) + x2R(Pn−2, x) + (x3 + x2)R(Pn−3, x),

with initial values R(P3, x) = x6 + 3x5 + 6x4 + 5x3 + x2, R(P2, x) = x4 + 2x3 + 3x2 and
R(P1, x) = x2 + x.

Proof. Consider V (Pn) = {v1, v2, . . . , vn}. Let f ∈ Pjn. Then we have the following cases:
Case 1. Suppose that f ∈ Pj−1

n−1 or f ∈ Pj−2
n−1 (this means that, for the last vertex vn either

f(vn) = 1 or f(vn) = 2, respectively). Then we get the term (x2 + x)R(Pn−1, x).
Case 2. Suppose that f ∈ Pj−1

n−2 or f ∈ Pj−2
n−2. Actually, the case f ∈ Pj−1

n−2 is included in Case 1,
so we will take only f ∈ Pj−2

n−2 in this case. Thus, we have two subcases:
Subcase i. Suppose f(vn−1) = 2 and f(vn) = 0. Then we get the term x2R(Pn−2, x).
Subcase ii. Suppose f(vn−1) = 0 and f(vn) = 2. This situation has some connection with Case
1, so to avoid the repetition, we will take only the situations when Pj−2

n−1 = φ. Therefore, we will
choose f(vn−2) = 1 or f(vn−2) = 0.

• If f(vn−2) = 1, then we have the term x3R(Pn−3, x).

• If f(vn−2) = 0, then f(vn−3) must equal 2, and thus we have the term x4R(Pn−4, x).

Case 3. In this case, we have remaining the situation when f(vn−2) = 0, f(vn−1) = 2 and
f(vn) = 0 such that Pj−2

n−2 = φ (here already Pj−1
n−1 = Pj−2

n−1 = φ). Therefore, f(vn−3) must equal
1 or 0. Hence, we get the term

x2R(Pn−3, x)− x4R(Pn−4, x),

and this completes the proof.

Using Theorem 2.3, we obtain r(Pn, j) for 1 ≤ n ≤ 10 as shown in Table 1.

j 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n
1 1 1
2 0 3 2 1
3 0 1 5 6 3 1
4 0 0 2 11 14 10 4 1
5 0 0 0 6 23 34 28 15 5 1
6 0 0 0 1 14 51 80 76 48 21 6 1
7 0 0 0 0 3 34 113 189 198 144 75 28 7 1
8 0 0 0 0 0 10 80 255 444 506 410 246 110 36 8 1
9 0 0 0 0 0 1 28 189 579 1044 1272 1129 758 391 154 45 9 1
10 0 0 0 0 0 0 4 76 444 1325 2454 3164 3030 2236 1294 589 208 55 10 1

Table 1. r(Pn, j), the number of Roman dominating functions of Pn with cardinality j.

In the following theorem, we obtain some important properties about the coefficients of the
Roman domination polynomial of a path Pn.
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Theorem 2.4. The following properties are satisfied for the Roman domination polynomialR(Pn, x)
of a path Pn:

(i) r(Pn, j) =r(Pn−1, j − 1) + r(Pn−1, j − 2) + r(Pn−2, j − 2) + r(Pn−3, j − 2)

+ r(Pn−3, j − 3).

(ii) r(P3k, 2k) = 1, where n = 3k for some k ∈ N.

(iii) If n = 3k + 1 for some k ∈ N, then r(P3k+1, 2k + 1) = k + 1.

(iv) If n = 3k + 2 for some k ∈ N, then r(P3k+2, 2k + 2) =
(k + 2)(k + 3)

2
.

(v) If n = 3k for some k ∈ N, then r(P3k, 2k + 1) =
k(k + 4)(k + 5)

6
.

(vi) If n = 3k + 1 for some k ∈ N, then r(P3k+1, 2k + 2) = 1 +
k(k + 2)(k + 7)(k + 9)

24
.

(vii) If n = 3k + 2 for some k ∈ N, then

r(P3k+2, 2k + 3) = 2 +
k(k + 2)(k + 4)(k + 11)(k + 13)

120
.

(viii) If n = 3k for some k ∈ N, then

r(P3k, 2k + 2) =
k(k + 7)(k4 + 32k3 + 281k2 + 418k − 192)

720
.

(ix) r(Pn, 2n) = 1.

(x) r(Pn, 2n− 1) = n.

(xi) r(Pn, 2n− 2) =
n(n+ 1)

2
.

(xii) r(Pn, 2n− 3) =
(n2 − 4)(n+ 3)

6
.

