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Abstract: The notions of D-filters and D̄-ideals are introduced in a distributive lattice. A
set of equivalent conditions is given for a D-filter to become a maximal filter. It is proved that
the intersection of all maximal ideals is containing D̄. A one-to-one correspondence is obtained
between the set of all D-filters of a distributive lattice L and the set of all ideals of the lattice
of all principal D-filters of L. A set of equivalent conditions is given, in terms of D-filters,
for a quasicomplemented lattice to become a Boolean algebra. Finally, the class of D-filters is
characterized in terms of co-kernels of a congruence.

1 Introduction

In 1968, the theory of relative annihilators was introduced in lattices by Mark Mandelker [8]
who characterized distributive lattices in terms of their relative annihilators. Later many authors
introduced the concept of annihilators in the structures of rings as well as lattices and charac-
terized several algebraic structures in terms of annihilators. T.P. Speed [11] and W.H. Cornish
[3, 4, 5] made an extensive study of annihilators in distributive lattices and then characterized
some algebraic structures like normal lattices and quasicomplemented lattices. In 2013, Rao [9]
studied the properties of D-filters in MS-algebras. Later in 2016, Rao and Badawy [10] studied
the properties of co-annihilator filters of distributive lattices.

In this note, the concepts ofD-filters and D̄-ideals are introduced in distributive lattices. A set
of equivalent conditions is given for every D-filter of a distributive lattice to become a maximal
filter. A set of equivalent conditions is given for every filter of a distributive lattice to become a
D-filter. It is proved that the smallest D̄-ideal is contained in the set intersection of all maximal
ideals of the distributive lattice L. The notion of principal D-filters is introduced in a distributive
lattice L and observed that the set of all principal D-filters is a sublattice to the set of all D-filters
of L. Later, the class of all D-filters is characterized in terms of principal D-filters. A one-to-one
correspondence is obtained between the set of all D-filters of a distributive lattice L and the set
of all ideals of the lattice of all principal D-filters of L.

In the final section, we introduce two different congruences on a distributive lattice L: one in
terms of D̄ and the other in terms of principalD-filters of L. A necessary and sufficient condition
is given for every filter of a distributive lattice to become a D-filter.

2 Preliminaries

The reader is referred to [1] and [2] for the elementary notions and notations on distributive
lattices. However, some of the preliminary definitions and results of [10] and [11] are presented
for the ready reference of the reader.

Definition 2.1. [2] An algebra (L,∧,∨) of type (2, 2) is called a distributive lattice if for all
x, y, z ∈ L, it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5′)

(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
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(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x,
(5) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(5′) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

A non-empty subset A of a distributive lattice L is called an ideal(filter) of L if a ∨ b ∈
A(a ∧ b ∈ A) and a ∧ x ∈ A(a ∨ x ∈ A) whenever a, b ∈ A and x ∈ L. The set I(L) of all
ideals of (L,∨,∧, 0) forms a complete distributive lattice as well as the set F(L) of all filters of
(L,∨,∧, 1) forms a complete distributive lattice. A proper ideal(filter) M of a lattice is called
maximal if there exists no proper ideal(filter)N such thatM ⊂ N . The set (a] = {x ∈ L | x ≤ a}
is called the principal ideal generated by a and the set of all principal ideals is a sublattice of
I(L). For any subset S of a lattice L, the set [S) = {x∨ (

n
∧
i=1
si) | x ∈ L, si ∈ S, n ∈ N} is called

the principal filter generated by the set S. For a ∈ L, the set [a) = {x ∈ L | a ≤ x} is called
the principal filter generated by the element a and the set of all principal filters is a sublattice of
F(L). For any element a of a distributive lattice (L,∨,∧, 0), the annihilator of a is defined as
the set (a)∗ = { x ∈ L | x ∧ a = 0 }.

Lemma 2.2. [11] For any two elements a, b of a distributive lattice L with 0, we have

(1) a ≤ b implies (b)∗ ⊆ (a)∗,
(2) (a ∨ b)∗ = (a)∗ ∩ (b)∗,
(3) (a ∧ b)∗∗ = (a)∗∗ ∩ (b)∗∗,
(4) (a)∗ = L if and only if a = 0.

An element a of a lattice L is called a dense element if (a)∗ = {0}. The setD of all dense ele-
ments of a distribute lattice L forms a filter of L. A lattice L with 0 is called quasicomplemented
[5] if for each x ∈ L, there exists y ∈ L such that x ∧ y = 0 and x ∨ y is dense.

Definition 2.3. [10] Let L be a lattice and S ⊆ L. Define S+ = {x ∈ L | s∨x = 1 for all s ∈ S}.

Here S+ is called the co-annihilator of S. For S = {x}, then we denote simply (x)+ for
({x})+. Then clearly L+ = {1} and (1)+ = L. For any subset S of a distributive lattice L, it is
clear that S+ is a filter of L.

Lemma 2.4. [10] For any two elements a, b of a distributive lattice L with 1, we have

(1) a ≤ b implies (a)+ ⊆ (b)+,
(2) (a ∧ b)+ = (a)+ ∩ (b)+,
(3) (a ∨ b)++ = (a)++ ∩ (b)++,
(4) (a)+ = L if and only if a = 1.

