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Abstract The goal of the present article is to introduce a new sequence of operators, i.e.,
α-Baskakov-Gamma operators with two shifted nodes, 0 ≤ µ ≤ ν, to approximate a class
of Lebesgue measurable functions on [0,∞). We give basic results and study the rate of con-
vergence. Further, local and global approximation properties are investigated in terms of first
and second-order modulus of smoothness, Peetre’s K-functional and weight functions in several
function spaces. Lastly, A−statistical approximation results are obtained.

1 Introduction

The theory of linear positive operators deals with questions that arise in the approximate rep-
resentation of an arbitrary function by simpler functions. Operator theory is a growing field of
research of approximation theory for the last two decades with the advent of the computer. Sev-
eral mathematicians, e.g., Acar et al. ([1], [2]), Mohiuddine et al. [14], Ana et al. [3], İçöz et
al. ([11]), [12]), Kajla et al. ([13]) constructed new sequences of linear positive operators and
studied the rapidity of convergence and order of approximation in diffrent function spaces in
terms of several generating functions. In the recent past, for g ∈ C[0, 1],m ∈ N and α ∈ [−1, 1],
Chen et al. [6] constructed a sequence of linear positive operators as follows

Tm,α(g; y) =
m∑
i=0

g

(
i

m

)
pαm,i(y) (y ∈ [0, 1]), (1.1)

where p(α)1,0 = 1− y, p
(α)
1,1 = y and

pαm,i(y) =

[
(1− α)y

(
m− 2
i

)
+ (1− α)(1− y)

(
m− 2
i− 2

)
+ αy(1− y)

(
m

i

)]
yi−1(1− y)m−i−1 (m ≥ 2).

The operators defined in (1.1) are named as α−Bernstein operators of order m. One can note
that for α = 1, the relation (1.1) is reduced to classical Bernstein operators in [5].

The rate of convergence, shape-preserving characteristics and Voronovskaja type results for
these constructed linear positive operators have been studied in [6]. The bivariate version of
α− Bernstein-Durrmeyer operators was developed and investigated by Micláu s and Kajla [13].
Kantorovich variant of α−Bernstein operators was constructed and studied by Mohiuddine et al .
[14]. Later, Aral and Erbay [4] introduced a parametric extension of Baskakov operators, for
f ∈ CB[0,∞), (space of bounded and continuous functions) as follows

Ln,α(f ;x) =
∞∑
k=0

Q(α)
n,k(x)f

(
k

n

)
, (1.2)
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where n ≥ 1, x ∈ [0,∞) and

Q(α)
n,k(x) =

xk−1

(1 + x)n+k−1

{
αx

1 + x

(
n+ k − 1

k

)
− (1− α)(1 + x)

(
n+ k − 3
k − 2

)

+ (1− α)x
(
n+ k − 1

k

)}
, (1.3)

with (n−3
−2 ) = (n−2

−1 ) = 0.
Motivated by the above, we introduce a generalisation of operators (1.2) with two non-negative
shifted nodes, 0 ≤ µ ≤ ν, to approximate in a wider class, i.e., space of Lebesgue integrable
functions as follows:

Pµ,νn,α(f ;x) =
∞∑
k=0

Q(α)
n,k(x)

nk+λ

Γ(k + λ+ 1)

∫ ∞
0

tk+λe−ntf

(
nt+ µ

n+ ν

)
dt, (1.4)

where λ ≥ 0 and Q(α)
n,k(x) is given by (1.3) and the Gamma function is defined as

Γn =

∫ ∞
0

xn−1e−xdx,Γz = (z − 1)Γ(z − 1) = (z − 1)!. (1.5)

In the ensuing sections, we obtain basic lemmas and investigate rate of convergence, order of
approximation, local and global approximation results in terms of modulus of continuity, Pee-
tre‘s K-functional, second-order modulus of smoothness, Lipschitz class and Lipschitz maximal
function, weighted modulus of continuity for the operators defined in (1.4). In the last section,
A−statistical approximation properties are studied for these operators.

2 Preliminary Results

Let er(t) = tr and ψrx(t) = (t−x)r, r ∈ {0, 1, 2} denote the test functions and central moments
respectively. We have the following lemmas.