(xiii) r(Pn, 2n− 4) =
n(n− 1)(n2 + 7n− 6)

24
− (3n− 4).

(xiv) r(Pn, 2n− 5) =
n(n2 − 1)(n− 2)(n+ 12)

120
+ 2− 2n(n− 2).

(xv) For every k ∈ N,

1 =r(Pk, 2k) < r(Pk+1, 2k) < r(Pk+2, 2k) < · · · < r(P2k, 2k) > · · · > r(P3k−1, 2k)

> r(P3k, 2k) = 1.

(xvi) For every k ∈ N,

k + 1 =r(Pk+1, 2k + 1) < r(Pk+2, 2k + 1) < r(Pk+3, 2k + 1) < · · · < r(P2k+1, 2k + 1)

> · · · > r(P3k, 2k + 1) > r(P3k+1, 2k + 1) = k + 1.

(xvii) If αn =
2n∑

j=d 2n
3 e

r(Pn, j), then for every n ≥ 4, αn = 2αn−1 + αn−2 + 2αn−3, with initial

values α1 = 2, α2 = 6 and α3 = 16.

(xviii) For j ≥ 2,

3j∑
i=j

r(Pi, 2j) =
3j−2∑
i=j

r(Pi, 2j − 1) + 3
3j−3∑
i=j−1

r(Pi, 2j − 2) +
3j−5∑
i=j−1

r(Pi, 2j − 3).
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(xix) For j ≥ 3,

3j−2∑
i=j

r(Pi, 2j − 1) =
3j−3∑
i=j−1

r(Pi, 2j − 2) + 3
3j−5∑
i=j−1

r(Pi, 2j − 3) +
3j−6∑
i=j−2

r(Pi, 2j − 4).

(xx) For every k ∈ N and m = 0, 1, 2, . . . , 2k − 1, r(P2k−m, 2k) = r(P2k+m, 2k).

(xxi) For every k ∈ N and m = 0, 1, 2, . . . , 2k − 1,

r(P2k−m+1, 2k + 1) = r(P2k+m+1, 2k + 1).

Proof. Let Pn be a path on n vertices with V (Pn) = {v1, v2, . . . , vn}.

(i) The proof of this result is straightforward from Theorem 2.3.

(ii) Let n = 3k for some k ∈ N. Since Pk3k =
{
{v2, v5, . . . , v3k−4, v3k−1}

}
, then we have only

one RDF of Pn, in this case, such that each vertex taking the value 2. Hence, r(P3k, 2k) =
1.

(iii) Proof by induction on k. If k = 1, then r(P4, 3) = 2 (see Table 1). Therefore, the result
is true for k = 1. Now, suppose the result is true for all natural numbers less than or equal
k − 1. We will prove that the result still true for k. By parts (i) and (ii), the induction
hypothesis and Proposition 1.2 part (vi), we get.

r(P3k+1, 2k + 1) =r(P3k, 2k) + r(P3k, 2k − 1) + r(P3k−1, 2k − 1)

+ r(P3k−2, 2k − 1) + r(P3k−2, 2k − 2)

=1 + 0 + 0 + r
(
P3(k−1)+1, 2(k − 1) + 1

)
+ 0 = k + 1.

(iv) By induction on k. If k = 1, then r(P5, 4) = 6 =
(1 + 2)(1 + 3)

2
(see Table 1). Suppose

now the result is true for all natural numbers less than or equal k − 1. Then by parts (i),
(ii) and (iii) and Proposition 1.2 part (vi), we have.

r(P3k+2, 2k + 2) =r(P3k+1, 2k + 1) + r(P3k+1, 2k) + r(P3k, 2k)

+ r(P3k−1, 2k) + r(P3k−1, 2k − 1)

=k + 1 + 0 + 1 + r
(
P3(k−1)+2, 2(k − 1) + 2

)
+ 0

=k + 2 +
(k + 1)(k + 2)

2
=

(k + 2)(k + 3)
2

.

(v) Proof by induction on k. If k = 1, then r(P3, 3) = 5 =
1(1 + 4)(1 + 5)

6
(see Table 1).

Suppose the result is true for all natural numbers less than k. Then by using parts (i), (ii),
(iii) and (iv) and Proposition 1.2 part (vi), we obtain.

r(P3k, 2k + 1) =r(P3(k−1)+2, 2(k − 1) + 2) + r(P3(k−1)+2, 2(k − 1) + 1)

+ r(P3(k−1)+1, 2(k − 1) + 1) + r(P3(k−1), 2(k − 1) + 1)

+ r(P3(k−1), 2(k − 1))

=
(k + 1)(k + 2)

2
+ 0 + k +

(k − 1)(k + 3)(k + 4)
6

+ 1

=
k(k + 4)(k + 5)

6
.