An equivalence relation θ on a lattice L is called congruence if (x, y) ∈ θ, (z, w) ∈ θ implies
(x ∧ z, y ∧ w) ∈ θ and (x ∨ z, y ∨ w) ∈ θ. For any filter F of a lattice L, define the Co-kernel
of the congruence θF as Coker θF = {x ∈ F | (x, 1) ∈ θF }. Throughout this article, all lattices
are bounded distributive lattices unless otherwise mentioned.

3 D-filters of a lattice

In this section, the notion of D-filters is introduced in a lattice L and then some of the prop-
erties of D-filters are investigated. A set of equivalent conditions is given for every D-filter of L
to become a maximal filter. Some equivalent conditions are also given for the set D of all dense
elements to become a maximal filter.

Definition 3.1. A filter F of a lattice L is called a D-filter if D ⊆ F .

Clearly D is a D-filter and in fact it is the smallest D-filter of L. If L has a unique dense
element, precisely 1, then {1} is the smallest D-filter of L.

Example 3.2. Consider the lattice L = {0, a, b, c, 1} whose Hasse diagram is given in the fol-
lowing figure.
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Consider the filters F1 = {a, c, 1} and F2 = {b, c, 1}. Clearly D ⊆ F1 and D ⊆ F2. Hence F1
and F2 are D-filters of L. But the filter F3 = {1} is not a D-filter of L.

Denote that F(L) is the set of all filters of a lattice L. It is well-known that F(L) is a
distributive lattice.

Lemma 3.3. The set of all D-filters of a lattice L is a sublattice to F(L).

Proof. Let F and G be two D-filters of a lattice L. Then D ⊆ F and D ⊆ G. Hence D ⊆ F ∩G.
Therefore F ∩G is a D-filter of L. Since D ⊆ F ⊆ F ∨G, we get F ∨G is a D-filter. Therefore
the set of all D-filters of L is a sublattice to F(L).

Definition 3.4. For any non-empty subset S of lattice L, define 〈S〉D = [S) ∨D. For S = {a},
we have 〈{a}〉D = 〈a〉D = [a) ∨D. Here 〈a〉D is called a principal D-filter generated by a.

Lemma 3.5. Let S be a non empty subset of a lattice L. Then 〈S〉D is the smallest D-filter of L
which is containing S.

Proof. Let S be a nonempty subset of L. Since [S) and D are filters of L, we get [S) ∨ D is a
filter of L. Thus 〈S〉D = [S) ∨D is filter of L. Since D ⊆ 〈S〉D, we get 〈S〉D is a D-filter of L.
Let F be a D-filter of L that is containing S. Then D ⊆ F . Since S ⊆ F , we get [S) ⊆ [F ) = F .
Now 〈S〉D = [S) ∨D ⊆ F ∨D = F. Therefore 〈S〉D ⊆ F .

The following corollary is a direct consequence of the above lemma:

Corollary 3.6. For any a ∈ L, 〈a〉D = [a) ∨D is the smallest D-filter containing a.

Proposition 3.7. For any lattice L, the set of all D-filters of L satisfies the following properties:

(1) If G is a D-filter and F is a filter of L such that G ⊆ F , then F is also a D-filter of L;
(2) If F1 and F2 are two D-filters of L, then both F1 ∩ F2 and F1 ∨ F2 are also D-filters of L
(3) If {Fα}α∈∆ be an indexed family of D-filters of L, then

∏
α∈∆

Fα is also a D-filter of L.

Proof. (1) and (2) are clear from the definition of D-filters of L.
(3) Assume that Fα is a D-filter for each α ∈ ∆. Hence D ⊆ Fα for each α ∈ ∆. It is enough to
prove that

∏
α∈∆

Dα ⊆
∏
α∈∆

Fα, where Dα = D for each α. Let (d1, d2, d3, d4..., dn, ...) ∈
∏
α∈∆

Fα,

where d1, d2, d3, d4, . . . , dn, . . . ∈ Dα = D. Since each Fα is a D-filter, we get D = Dα ⊆ Fα
for each α. Hence d1, d2, . . . , dn, . . . ∈ Fα for each α. Thus (d1, d2, . . . , dn, . . .) ∈

∏
α∈∆

Fα.

Therefore
∏
α∈∆

Fα is a D-filter of L.

Proposition 3.8. Every maximal filter of a lattice L is a D-filter.

Proof. Let M be a maximal filter of L. Let x ∈ D. Then (x)∗ = {0}. Let us suppose that x /∈M .
Then M ∨ [x) = L. Since 0 ∈ L = M ∨ [x), we get 0 = a ∧ x for some 0 6= a ∈ L. By the
definition of (x)∗, we get a ∈ (x)∗ = {0}. Hence a = 0, which is a contradiction to 0 6= a ∈ L.
Thus x ∈M . Therefore M is a D-filter of L.

Corollary 3.9. For any lattice L, D ⊆
⋂
{M |M is a maximal filter of L}.
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Theorem 3.10. In any lattice L, the following assertions are equivalent:

(1) Every D-filter is maximal;
(2) D is a maximal filter of L;
(3) Every element of L is dense;
(4) L contains a unique D-filter.