Lemma 2.1. For the operators (1.4), we have

Pµ,νn,α(t
r;x) =

r∑
i=0

(
r

i

)
niαr−i

(n+ β)r
B∗n,α(ti;x),

where B∗n,α(f ;x) are defined by

B∗n,α(f ;x) =
∞∑
k=0

Q(α)
n,k(x)

nk+λ+1

Γ(k + λ+ 1)

∫ ∞
0

tk+λe−ntf(t)dt, (2.1)

where Q(α)
n,k(x) is given by (1.3) and the Gamma function is defined in (1.5)

We have the following lemma.

Lemma 2.2. For the operators given by (2.1), one obtains

B∗n,α(e0;x) = 1,

B∗n,α(e1;x) =

(
1 +

2
n
(α− 1)

)
x+

λ+ 1
n

,

B∗n,α(e2;x) = x2
(

1 +
4α− 3
n

)
+ x

(
2λ+ 3
n

+
4α− 4 + (2λ+ 3)(α− 1)

n2

)
+

λ2 + 3λ+ 2
n2 .
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We now prove Lemma 2.1.

Proof. From (1.4) and (2.1), we have

Pµ,νn,α(t
r;x) =

∞∑
k=0

Q(α)
n,k(x)

nk+λ+1

Γ(k + λ+ 1)

∫ ∞
0

tk+λe−ntf

(
nt+ µ

n+ ν

)r
dt,

=
r∑
i=0

(
r

i

)
niµr−i

(n+ ν)r

∞∑
k=0

Q(α)
n,k(x)

nk+λ+1

Γ(k + λ+ 1)

∫ ∞
0

tk+λe−nttidt,

=
r∑
i=0

(
r

i

)
niµr−i

(n+ ν)r
B∗n,α(ti;x)

and hence the lemma.

The following lemma computes central moments of our operators.

Lemma 2.3. For r ∈ N, we obtain the relation

Pµ,νn,α((t− x)r;x) =
r∑
i=0

(
r

i

)
(−x)r−iPµ,νn,α(t

i;x).

Proof. We write from (1.4)

Pµ,νn,α((t− x)r;x) =
∞∑
k=0

Q(α)
n,k(x)

nk+λ+1

Γ(k + λ+ 1)

∫ ∞
0

tk+λe−nt
(
nt+ µ

n+ ν
− x
)r

dt,

=
r∑
i=0

(
r

i

)
(−u)r−iPµ,νn,α(t

i;x).

Lemma 2.4. For the operators given by (1.4), we have

Pµ,νn,α(e0;x) = 1,

Pµ,νn,α(e1;x) =
(
n+ 2(α− 1)

n+ ν

)
x+

µ+ λ+ 1
n+ ν

,

Pµ,νn,α(e2;x) =
(
n(n+ 4α− 3)

(n+ ν)2

)
x2

+

(
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
x

+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)
.

Proof. Using Lemma 2.2, by Lemma 2.1, we will have

Pµ,νn,α(e0;x) =

(
0
0

)
n0µ0

(n+ ν)0B
∗
n,α(1;x),

= 1,

Pµ,νn,α(e1;x) =
1∑
i=0

(
1
i

)
niµ1−i

(n+ ν)1B
∗
n,α(t

i;x)

=

(
1
0

)
n0µ1−0

(n+ ν)1B
∗
n,α(1;x) +

(
1
1

)
n1µ1−1

(n+ ν)1B
∗
n,α(t;x)

=
µ

n+ ν
+

n

n+ ν

((
1 +

2
n
(α− 1)

)
x+

λ+ 1
n

)
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=

(
n+ 2(α− 1)

n+ ν

)
x+

µ+ λ+ 1
n+ ν

,

Pµ,νn,α(e2;x) =
2∑
i=0

(
2
i

)
niµ2−i

(n+ ν)2B
∗
n,α(t

i;x)

=

(
2
0

)
n0µ2−0

(n+ ν)2B
∗
n,α(1;x) +

(
2
1

)
n1µ2−1

(n+ ν)2B
∗
n,α(t;x)