(vi) By induction on k. When k = 1, r(P4, 4) = 11 = 1 +
1(1 + 2)(1 + 7)(1 + 9)

24
(see Table

1). Suppose the result is true for all natural numbers less than k. Then by using parts (i),
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(ii), (iii), (iv) and (v), we get.

r(P3k+1, 2k + 2) =r(P3k, 2k + 1) + r(P3k, 2k) + r(P3(k−1)+2, 2(k − 1) + 2)

+ r(P3(k−1)+1, 2(k − 1) + 2) + r(P3(k−1)+1, 2(k − 1) + 1)

=
k(k + 4)(k + 5)

6
+ 1 +

(k + 1)(k + 2)
2

+ 1 +
(k − 1)(k + 1)(k + 6)(k + 8)

24
+ k

=1 +
k(k + 2)(k + 7)(k + 9)

24
.

(vii) By induction on k. If k = 1, then r(P5, 5) = 23 = 2 +
1(1 + 2)(1 + 4)(1 + 11)(1 + 13)

120
(see Table 1). Now, suppose the result is true for all natural numbers less than k. Then by
using parts (i), (iii), (iv), (v) and (vi), we get.

r(P3k+2, 2k + 3) =r(P3k+1, 2k + 2) + r(P3k+1, 2k + 1) + r(P3k, 2k + 1)

+ r(P3(k−1)+2, 2(k − 1) + 3) + r(P3(k−1)+2, 2(k − 1) + 2)

= 1+
k(k + 2)(k + 7)(k + 9)

24
+ k + 1 +

k(k + 4)(k + 5)
6

+2 +
(k − 1)(k + 1)(k + 3)(k + 10)(k + 12)

120
+

(k + 1)(k + 2)
2

=2 +
k(k + 2)(k + 4)(k + 11)(k + 13)

120
.

(viii) By induction on k. If k = 1, then r(P3, 4) = 6 =
1(1 + 7)(1 + 32 + 281 + 418− 192)

720
(see Table 1). Now, suppose the result is true for all natural numbers less than k. Then by
using parts (i), (iv), (v), (vi) and (vii), we get.

r(P3k, 2k + 2) =r(P3(k−1)+2, 2(k − 1) + 3) + r(P3(k−1)+2, 2(k − 1) + 2)

+ r(P3(k−1)+1, 2(k − 1) + 2) + r(P3(k−1), 2(k − 1) + 2)

+ r(P3(k−1), 2(k − 1) + 1)

=2 +
(k − 1)(k + 1)(k + 3)(k + 10)(k + 12)

120
+

(k + 1)(k + 2)
2

+ 1 +
(k − 1)(k + 1)(k + 6)(k + 8)

24
+

(k − 1)(k + 3)(k + 4)
6

+

(k − 1)(k + 6)
[
(k − 1)4 + 32(k − 1)3 + 281(k − 1)2 + 418(k − 1)− 192

]
720

=
k(k + 7)(k4 + 32k3 + 281k2 + 418k − 192)

720
.

(ix) We need RDFs from V (Pn) to {0, 1, 2} with weight 2n. Clearly, there is only one function
satisfies that in which all the vertices of Pn taking the value 2. Hence, r(Pn, 2n) = 1.

(x) Clearly, for every vertex v ∈ V (Pn the function f : V (Pn) → {0, 1, 2} with f(v) = 1 and
weight W (f(V )) = 2n− 1 is a Roman dominating function of G. Hence, r(Pn, 2n− 1) =(
n

1

)
= n.

(xi) By induction on n. The result is true for n = 2, since r(P2, 2) = 3 (see Table 1). Suppose
the result is true for every natural number less than n. Then by parts (i), (ix) and (x) and
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Proposition 1.2 part (vi), we have.

r(Pn, 2n− 2) =r
(
Pn−1, 2(n− 1)− 1

)
+ r
(
Pn−1, 2(n− 1)− 2

)
+ r
(
Pn−2, 2(n− 2)

)
+ r
(
Pn−3, 2(n− 3) + 2

)
+ r
(
Pn−3, 2(n− 3) + 1

)
=n− 1 +

n(n− 1)
2

+ 1 + 0 + 0 =
n(n+ 1)

2
.