Proof. (1) ⇒ (2): Assume that every D-filter is maximal. Since D is a D-filter, we get D is a
maximal filter.
(2) ⇒ (3): Assume that D is a maximal filter of L. Suppose (x)∗ 6= {0} for some 0 6= x ∈ L.
Then x /∈ D. Hence D ⊂ D ∨ [x). Since D is maximal, we get D ∨ [x) = L. Thus 0 ∈ D ∨ [x).
Hence 0 = d ∧ x for some d ∈ D. Thus x ∈ (d)∗ = {0}. Hence x = 0, which is a contradiction.
Therefore (x)∗ = {0} for all 0 6= x ∈ L.
(3) ⇒ (4): Assume that every element of L is dense. Suppose L has a proper D-filter M such
that D 6=M . Since M is a D-filter, we get D ⊂M . Choose x ∈M −D. Since M is proper, we
get x 6= 0. By condition (3), x should be a dense element. Hence x ∈ D, which is a contradiction
to x ∈M −D. Therefore D =M . Thus L has a unique D-filter, precisely D.
(4)⇒ (1): Let F be a proper D-filter of L. Suppose G is a proper filter such that F ⊂ G. Since
D ⊆ F ⊂ G, we get that G is also a D-filter. Since L has the unique D-filter D, we must have
D = F = G. Therefore F is a maximal filter of L.

Theorem 3.11. The following assertions are equivalent in a lattice L:

(1) Every filter is a D-filter;
(2) Every principal filter is a D-filter;
(3) L contains a unique dense element.

Proof. (1)⇒ (2): It is clear.
(2) ⇒ (3): Assume that every principal filter is a D-filter of L. Since 1 ∈ F , we get [1) is a
D-filter of L. Hence D ⊆ [1). Thus D = {1}. Thus L has a unique dense element, precisely 1.
(3) ⇒ (1): Let F be a filter of L. By (3), we get D = {1}. Hence D = {1} ⊆ F . Therefore F
is a D-filter of L.

4 D̄-ideals of a lattice

In this section, the notion of D̄-ideals is introduced in a lattice L. A set of equivalent con-
ditions is given for a D̄-ideal of a lattice L to become a maximal ideal. It is proved that the
intersection of all maximal ideals of a lattice is containing the set D̄.

Definition 4.1. Let D̄ be the set of all dual dense elements of L. i.e D̄ = {x ∈ L | (x)+ = {1}}.

We know that an element a ∈ L is called dual dense if (a)+ = {1}. Clearly 0 is the dual dense
element. Since 1 is the only element such that 0 ∨ 1 = 1, we get (0)+ = {1}.

Lemma 4.2. In any lattice L, D̄ is an ideal of L.

Proof. Clearly 0 ∈ L and (0)+ = {1}. Hence D̄ 6= ∅. Let x, y ∈ X . Suppose x, y ∈ D̄. Then
we get (x ∨ y)++ = (x)++ ∩ (y)++ = L ∩ L = L. Thus (x ∨ y)+++ = L+ = {1}. Hence
(x ∨ y)+ = {1}. Therefore x ∨ y ∈ D̄. Let x ∈ D̄ and y ≤ x. Then (y)+ ⊆ (x)+. Hence y ∈ D̄.
Therefore D̄ is the ideal of L.

Definition 4.3. An ideal I of a lattice L is called a D̄-ideal of L if D̄ ⊆ I .

Lemma 4.4. Every maximal ideal of lattice L is a D̄-ideal.

Proof. Let M be a maximal ideal of L. Let x ∈ D̄. Then (x)+ = {1}. Let us suppose that
x /∈ M . Then M ∨ (x] = L. Since 1 ∈ L = M ∨ (x], we get 1 = a ∨ x for some 1 6= a ∈ L.
From the definition of (x)+, we get a ∈ (x)+ = {1}. Hence a = 1, which is a contradiction to
that 1 6= a ∈ L. Hence x ∈M . Thus D̄ ⊆M . Therefore M is a D̄-ideal.
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Corollary 4.5. For any lattice L, D̄ ⊆
⋂
{M |M is maximal ideal of L}.

Proposition 4.6. For any lattice L, the set of all D̄-ideals of L satisfies the following properties:

(1) If J is a D̄-ideal and I is an ideal of L such that J ⊆ I , then I is also a D̄-ideal of L;
(2) If I, J are two D̄-ideals of L, then both I ∩ J and I ∨ J are also D̄-ideals of L;
(3) If {Iα}α∈∆ be an indexed family of D̄-ideals of L, then

∏
α∈∆

Iα is also a D̄-ideal of L.

Proof. (1) and (2) are clear from the definition of D̄-ideals of L.
(3) Assume that Iα is D̄-ideal for each α ∈ ∆. Hence D̄ ⊆ Iα for each α ∈ ∆. It is enough to
prove that

∏
α∈∆

D̄ ⊆
∏
α∈∆

Iα. Let (d1, d2, d3, d4, . . . , dn, . . .) ∈
∏
α∈∆

Iα, where (d1, d2, d3, d4 . . . , dn, . . .) ∈

D̄α. Since each Iα is a D̄-ideal, we get D = D̄α ⊆ Iα, where d1, d2, . . . , dn, . . . ∈ Iα. Thus
(d1, d2, . . . , dn, . . .) ∈

∏
α∈∆

Iα. Therefore
∏
α∈∆

Iα is a D̄-ideal of L.