+

(
2
2

)
n2µ2−2

(n+ ν)2B
∗
n,α(t

2;x)

=
µ2

(n+ ν)2 +
2nµ

(n+ ν)2

((
1 +

2
n
(α− 1)

)
x+

λ+ 1
n

)
+

n2

(n+ ν)2

(
x2
(

1 +
4α− 3
n

)
+ x

(
2λ+ 3
n

+
4α− 4 + (2λ+ 3)(α− 1)

n2

))
+

n2

(n+ ν)2

(
λ2 + 3λ+ 2

n2

)
,

=

(
n(n+ 4α− 3)

(n+ ν)2

)
x2

+

(
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
x

+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)
,

which completes the proof of Lemma 2.4.

Lemma 2.5. For the operators Pµ,νn,α(.; , ) introduced in (1.4), we obtain

Pµ,νn,α(ψ
0
x;x) = 1,

Pµ,νn,α(ψ
1
x;x) =

(
n+ 2(α− 1)

n+ ν
− 1
)
x+

µ+ λ+ 1
n+ ν

,

Pµ,νn,α(ψ
2
x;x) =

((
n(n+ 4α− 3)

(n+ ν)2

)
− 2

(
n+ 2(α− 1)

n+ ν

)
+ 1
)
x2

+

((
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
− 2

(
µ+ λ+ 1
n+ ν

))
x+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)
.

Proof. Making use of Lemma 2.4, from Lemma 2.3, we get

Pµ,νn,α(ψ
0
x;x) = 1,

Pµ,νn,α(ψ
1
x;x) =

(
1
0

)
(−x)1−0Pµ,νn (1;x) +

(
1
1

)
(−x)1−1Pµ,νn (t;x)

= −x+
(
n+ 2(α− 1)

n+ ν

)
x+

µ+ λ+ 1
n+ ν

=

(
n+ 2(α− 1)

n+ ν
− 1
)
x+

µ+ λ+ 1
n+ ν
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Pµ,νn,α(ψ
2
x;x) =

(
2
0

)
(−x)2−0Pµ,νn (1;x) +

(
2
1

)
(−x)2−1Pµ,νn (t;x)

+

(
2
2

)
(−x)2−2Pµ,νn (t2;x)

= x2 − 2x2
(
n+ 2(α− 1)

n+ ν

)
− 2x

(
µ+ λ+ 1
n+ ν

)
+

(
n(n+ 4α− 3)

(n+ ν)2

)
x2

+

(
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
x

+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)
=

((
n(n+ 4α− 3)

(n+ ν)2

)
− 2

(
n+ 2(α− 1)

n+ ν

)
+ 1
)
x2

+

((
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
− 2

(
µ+ λ+ 1
n+ ν

))
x+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)
,

which proves Lemma 2.5.

Definition 2.6. Let f ∈ C[0,∞). Then, modulus of continuity for a uniformly continuous func-
tion f is defined as

ω(f ; δ) = sup
|t1−t2|≤δ

|f(t1)− f(t2)|, t1, t2 ∈ [0,∞).

The following relation holds.

|f(t1)− f(t2)| ≤
(

1 +
(t1 − t2)2

δ2

)
ω(f ; δ).

We prove the following theorems.

Theorem 2.7. Let Pµ,νn,α(.; .) be the operators given by (1.4). Then, Pµ,νn,α ⇒ f on each compact

subset of [0,∞) where ⇒ stands for uniform convergence and f ∈ C[0,∞)
⋂{

f : x ≥ 0, f(x)1+x2

is convergent as x→∞
}
.

Proof. In the light of Korovkin’s theorem, it is sufficient to prove that

Pµ,νn,α(.; .)→ ei(x), for i = 0, 1, 2.

Using Lemma 2.4, it follows that Pµ,νn,α(e;x) → ei(x) as n → ∞,
for i = 0, 1, 2 and hence the proof of the theorem.

Example 2.8. One can note that, for the following set of parameters µ = 0.1, ν = 0.4, λ = 1.5
and α = 0.5, the operators Pαn,k(f ;x) converge uniformly to the function f(x) = x3 − 5x + 4
(refer to Fig. 1, 2 below).