(xii) By induction on n. The result is true for n = 3, since r(P3, 3) = 5 (see Table 1). Suppose
the result is true for every natural number less than n. Then by parts (i), (ix), (x) and (xi)
and Proposition 1.2 part (vi), we have.

r(Pn, 2n− 3) =r
(
Pn−1, 2(n− 1)− 2

)
+ r
(
Pn−1, 2(n− 1)− 3

)
+ r
(
Pn−2, 2(n− 2)− 1

)
+ r
(
Pn−3, 2(n− 3) + 1

)
+ r
(
Pn−3, 2(n− 3)

)
=
n(n− 1)

2
+

(n− 1)(n− 2)(n+ 3)
6

− 2 + n− 2 + 0 + 1

=
(n2 − 4)(n+ 3)

6
.

(xiii) By induction on n. If n = 5, then r(P5, 6) = 34. Therefore, the result is true for n = 4(see
Table 1). Suppose now the result is true for every natural number less than n. Then by
parts (i), (ix), (x), (xi) and (xii), we have.

r(Pn, 2n− 4) =r
(
Pn−1, 2(n− 1)− 3

)
+ r
(
Pn−1, 2(n− 1)− 4

)
+ r
(
Pn−2, 2(n− 2)− 2

)
+ r
(
Pn−3, 2(n− 3)

)
+ r
(
Pn−3, 2(n− 3)− 1

)
=
(n− 1)(n− 2)(n+ 3)

6
− 2 +

(n− 1)(n− 2)
[
(n− 1)2 + 7(n− 1)− 6

]
24

− (3n− 7) +
(n− 1)(n− 2)

2
+ 1 + n− 3

=
n(n− 1)(n2 + 7n− 6)

24
− (3n− 4).

(xiv) By induction on n. The result is true for n = 5, since r(P5, 5) = 23 (see Table 1). Suppose
now the result is true for every natural number less than n. Then by parts (i), (x), (xi),
(xii) and (xiii), we have.

r(Pn, 2n− 5) =r
(
Pn−1, 2(n− 1)− 4

)
+ r
(
Pn−1, 2(n− 1)− 5

)
+ r
(
Pn−2, 2(n− 2)− 3

)
+ r
(
Pn−3, 2(n− 3)− 1

)
+ r
(
Pn−3, 2(n− 3)− 2

)
=
(n− 1)(n− 2)

[
(n− 1)2 + 7(n− 1)− 6

]
24

− (3n− 7)

+
(n− 1)

[
(n− 1)2 − 1

]
(n− 3)(n+ 11)

120
+ 2− 2(n− 1)(n− 3)

+
(n− 2)(n− 3)(n+ 2)

6
− 2 + n− 3 +

(n− 3)(n− 2)
2

=
n(n2 − 1)(n− 2)(n+ 12)

120
+ 2− 2n(n− 2).

(xv) We need to prove that for every k ∈ N, r(Pi, 2k) < r(Pi, 2k) for k ≤ i ≤ 2k − 1 and
r(Pi, 2k) > r(Pi, 2k) for 2k ≤ i ≤ 3k. By induction on k. The result is true for k = 1.
Now, suppose that the result is true for every i less than or equal k. We will prove it for
i = k + 1 which means r(Pi, 2k + 2) < r(Pi+1, 2k + 2) for k + 1 ≤ i ≤ 2k + 1. By part
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(i) and the induction hypothesis, we have

r(Pi, 2k + 2) =r(Pi−1, 2k + 1) + r(Pi−1, 2k) + r(Pi−2, 2k)

+ r(Pi−3, 2k) + r(Pi−3, 2k − 1)

< r(Pi, 2k + 1) + r(Pi, 2k) + r(Pi−1, 2k)

+ r(Pi−2, 2k) + r(Pi−2, 2k − 1) = r(Pi+1, 2k + 2).

Similarly for the other inequality.

(xvi) Similar to the prove of part (xv), we will prove that for every k ∈ N, r(Pi, 2k + 1) <
r(Pi, 2k + 1) for k + 1 ≤ i ≤ 2k and r(Pi, 2k + 1) > r(Pi, 2k + 1) for 2k + 1 ≤ i ≤
3k + 1. By induction on k. The result is true for k = 1. Now, suppose that the result
is true for every i less than or equal k + 1. We will prove it for i = k + 2 which means
r(Pi, 2k + 3) < r(Pi+1, 2k + 3) for k + 2 ≤ i ≤ 2k + 2. By part (i) and the induction
hypothesis, we have

r(Pi, 2k + 3) =r(Pi−1, 2k + 2) + r(Pi−1, 2k + 1) + r(Pi−2, 2k + 1)

+ r(Pi−3, 2k + 1) + r(Pi−3, 2k)

< r(Pi, 2k + 2) + r(Pi, 2k + 1) + r(Pi−1, 2k + 1)

+ r(Pi−2, 2k + 1) + r(Pi−2, 2k) = r(Pi+1, 2k + 3).