Theorem 4.7. In any lattice L, the following assertions are equivalent:

(1) Every D̄-ideal is a maximal ideal of L;
(2) D̄ is a maximal ideal of L;
(3) Every element of L is dual dense;
(4) L contains a unique D̄-ideal.

Proof. (1) ⇒ (2): Assume that every D̄-ideal of the lattice L is a maximal ideal. Since D̄ is a
D̄-ideal of L, we get D̄ is the maximal ideal of L.
(2) ⇒ (3): Assume that D̄ is a maximal ideal of L. Suppose (x)+ 6= {1} for some 1 6= x ∈ L.
Hence x /∈ D̄. Thus D̄ ⊂ D̄ ∨ (x] = L. Since 1 ∈ L, we get 1 ∈ D̄ ∨ (x]. Hence 1 = d ∨ x
for some d ∈ D̄. Thus x ∈ (d)+ = {1}. Hence x = 1, which is a contradiction. Therefore
(x)+ = {1} for all 1 6= x ∈ L.
(3) ⇒ (4): Assume that every element of L is dual dense. Suppose L has a proper D̄-ideal M
such that D̄ 6= M . Since M is a D̄-ideal, we get D̄ ⊂ M . Choose x ∈ M − D̄. Since M is
proper, we get x 6= 1. By condition (3), x should be a dual dense element. Hence x ∈ D̄, which
is a contradiction to x ∈M − D̄. Therefore D̄ =M . Thus L has a unique D̄-ideal, precisely D̄.
(4) ⇒ (1): Let I be a proper D̄-ideal of L. Suppose J is proper ideal of L such that I ⊂ J .
Since D̄ ⊆ I ⊂ J , we get J is also a D̄-ideal. Since L has the unique D̄-ideal D̄, we must have
D̄ = I = J . Therefore I is a maximal ideal of L.

Theorem 4.8. The following assertions are equivalent in a lattice L:

(1) Every ideal is a D̄-ideal;
(2) Every principal ideal is a D̄-ideal;
(3) L contains a unique dual dense element.

Proof. (1)⇒ (2): It is clear.
(2) ⇒ (3): Assume that every principal ideal of L is a D̄-ideal. Since 0 ∈ I , we get that (0] is
a D̄-ideal of L. Hence D̄ ⊆ (0]. Thus D̄ = {0}. Therefore L has a unique dual dense element,
precisely 0.
(3)⇒ (1): Let I be an ideal of L. By (3), we get D̄ = {0}. Hence D̄ = {0} ⊆ I . Therefore I is
a D̄-ideal of L.

Theorem 4.9. The following statements are equivalent in a lattice L:

(1) Every element of L is dual dense;
(2) D̄ is maximal;
(3) L contains a unique D̄-ideal.

Proof. (1)⇒ (2): Assume that every element of L is dual dense. Suppose there exists a proper
ideal M of L such that D̄ ⊂ M . Choose x ∈ M − D̄. By (1), x is dual dense. Hence x ∈ D̄,
which is a contradiction. Therefore D̄ is maximal.
(2)⇒ (3): Assume that D̄ is a maximal ideal of L. Let us suppose that L has a D̄-ideal M such
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that D̄ 6= M . Since M is a D̄-ideal, we get D̄ ⊂ M . Choose x ∈ M − D̄. Then D̄ ∨ (x] = L.
Hence d ∨ x = 1 for some d ∈ D̄. Thus x ∈ (d)+ and x 6= 1. Hence d /∈ D̄, which is a
contradiction. Therefore L has a unique D̄-ideal, precisely D̄.
(3) ⇒ (1): Assume that L has a unique D̄-ideal, precisely D̄. Let 1 6= x ∈ L. Suppose
(x)+ 6= {1}. Then x /∈ D̄. Hence D̄ ⊂ D̄ ∨ (x]. Thus D̄ ∨ (x] is a D̄-ideal, which is different
from D̄. Hence x ∈ D̄. Therefore every element of L is dual dense.

5 Principal D-filters

In this section, the concept of principal D-filters is introduced in a lattice L and its properties
are studied. A one-to-one correspondence is obtained between the set of all D-filters of L and
the set of all ideals of PDF(L), where PDF(L) is the lattice of all principal D-filters of L.

Lemma 5.1. Let L be a lattice and a, b ∈ L. Then we have

(1) a ∈ D if and only if 〈a〉D = D,
(2) If a ≤ b, then 〈b〉D ⊆ 〈a〉D,
(3) If b ∈ 〈a〉D, then 〈b〉D ⊆ 〈a〉D,
(4) 〈a ∨ b〉D = 〈a〉D ∩ 〈b〉D,
(5) 〈a ∧ b〉D = 〈a〉D ∨ 〈b〉D.