We state the following theorem from [16].

Theorem 2.9. Let L : C([a, b]) → B([a, b]) be a linear and positive operator and let ϕx be the
function defined by

ϕx(t) = |t− x|, (x, t) ∈ [a, b]× [a, b].



462 Taqseer Khan, Nadeem Rao, Shuzaat Ali Khan and Pradeep Malik

Figure 1. Approximation by operator Pαn,k(; , ; ) for the function f(x) = x3 − 5x+ 4

Figure 2. Graphical analysis of error estimation of operators Pαn,k(; , ; ) for different values of n

Then for f ∈ CB[a, b] and x ∈ [a, b] and any δ > 0, the operator L verifies

|(Lf)(x)− f(x)| ≤ |f(x)||(Le0)(x)− 1|

+ {(Le0)(x) + δ−1
√
(Le0)(x)(Lϕ2

x)(x)}ωf (δ).

Using this theorem, the following estimate is obtained.

Theorem 2.10. Let the operators Pµ,νn,α(.; .) be introduced by (1.4) and f ∈ CB[0,∞). Then

|Pµ,νn,α(f ;x)− f(x)| ≤ 2ω(f ; δ),

where δ =
√
Pµ,νn,α(ψ2

x;x).

Proof. Making use of Lemmas 2.4, 2.5 and Theorem 2.9, the following is obtained

|Pµ,νn,α(f ;x)− f(x)| ≤ {1 + δ−1
√
Pµ,νn,α(f ;x)(ψ2

x;x)}ω(f ; δ).

On choosing δ =
√
Pµ,νn,α(ψ2

u;u), we arrive at the desired result.

3 Pointwise Approximation Results

Let CB[0,∞) be the space of real valued continuous and bounded functions equipped with the
norm ‖f‖ = sup

0≤x<∞
|f(x)|. For any f ∈ CB[0,∞) and δ > 0, Peetre’s K-functional is defined as

K2(g, δ) = inf{‖f − h‖+ δ‖h′′‖ : h ∈ C2
B[0,∞)}
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where C2
B[0,∞) = {h ∈ CB[0,∞) : h′, h′′ ∈ CB[0,∞)}. From DeVore and Lorentz [[7], p.177,

Theorem 2.4], there exists an absolute constant C > 0 in such a way that

K2(f ; δ) ≤ Cω2(f ;
√
δ).

Lemma 3.1. Consider the auxiliary operators as

P̂µ,νn (f ;x) = Pµ,νn,α(f ;x) + f(x)− f
(
n+ 2(α− 1)

n+ ν

)
x+

µ+ λ+ 1
n+ ν

.

Then, for f ∈ C2
B[0,∞) one has

|P̂µ,νn,α(f ;x)− f(x)| ≤ ξxn‖h′′‖,

where

ξxn = Pµ,νn,α(ψ
2
x;x) +

(
Pµ,νn,α(ψ

1
x;x)

)2
.

Proof. Using definition of operators in (1.4), one obtains

P̂µ,νn,α(1;x) = 1, P̂µ,νn,α(ψx;x) = 0 and |P̂µ,νn,α(f ;x)| ≤ 3‖f‖. (3.1)

In the direction of Taylor’s series, for g ∈ C2
B[0,∞), one can write

g(t) = g(x) + (t− x)g′(x) +
t∫
x

(x− v)g′′(v)dv. (3.2)

On applying operators (1.4) on both sides of (3.2), we get

P̂µ,νn,α(h;x)− h(x) = h′(x)P̂µ,νn,α(t− x;x) + P̂µ,νn,α

(∫ t

x

(t− v)h′′(v)dv;u
)
,

which, with the help of (3.1), gives

P̂µ,νn,α(f ;x)− h(x) = P̂µ,νn,α

(∫ t

x

(t− v)h′′(v)dv;u
)

= Pµ,νn,α

(∫ t

x

(t− v)h′′(v)dv;u
)

−
∫ (n+2(α−1)

n+ν

)
x+µ+λ+1

n+ν

x

((
n+ 2(α− 1)

n+ ν

)
x+

µ+ λ+ 1
n+ ν

− v
)

g′′(v)dv.