Similarly for the other inequality.

(xvii) By Theorem 2.3, we have

R(Pn, x) =
2n∑

j=γR(Pn)

r(Pn, j)x
j = (x2 + x)R(Pn−1, x) + x2R(Pn−2, x) + (x3 + x2)R(Pn−3, x)

=
2n−2∑

j=d 2n−2
3 e

r(Pn−1, j)
[
xj+2 + xj+1]+ 2n−4∑

j=d 2n−4
3 e

r(Pn−2, j)x
j+2

+
2n−6∑

j=d 2n−6
3 e

r(Pn−3, j)
[
xj+3 + xj+2].

Now, if αn =
2n∑

j=d 2n
3 e

r(Pn, j), we can see that all the coefficients of R(Pn−1, x) and

R(Pn−3, x) counted twice and all the coefficients ofR(Pn−2, x) counted once in αn. Hence,
αn = 2αn−1 + αn−2 + 2αn−3.

(xviii) If j = 2, then

6∑
i=2

r(Pi, 4) =
4∑
i=2

r(Pi, 3) + 3
3∑
i=1

r(Pi, 2) +
1∑
i=1

r(Pi, 1)

25 =9 + 3(5) + 1 = 25.

By part (i), we have

3j∑
i=j

r(Pi, 2j) =
3j∑
i=j

r(Pi−1, 2j − 1) +
3j∑
i=j

r(Pi−1, 2j − 2) +
3j∑
i=j

r(Pi−2, 2j − 2)

+
3j∑
i=j

r(Pi−3, 2j − 2) +
3j∑
i=j

r(Pi−3, 2j − 3).
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Now, by Proposition 1.2 part (vi), we have

3j∑
i=j

r(Pi−1, 2j − 1) =
3j∑

i=j−1

r(Pi, 2j − 1) =
3j−2∑
i=j

r(Pi, 2j − 1),

3j∑
i=j

r(Pi−1, 2j − 2) =
3j∑

i=j−1

r(Pi, 2j − 2) =
3j−3∑
i=j−1

r(Pi, 2j − 2),

3j∑
i=j

r(Pi−2, 2j − 2) =
3j∑

i=j−2

r(Pi, 2j − 2) =
3j−3∑
i=j−1

r(Pi, 2j − 2),

3j∑
i=j

r(Pi−3, 2j − 2) =
3j∑

i=j−3

r(Pi, 2j − 2) =
3j−3∑
i=j−1

r(Pi, 2j − 2),

and
3j∑
i=j

r(Pi−3, 2j − 3) =
3j∑

i=j−3

r(Pi, 2j − 3) =
3j−5∑
i=j−1

r(Pi, 2j − 3).

(xix) The proof is similar to the proof of part (xviii).

(xx) By induction on k. If k = 1, then r(P1, 2) = r(P3, 2) = 1, therefore, the result is true for
k = 1. Suppose now the result holds for all natural numbers less than k. We will prove it
for k, as follows

r(P2k−m, 2k) = r(P2k−m−1, 2k − 1) + r(P2k−m−1, 2k − 2) + r(P2k−m−2, 2k − 2)

+ r(P2k−m−3, 2k − 2) + r(P2k−m−3, 2k − 3)

=r
(
P2(k−1)+1−m, 2(k − 1) + 1

)
+ r
(
P2(k−1)+1−m, 2(k − 1)

)
+ r
(
P2(k−1)−m, 2(k − 1)

)
+ r
(
P2(k−1)−1−m, 2(k − 1)

)
+ r
(
P2(k−1)−1−m, 2(k − 1)− 1

)
=r
(
P2(k−1)+1+m, 2(k − 1) + 1

)
+ r
(
P2(k−1)+m−1, 2(k − 1)

)
+ r
(
P2(k−1)+m, 2(k − 1)

)
+ r
(
P2(k−1)+m+1, 2(k − 1)

)
+ r
(
P2(k−1)−1+m, 2(k − 1)− 1

)
=r(P2k+m−1, 2k − 1) + r(P2k+m−3, 2k − 2) + r(P2k+m−2, 2k − 2)

+ r(P2k+m−1, 2k − 2) + r(P2k+m−3, 2k − 3) = r(P2k+m, 2k)

(xxi) The proof is similar to the proof of part (xx).
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