Proof. (1) Let a, b ∈ L. Suppose a ∈ D. Then (a)∗ = {0}. Now D ⊆ [a) ∨D = 〈a〉D. Hence
D ⊆ 〈a〉D. Conversely, let x ∈ 〈a〉D = [a) ∨D. Then x = y ∧ d for some y ∈ [a) and d ∈ D.
Since y ∈ [a), we get y = t ∨ a for some t ∈ L. Now (x)∗∗ = (y ∧ d)∗∗ = [(t ∨ a) ∧ d]∗∗ =
(t ∨ a)∗∗ ∩ (d)∗∗ = (t ∨ a)∗∗ ∩ L = (t ∨ a)∗∗ = [(t)∗ ∩ (a)∗]∗ = [(t)∗ ∩ {0}] = {0}∗ = L.
Thus (x)∗∗∗ = L∗ = {0}. Hence (x)∗ = {0}, which means x ∈ D. Thus 〈a〉D ⊆ D. There fore
〈a〉D = D. Conversely, assume that 〈a〉D = D. Then [a) ∨D = D, which gives a ∈ [a) ⊆ D.
(2) Let a ≤ b. Then [b) ⊆ [a). Now 〈a〉D ∩ 〈b〉D = ([a) ∨D) ∩ ([b) ∨D) = ([a) ∩ [b)) ∨D =
[b) ∨D = 〈b〉D. Hence 〈a〉D ∩ 〈b〉D = 〈b〉D. Therefore 〈b〉D ⊆ 〈a〉D.
(3) Suppose b ∈ 〈a〉D. Let t ∈ 〈b〉D. Then t ≥ b ∧ d1 for some d1 ∈ D. Since b ∈ 〈a〉D, we
get b ≥ a ∧ d2 for some d2 ∈ D. Since d1, d2 ∈ D, we get d1 ∧ d2 ∈ D. Then t ≥ b ∧ d1 ≥
(a ∧ d2) ∧ d1 = a ∧ (d1 ∧ d2) ∈ 〈a〉D. Hence t ∈ 〈a〉D. Therefore 〈b〉D ⊆ 〈a〉D.
(4) Let a, b ∈ L. Then 〈a ∨ b〉D = [a ∨ b) ∨ D = ([a) ∩ [b)) ∨ D = ([a) ∨ D) ∩ ([b) ∨ D) =
〈a〉D ∩ 〈b〉D.
(5) Let a, b ∈ L. Then 〈a ∧ b〉D = [a ∧ b) ∨ D = ([a) ∨ [b)) ∨ D = ([a) ∨ D) ∨ ([b) ∨ D) =
〈a〉D ∨ 〈b〉D.

The filter 〈a〉D is called the principal D-filter of L. Then the following proposition is clear
from the above lemma.

Proposition 5.2. The set PDF(L) of all principal D-filters of a lattice L forms a bounded dis-
tributive lattice in which the smallest element is D and the greatest element is L.

Definition 5.3. For any D-filter F of a lattice L, define F e = {〈a〉D | a ∈ F}.

Lemma 5.4. For any D-filter F of a lattice L, F e is an ideal of PDF(L) such that De ⊆ F e.

Proof. Since 1 ∈ F , we get 〈1〉D ∈ F e. Hence F e is non-empty. Let 〈a〉D, 〈b〉D ∈ F e. Then
a, b ∈ F . Since F is a filter, we get a ∧ b ∈ F . Hence 〈a〉D ∨ 〈b〉D = 〈a ∧ b〉D ∈ F e.
Let 〈a〉D ∈ F e and 〈x〉D ∈ PDF(L). Then a ∈ F and x ∈ L. Since a ∨ x ∈ F , we get
〈a〉D ∩ 〈x〉D = 〈a ∨ x〉D ∈ F e. Therefore F e is an ideal of PDF(L). It is enough to prove that
De ⊆ F e. Let 〈x〉D ∈ De. Then x ∈ D ⊆ F . Hence 〈x〉D ∈ F e. Therefore De ⊆ F e.

Lemma 5.5. Let L be a lattice. For any ideal K of the lattice PDF(L), define Kc = {a ∈ L |
〈a〉D ∈ K}. Then Kc is a D-filter of L.

Proof. Let K be an ideal of PDF(L). Then 〈1〉D ∈ K. Hence 1 ∈ Kc. Thus K is non-empty.
Let a, b ∈ Kc. Then 〈a〉D, 〈b〉D ∈ K. Since K is an ideal, we get 〈a ∧ b〉D = 〈a〉D ∨ 〈b〉D ∈ K.
Thus a ∧ b ∈ Kc. Let a ∈ Kc and x ∈ L. Then 〈a〉D ∈ K and 〈x〉D ∈ PDF(L). Now
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〈a ∨ x〉D = 〈a〉D ∩ 〈x〉D ∈ K. Hence a ∨ x ∈ Kc. Therefore Kc is a filter of L. It is enough to
prove that Kc is a D-filter. Let x ∈ D. Then 〈x〉D = D = 〈1〉D ∈ K. Since 〈1〉D is the least
element of PDF(L), we get x ∈ Kc. Therefore D ⊆ Kc.

Lemma 5.6. In any lattice L, we have the following properties:

(1) For any two D-filters F,G of L, F ⊆ G implies F e ⊆ Ge,
(2) For any two ideals I, J of PDF(L), I ⊆ J implies Ic ⊆ Jc,
(3) For any D-filter F of L, (F e)c = F ,
(4) For any ideal I of PDF(L), (Ic)e = I .