|P̂µ,νn,α(f ;x)− f(x)|Pµ,νn,α ≤

∣∣∣∣∣
(∫ t

x

(t− v)h′′(v)dv;x
) ∣∣∣∣∣

+

∣∣∣∣∣
∫ (n+2(α−1)

n+ν

)
x+µ+λ+1

n+ν

x((
n+ 2(α− 1)

n+ ν

)
x+

µ+ λ+ 1
n+ ν

− v
)
h′′(v)dv

∣∣∣∣∣.
(3.3)

Since ∣∣∣∣∣
t∫
x

(t− v)h′′(v)dv

∣∣∣∣∣ ≤ (t− v)2 ‖ h′′ ‖, (3.4)
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we have ∣∣∣∣∣
∫ Pµ,νn,α(e1;x)

x

(
Pµ,νn,α(e1;x)− v

)
h′′(v)dv

∣∣∣∣∣ ≤
(
Pµ,νn,α(t− v;x)

)2

‖ h′′ ‖ . (3.5)

In the light of (3.3), (3.4) and (3.5), we obtain

P̂µ,νn,α(h;x)− h(x)| ≤ ξxn‖h′′‖,

which completes the proof of the lemma.

Theorem 3.2. Let f ∈ C2
B[0,∞) and operators Pµ,νn,α(.; .) be constructed in (1.4). Then, there

exists a constant C > 0 such that

| Pµ,νn,α(f ;x)− f(x) |≤ Cω2

(
f ;

1
2
√
ξxn

)
+ ω(f ;Pµ,νn,α(ψx;x)),

where ξxn is defined in Lemma 3.1.

Proof. For h ∈ C2
B[0,∞) and f ∈ CB[0,∞) and by the definition of P̂µ,νn,α(.; .), we have

|Pµ,νn,α(f ;x)− f(x)| ≤ |P̂µ,νn,α(f − h;x)|+ |(f − h)(x)|+ |P̂µ,νn,α(h;x)− h(x))|

+

∣∣∣∣∣f(n+ 2(α− 1)
n+ ν

)
x+

µ+ λ+ 1
n+ ν

)
− g(x)

∣∣∣∣∣.
Lemma 3.1 and relations in (3.1) yield

|Pµ,νn,α(f ;x)− f(x)| ≤ 4‖f − h‖+ |P̂µ,νn,α(h;x)− h(x)|

+

∣∣∣∣∣f(n+ 2(α− 1)
n+ ν

)
x+

µ+ λ+ 1
n+ ν

)
− g(x)

∣∣∣∣∣
≤ 4‖f − h‖+ ξxn‖h′′‖+ ω

(
f ;Pµ,νn,α(ψx;x)

)
.

With the aid of definition of Peetre’s K-functional, we get

|Pµ,νn,α(f ;x)− f(x)| ≤ Cω2

(
f ;

1
2
√
ξxn

)
+ ω(f ;Pµ,νn,α(ψx;x),

which is the desired result.

We consider the Lipschitz type space [15] as

Lipk1,k2
M (ρ) :=

{
f ∈CB[0,∞) : |f(t)−f(x)|≤M |t−x|ρ

(t+k1x+k2x2)
ρ
2

: x, t ∈ (0,∞)

}
,

where M ≥ 0 is a real constant; k1, k2 > 0, ρ > 0 and ρ ∈ (0, 1].
The following estimate is obtained.

Theorem 3.3. For f ∈ Lipk1,k2
M (ρ), the following estimate is obtained

|Pµ,νn,α(f ;x)− f(x)| ≤M

(
η∗n(x)

k1x+ k2x2

) ρ
2

,

where x > 0 and η∗n(x) = Pµ,νn,α(ψ
2
x;x).
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Proof. For ρ = 1, we have

|Pµ,νn,α(f ;x)− f(x)| ≤ Pµ,νn,α(|f(t)− f(x)|)(x)

≤MPµ,νn,α

(
|t− x|

(t+ k1x+ k2x2)
1
2

;x

)
.

Since 1
t+k1x+k2x2 <

1
k1x+k2x2 for all t, x ∈ (0,∞), we get

|Pµ,νn,α(f ;x)− f(x)| ≤ M

(k1x+ k2x2)
1
2
(Pµ,νn,α((t− x)2;x))

1
2

≤M

(
η∗n(x)

k1x+ k2x2

) 1
2

.

This implies that for ρ = 1, this result stands good. Now, for ρ ∈ (0, 1) and using Hölder’s
inequality, on choosing p = 2

ρ and q = 2
2−ρ , one gets

|Pµ,νn,α(f ;x)− f(x)| ≤
(
Pµ,νn,α((|f(t)− f(x)|)

2
ρ ;x)

) ρ
2

≤M
(
Pµ,νn,α

(
|t− x|2

(t+ k1x+ k2x2)
;x
)) ρ

2

.

Since 1
t+k1x+k2x2 <

1
k1x+k2x2 for all t, x ∈ (0,∞), we obtain

|Pµ,νn,α(f ;x)− f(x)| ≤M

(
Pµ,νn

(
|t− x|2;x

)
k1x+ k2x2

) ρ
2

≤M
( η∗n(x)

k1x+ k2x2

) ρ
2
.

Hence, we arrive at the desired result.

4 Global Approximation

From [9], we recall some notation to prove the global approximation results.
For the weight function 1 + x2 and 0 ≤ x < ∞, we define B1+x2 [0,∞) = {f(x) : |f(x)| ≤
Mf (1 + x2), Mf is constant depending on f}, C1+x2 [0,∞) ⊂ B1+x2 [0,∞), space of continuous
functions endowed with the norm ‖f‖1+x2 = sup

x∈[0,∞)

|f(x)|
1+x2 and

Ck1+x2 [0,∞) =

{
f ∈ C1+x2 [0,∞) : lim

x→∞

f(x)

1 + x2 = k, where k is a constant
}
.

Theorem 4.1. Let Pµ,νn,α(.; .) be the operators given by (1.4) and Pµ,νn,α(.; .) : Ck1+x2 [0,∞) →
B1+x2 [0,∞). Then, we have

lim
n→∞

‖Pµ,νn,α(f ;x)− f‖1+x2 = 0,

where f ∈ Ck1+x2 [0,∞).

Proof. To prove this result, it is sufficient to show that

lim
n→∞

‖Pµ,νn,α(ei;x)− xi‖1+x2 = 0, i = 0, 1, 2.

From Lemma 2.4, we get

‖Pµ,νn,α(e0;x)− x0‖1+x2 = sup
x∈[0,∞)

|Pµ,νn,α(1;x)− 1|
1 + x2 = 0 for i = 0.
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For i = 1, we have

‖Pµ,νn,α(e1;x)−x1‖1+x2 = sup
x∈[0,∞)

(
n+2(α−1)
n+ν − 1

)
x+ µ+λ+1

n+ν

1 + x2

=

(
n+ 2(α− 1)

n+ ν
− 1
)

sup
x∈[0,∞)

x

1 + x2

+
µ+ λ+ 1
n+ ν

sup
x∈[0,∞)

1
1 + x2 ,

which implies that ‖Pµ,νn,α(e1;x)− x1‖1+x2 → 0 an n→∞.
Finally, for i = 2, one obtains the following

‖Pµ,νn,α(e2;x)− x2‖1+x2 = sup
x∈[0,∞)

∣∣∣∣∣Pµ,νn,α(e2;x)− x2

∣∣∣∣∣
1 + x2

=

∣∣∣∣((n(n+ 4α− 3)
(n+ ν)2

)
− 2

(
n+ 2(α− 1)

n+ ν

))
x2

+

((
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
− 2

(
µ+ λ+ 1
n+ ν

))
x+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)∣∣∣∣
≤
((

n(n+ 4α− 3)
(n+ ν)2

)
− 2

(
n+ 2(α− 1)

n+ ν

))
sup

x∈[0,∞)

x2

1 + x2

+

((
n(2µ+ 2λ+ 3) + 4(α− 1)(µ− 1) + (2λ+ 3)(α− 1)

(n+ ν)2

)
− 2

(
µ+ λ+ 1
n+ ν

))
sup

x∈[0,∞)

x

1 + x2

+

(
µ(µ+ λ+ 1) + (λ+ 1)(λ+ 2)

(n+ ν)2

)
sup

x∈[0,∞)

1
1 + x2 ,

which implies that ‖Pµ,νn,α(e2;x) − x2‖1+x2 → 0 as n → ∞ and this completes the proof of the
theorem.