Proof. (1) Let F and G be two D-filters of L. Suppose F ⊆ G. Let 〈a〉D ∈ F e. Then
a ∈ F ⊆ G. Thus 〈a〉D ∈ Ge. Therefore F e ⊆ Ge.
(2) Let I and J be two ideals of PDF(L). Suppose I ⊆ J . Let a ∈ Ic. Then 〈a〉D ∈ I ⊆ J .
Hence 〈a〉D ∈ J , which means a ∈ Jc. Therefore Ic ⊆ Jc.
(3) Let F be a D-filter of L. Now x ∈ (F e)c ⇔ 〈x〉D ∈ F c ⇔ x ∈ F . Therefore (F e)c = F .
(4) Let I be an ideal of PDF(L). Then, we get 〈x〉D ∈ (Ic)e ⇔ x ∈ Ic ⇔ 〈x〉D ∈ I . Therefore
(Ic)e = I .

Theorem 5.7. Let L be a lattice. Then there is a one-to-one correspondence between the set of
all D-filters of L and the set of all ideals of PDF(L).

Proof. It is an immediate consequence of the above results.

Theorem 5.8. For any filter F of a lattice L, the following assertions are equivalent:

(1) F is a D-filter;
(2) For any x ∈ L, x ∈ F implies 〈x〉D ⊆ F ;
(3) For any x, y ∈ L, 〈x〉D = 〈y〉D and x ∈ F imply that y ∈ F ;
(4) F =

⋃
x∈F
〈x〉D.

Proof. (1) ⇒ (2): Assume that F is a D-filter of L. Let x ∈ F and t ∈ 〈x〉D = [x) ∨ D. The
t ≥ x ∧ d for some d ∈ D ⊆ F . Since x ∈ F and d ∈ F , we get t ∈ F . Therefore 〈x〉D ⊆ F .
(2) ⇒ (3): Let x, y ∈ L be such that 〈x〉D = 〈y〉D. Suppose x ∈ F . Then by (2), we get
〈x〉D ⊆ F . Hence y ∈ 〈y〉D = 〈x〉D ⊆ F . Therefore y ∈ F
(3) ⇒ (4): Assume the condition (3). Clearly [x) ⊆ 〈x〉D for all x ∈ F . Hence F =

⋃
x∈F

[x) ⊆⋃
x∈F
〈x〉D. Therefore F ⊆

⋃
x∈F
〈x〉D. Conversely, let x ∈ F and y ∈ 〈x〉D. Then 〈y〉D ⊆ 〈x〉D.

Therefore 〈y ∨ x〉D = 〈y〉D ∩ 〈x〉D = 〈y〉D. Since x ∈ F and F is a filter, we get y ∨ x ∈ F .
Since 〈y ∨ x〉D = 〈y〉D and y ∨ x ∈ F , by the assumed condition (3), we get y ∈ F . Hence
〈x〉D ⊆ F for all x ∈ F . Therefore

⋃
x∈F
〈x〉D ⊆ F .

We now introduce the notion of perfect lattices.

Definition 5.9. A lattice L is called a perfect lattice if 〈x〉D = 〈y〉D then x = y for all x, y ∈ L.

Example 5.10. Every Boolean algebra is a perfect lattice. Indeed, if L is a Boolean algebra,
then L has a unique dense element. Hence every filter is a D-filter. Let x, y ∈ L be such that
〈x〉D = 〈y〉D. Suppose x 6= y. Then there exists a prime filter P of L such that x ∈ P and y 6∈ P .
Then by the hypothesis, P is a D-filter. Since 〈x〉D = 〈y〉D and x ∈ P , we get y ∈ P , which is
contradiction. Hence x = y. Therefore L is a perfect lattice.

The converse of the above statement is not true. i.e. every perfect lattice need not be a
Boolean algebra. However, in the following theorem, we give some equivalent conditions for a
perfect lattice to become a Boolean algebra. For this, we need the following lemma:

Theorem 5.11. Let L be a quasicomplemented lattice. Then the following assertions are equiv-
alent:

(1) L is a Boolean algebra;
(2) L is a perfect lattice;
(3) L contains a unique dense element.
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Proof. (1)⇒ (2): From the above example, it is clear.
(2)⇒ (3): Assume that L is a perfect lattice. Suppose a and b are two different dense elements
in L. Then by Lemma 4.1(1), we get 〈a〉D = D = 〈b〉D. Since L is perfect lattice, we must have
a = b. Therefore L has a unique dense element.
(3)⇒ (1): Assume that L has a unique dense element, precisely 1. Let x ∈ L. Since L is quasi-
complimented, there exists x′ ∈ L such that x ∧ x′ = 0 and x ∨ x′ is dense. Hence x ∨ x′ = 1.
Thus x′ is the complement of x in L. Therefore L is a Boolean algebra.

Theorem 5.12. The following assertions are equivalent in a lattice L:

(1) L is a perfect lattice;
(2) Every filter is a D-filter;
(3) Every proper filter is a D-filter;
(4) Every prime filter is a D-filter.

Proof. (1)⇒ (2): Assume that L is a perfect lattice. Let F be a filter of L. Let x, y ∈ L be such
that 〈x〉D = 〈y〉D and x ∈ F . Since L is perfect, we get y = x ∈ F . Thus F is a D-filter of L.
(2)⇒ (3): It is clear.
(3)⇒ (4): It is clear.
(4) ⇒ (1): Let x, y ∈ L be such that 〈x〉D = 〈y〉D. Suppose x 6= y. Then by well-known
Stone’s theorem, there exist a prime filter P such that x ∈ P and y 6∈ P . By the hypothesis, P is
a D-filter. Since x ∈ P , we must have y ∈ P , which is contradiction. Hence x = y and therefore
L is a perfect lattice.