5 A-statistical Approximation

Gadjiev et al. [10] were the first to introduce statistical approximation theorems in operators
theory. We recall some notation from [10]. LetA = (ank) be a non-negative infinite summability
matrix. For a given sequence x := (xk), theA-transform of x denoted byAx : ((Ax)n) is defined
as

(Ax)n =
∞∑
k=1

ankxk,

provided the series converges for each n. A is said to be regular if lim(Ax)n = L whenever
limx = L. Then x = (xn) is said to be a A-statistically convergent to L i.e. stA − lim x = L if
for every ε > 0, limn

∑
k:|xk−L|≥ε ank = 0.

We prove the following theorem.

Theorem 5.1. Let A = (ank) be a non-negative regular summability matrix and x ≥ 0. Then,
we have

stA − lim
n
‖Pµ,νn,α(f ;x)− f‖1+x2 = 0, for all f ∈ Ck1+x2 [0,∞).
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Proof. From ([8], p. 191, Th. 3), it is sufficient to show that for λ1 = 0,

stA − lim
n
‖Pµ,νn,α(ei;x)− ei‖1+x2 = 0, for i ∈ {0, 1, 2}.

From Lemma 2.4, we have

‖Pµ,νn,α(e1;x)− x‖1+x2 = sup
x∈[0,∞)

1
1 + x2

∣∣∣∣(n+ 2(α− 1)
n+ ν

− 1
)
x+

µ+ λ+ 1
n+ ν

∣∣∣∣
≤
∣∣∣∣n+ 2(α− 1)

n+ ν
− 1
∣∣∣∣ sup
x∈[0,∞)

x

1 + x2

+

∣∣∣∣µ+ λ+ 1
n+ ν

∣∣∣∣ sup
x∈[0,∞)

1
1 + x2

≤ 1
2

∣∣∣∣n+ 2(α− 1)
n+ ν

− 1
∣∣∣∣+ ∣∣∣∣µ+ λ+ 1

n+ ν

∣∣∣∣.
Then, we get

stA − lim
n

1
2

∣∣∣∣n+ 2(α− 1)
n+ ν

− 1
∣∣∣∣ = stA − lim

n

∣∣∣∣µ+ λ+ 1
n+ ν

∣∣∣∣ = 0. (5.1)

Now, for a given ε > 0, we define the following sets

J1 : =

{
n : ‖Pµ,νn,α(e1;x)− x‖ ≥ ε

}
,

J2 : =

{
n :

1
2

∣∣∣∣n+ 2(α− 1)
n+ ν

− 1
∣∣∣∣ ≥ ε

2

}
,

J3 : =

{
n :
∣∣∣∣µ+ λ+ 1

n+ ν

∣∣∣∣ ≥ ε

2

}
.

This implies that J1 ⊆ J2 ∪ J3, which shows that
∑
k1∈J1

ank1 ≤
∑
k1∈J2

ank +
∑
k1∈J3

ank.
Hence, from (5.1) we get

stA − lim
n
‖Pµ,νn,α(e1;x)− x‖1+x2 = 0.

Similarly, one can show that

stA − lim
n
‖Pµ,νn,α(e2;x)− x2‖1+x2 = 0.

This completes the proof of Theorem 5.1.

6 Conclusion

The motive of the present paper was to give a better error estimation of the generalised α−Baskakov-
Gamma operators with two shifted nodes 0 ≤ µ ≤ ν. This type of generalisation yields better
error estimation for certain functions in comparison to the α−Baskakov-Gamma operators. We
investigated some approximation results by means of the well-known Korovkin-type theorem
and given graphical presentation. We have also calculated the rate of convergence by means
of Peetre’s K-functional and second-order modulus of continuity. Lastly, we studied the global
approximation results.
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