6 Congruences and D-filters

In this section, we introduce two congruences: one in terms of D̄ and the other in terms of the
principal D-filters of a lattice L. A necessary and sufficient condition is given for any filter of a
lattice L to become a D-filter.

Definition 6.1. Let L be a lattice and x, y ∈ L. Define a binary relation θ on L by (x, y) ∈ θ if
and only if (x)+ = (y)+.

Lemma 6.2. For any lattice L, the relation θ defined above is a congruence on L.

Proof. Clearly θ is an equivalence relation on L. Let x, y ∈ L be such that (x, y) ∈ θ. Then
(x)+ = (y)+. For any a ∈ L, we have (x∧a)++ = (x)++∨(a)++ = (y)++∨(a)++ = (y∧a)++.
Hence (x∧ a)+++ = (y∧ a)+++, which gives (x∧ a)+ = (y∧ a)+. Therefore (x∧ a, y∧ a) ∈ θ.
For any t ∈ L, we get t ∈ (x ∨ a)+ ⇔ t ∨ (x ∨ a) = 1 ⇔ t ∨ (a ∨ x) = 1 ⇔ (t ∨ a) ∨ x =
1 ⇔ (t ∨ a) ∈ (x)+ = (y)+ ⇔ t ∨ a ∨ y = 1 ⇔ t ∨ (y ∨ a) = 1 ⇔ t ∈ (y ∨ a)+. Thus
(x ∨ a)+ = (y ∨ a)+. Hence (x ∨ a, y ∨ a) ∈ θ. Therefore θ is a congruence on L.

Definition 6.3. Let L be a lattice and x, y ∈ L. Define a binary relation θD̄ on L by (x, y) ∈ θD̄
if and only if x ∨ d = y ∨ d for some d ∈ D̄.

Lemma 6.4. Let L be a lattice. Then the relation θD̄ defined above is a congruence on L.

Proof. Clearly θD̄ is an equivalence relation on L. Let (x, y) ∈ θD̄. Then x ∨ d = y ∨ d for
some d ∈ D̄. For a ∈ L, (x ∨ a) ∨ d = (a ∨ x) ∨ d = a ∨ (x ∨ d) = a ∨ (y ∨ d) = (a ∨ y) ∨ d.
Hence (x ∨ a) ∨ d = (y ∨ a) ∨ d. Therefore (x ∨ a, y ∨ a) ∈ θD̄. For a ∈ L, (x ∧ a) ∨ d =
(x ∨ d) ∧ (a ∨ d) = (y ∨ d) ∧ (a ∨ d) = (y ∧ a) ∨ d. Hence (x ∧ a, y ∧ a) ∈ θD̄. Therefore θD̄ is
a congruence on L.

Theorem 6.5. Let L be a lattice such that for each x ∈ L, there exists x′ ∈ L such that (x)++ =
(x′)+. Let θ and θD̄ be the congruences on L as defined above. Then θ = θD̄.

Proof. Let x, y ∈ L. Suppose (x, y) ∈ θ. Then (x)+ = (y)+. By the assumption, there exists
xp ∈ L such that (x)++ = (x′)+. Since (x, y) ∈ θ, we get (x, x∨y) ∈ θ. Hence (x)+ = (x∨y)+.
Put d = (x∨y)∧x′. Now x∨d = x∨ [(x∨y)∧x′] = [x∨(x∨y)]∧(x∨x′) = (x∨y)∧1 = x∨y
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and y∨d = y∨ [(x∨y)∧x′] = [y∨ (x∨y)]∧ (y∨x′) = (x∨y)∧ (y∨x′) = (x∨y)∧1 = x∨y.
Hence x ∨ d = y ∨ d. Now (d)+ = ((x ∨ y) ∧ x′)+ = (x ∨ y)+ ∩ (x′)+ = (x)+ ∩ (x′)+ =
(x)+ ∩ (x)++ = {1}. Hence d ∈ D̄. Then (x, y) ∈ θD̄. Therefore θ ⊆ θD̄.

Conversely, let (x, y) ∈ θD̄. Then x∨d = y∨d for some d ∈ D̄. Hence (x)++ = (x)++∩L =
(x)++ ∩ (d)++ = (x ∨ d)++ = (y ∨ d)++ = (y)++ ∩ (d)++ = (y)++ ∩ L = (y)++, which gives
(x)+ = (y)+. Hence (x, y) ∈ θ. Therefore θD̄ ⊆ θ.

Definition 6.6. For any filter F of a lattice L, define a binary relation θF on L by (x, y) ∈ θF if
and only if [x) ∨ 〈a〉D = [y) ∨ 〈a〉D for some a ∈ F .

Lemma 6.7. For any filter F of a lattice L, the relation θF defined above is a congruence on L.

Proof. Clearly θF is reflexive and symmetric. Let (x, y), (y, z) ∈ θF . Then [x) ∨ 〈a〉D =
[y)∨〈a〉D and [y)∨〈b〉D = [z)∨〈b〉D for some a, b ∈ F . Since a, b ∈ F , we get a∧ b ∈ F . Now

[x) ∨ 〈a ∧ b〉D = [x) ∨ {〈a〉D ∨ 〈b〉D}
= {[x) ∨ 〈a〉D} ∨ 〈b〉D
= {[y) ∨ 〈a〉D} ∨ 〈b〉D
= {[y) ∨ 〈b〉D} ∨ 〈a〉D
= {[z) ∨ 〈b〉D} ∨ 〈a〉D
= [z) ∨ {〈b〉D ∨ 〈a〉D}
= [z) ∨ 〈a ∧ b〉D.

Hence (x, z) ∈ θF . Thus θF is an equivalence relation on L. Let (x, y), (z, w) ∈ θF . Then there
exist a, b ∈ F such that [x)∨ 〈a〉D = [y)∨ 〈a〉D and [z)∨ 〈b〉D = [w)∨ 〈b〉D. Since F is a filter,
we get a ∧ b ∈ F . Now, we have

[x ∨ z) ∨ 〈a ∧ b〉D = {[x) ∩ [z)} ∨ {〈a〉D ∨ 〈b〉D}
= {[x) ∨ (〈a〉D ∨ 〈b〉D)} ∩ {[z) ∨ (〈a〉D ∨ 〈b〉D)}
= {([x) ∨ 〈a〉D) ∨ 〈b〉D} ∩ {([z) ∨ 〈b〉D) ∨ 〈a〉D}
= {([y) ∨ 〈a〉D) ∨ 〈b〉D} ∩ {([w) ∨ 〈b〉D) ∨ 〈a〉D}
= {[y) ∨ (〈a〉D ∨ 〈b〉D)} ∩ {[w) ∨ (〈a〉D ∨ 〈b〉D)}
= {[y) ∩ [w)} ∨ {〈a〉D ∨ 〈b〉D}
= [y ∨ w) ∨ 〈a ∧ b〉D.

Thus (x ∨ z, y ∨ w) ∈ θF . Similarly, we can prove that (x ∧ z, y ∧ w) ∈ θF . Therefore θF is a
congruence on L.

For any filter F of a lattice L, the co-kernel of the congruence θF is given by Coker θF =
{x ∈ L | (x, 1) ∈ θF } = {x ∈ L | [x) ∨ 〈a〉D = 〈a〉D for some a ∈ F}.

Lemma 6.8. For any filter F of a lattice L, Coker θF is a filter of L.

Proof. Clearly 1 ∈ Coker θF . Let x, y ∈ θF . Then (x, 1) ∈ θF and (y, 1) ∈ θF . Hence
[x) ∨ 〈a〉D = 〈a〉D for some a ∈ F and [y) ∨ 〈b〉D = 〈b〉D for some b ∈ F . Now

[x ∧ y) ∨ 〈a ∧ b〉D = [x ∧ y) ∨ (〈a〉D ∨ 〈b〉D)
= ([x) ∨ [y)) ∨ (〈a〉D ∨ 〈b〉D)
= ([x) ∨ 〈a〉D) ∨ ([y) ∨ 〈b〉D)
= 〈a〉D ∨ 〈b〉D
= 〈a ∧ b〉D

Since a∧b ∈ F , we get (x∧y, 1) ∈ θF . Therefore x∧y ∈Coker θF . Let x ∈Coker θF and x ≤ y.
Then (x, 1) ∈ Coker θF . Since x ≤ y, we get [y) ⊆ [x). Then [y) ∨ 〈a〉D ⊆ [x) ∨ 〈a〉D = 〈a〉D
for some a ∈ F . Hence (y, 1) ∈ θF , and so y ∈ Coker θF . Thus Coker θF is a filter of L.
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Lemma 6.9. Let F be a filter of a lattice L. Then F ⊆ Coker θF .

Proof. Let x ∈ L and x ∈ F . Then [x) ∨ 〈x〉D = 〈x〉D = [1) ∨ 〈x〉D and x ∈ F . Hence
(x, 1) ∈ θF . Thus x ∈ Coker θF . Therefore F ⊆ Coker θF .

Theorem 6.10. Let F be a filter of a lattice L. Then F is a D-filter of L if and only if F =
Coker θF .

Proof. Assume that F is a D-filter of L. By Lemma 5.9, we get F ⊆ Coker θF . Again, let
x ∈ Coker θF . Then (x, 1) ∈ θF . Hence [x) ∨ 〈a〉D = 〈a〉D for some a ∈ F . Since F is a
D-filter and a ∈ F , we get 〈a〉D ⊆ F . Thus x ∈ [x) ⊆ 〈x〉D ∨ 〈a〉D = 〈a〉D ⊆ F . Hence
Coker θF ⊆ F . Therefore F = Coker θF .

Conversely, assume that F = Coker θF . Let x, y ∈ L be such that 〈x〉D = 〈y〉D. Suppose
x ∈ F . Since x ∈ F = Coker θF , we get [x) ∨ 〈a〉D = 〈a〉D for some a ∈ F . Hence
[x) ⊆ 〈a〉D, which gives 〈x〉D ⊆ 〈a〉D. Since 〈x〉D = 〈y〉D, we get [y) ⊆ 〈y〉D ⊆ 〈a〉D. Hence
[y) ∨ 〈a〉D = 〈a〉D. Thus y ∈ Coker θF = F . Hence, by Theorem 2.8, F is a D-filter of L.
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