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Abstract: The notions of D-filters and D-ideals are introduced in a distributive lattice. A
set of equivalent conditions is given for a D-filter to become a maximal filter. It is proved that
the intersection of all maximal ideals is containing D. A one-to-one correspondence is obtained
between the set of all D-filters of a distributive lattice L and the set of all ideals of the lattice
of all principal D-filters of L. A set of equivalent conditions is given, in terms of D-filters,
for a quasicomplemented lattice to become a Boolean algebra. Finally, the class of D-filters is
characterized in terms of co-kernels of a congruence.

1 Introduction

In 1968, the theory of relative annihilators was introduced in lattices by Mark Mandelker [8]
who characterized distributive lattices in terms of their relative annihilators. Later many authors
introduced the concept of annihilators in the structures of rings as well as lattices and charac-
terized several algebraic structures in terms of annihilators. T.P. Speed [11] and W.H. Cornish
[3, 4, 5] made an extensive study of annihilators in distributive lattices and then characterized
some algebraic structures like normal lattices and quasicomplemented lattices. In 2013, Rao [9]
studied the properties of D-filters in M S-algebras. Later in 2016, Rao and Badawy [10] studied
the properties of co-annihilator filters of distributive lattices.

In this note, the concepts of D-filters and D-ideals are introduced in distributive lattices. A set
of equivalent conditions is given for every D-filter of a distributive lattice to become a maximal
filter. A set of equivalent conditions is given for every filter of a distributive lattice to become a
D-filter. It is proved that the smallest D-ideal is contained in the set intersection of all maximal
ideals of the distributive lattice L. The notion of principal D-filters is introduced in a distributive
lattice L and observed that the set of all principal D-filters is a sublattice to the set of all D-filters
of L. Later, the class of all D-filters is characterized in terms of principal D-filters. A one-to-one
correspondence is obtained between the set of all D-filters of a distributive lattice L and the set
of all ideals of the lattice of all principal D-filters of L.

In the final section, we introduce two different congruences on a distributive lattice L: one in
terms of D and the other in terms of principal D-filters of L. A necessary and sufficient condition
is given for every filter of a distributive lattice to become a D-filter.

2 Preliminaries

The reader is referred to [1] and [2] for the elementary notions and notations on distributive
lattices. However, some of the preliminary definitions and results of [10] and [11] are presented
for the ready reference of the reader.

Definition 2.1. [2] An algebra (L, A, V) of type (2,2) is called a distributive lattice if for all
x,y,z € L, it satisfies the following properties (1), (2), (3) and (4) along with (5) or (5')

(1) zAz=z,zVr=mu1,
(2) zAy=yAz,zVy=yVuz,
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3B) (zAy)Az=zA(yNz),(zVy)Vz=zV(yVz),
4) (zAy)Ve=a, (zVy Ne =z,

(5) zA(yVz)=(xzAy)V(zAz),

(5) aV(ynz)=(zVy A(zVz).

A non-empty subset A of a distributive lattice L is called an ideal(filter) of L if a V b €
Alanbe A)anda ANz € A(aV z € A) whenever a,b € A and z € L. The set Z(L) of all
ideals of (L, Vv, A, 0) forms a complete distributive lattice as well as the set F (L) of all filters of
(L,V, A, 1) forms a complete distributive lattice. A proper ideal(filter) M of a lattice is called
maximal if there exists no proper ideal(filter) N such that M C N. Theset (a] = {z € L |z < a}
is called the principal ideal generated by a and the set of all principal ideals is a sublattice of

Z(L). For any subset S of a lattice L, the set [S) = {z V (Z\]si) |z € L,s; € S,n € N}is called
the principal filter generated by the set S. For a € L, the set [a) = {z € L | a < z} is called
the principal filter generated by the element a and the set of all principal filters is a sublattice of

F(L). For any element a of a distributive lattice (L, V, A, 0), the annihilator of a is defined as
the set (a)* ={z€L|zANa=0}.

Lemma 2.2, [11] For any two elements a, b of a distributive lattice L with 0, we have
(1) a < bimplies (b)* C (a)*,
(2) (avd) = (a)* N ()",
(3) (anb)™ =(a)™ n(b)™,
(4) (a)* = Lifand only ifa = 0.

An element a of a lattice L is called a dense element if (a)* = {0}. The set D of all dense ele-
ments of a distribute lattice L forms a filter of L. A lattice L with O is called quasicomplemented
[5] if for each = € L, there exists y € L such that x A y = 0 and x V y is dense.

Definition 2.3. [10] Let L be a lattice and S C L. Define ST = {z € L|sVa = 1 forall s € S}.

Here S™ is called the co-annihilator of S. For S = {x}, then we denote simply (z)" for
({z})*. Then clearly L™ = {1} and (1)* = L. For any subset S of a distributive lattice L, it is
clear that S+ is a filter of L.

Lemma 2.4. [10] For any two elements a, b of a distributive lattice L with 1, we have
(1) a < bimplies (a)™ C (b)F,
(2) (and)* =(a)" N ()",
(3) (aVvb)™ =(a)"" N (b)"",
(4) (a)" = Lifand only ifa = 1.

An equivalence relation 6 on a lattice L is called congruence if (z,y) € 0, (z,w) € 6 implies
(xANz,yAw) €band (zV z,yVw) € b. For any filter F' of a lattice L, define the Co-kernel
of the congruence 0 as Coker O = {x € F | (z,1) € 0r}. Throughout this article, all lattices
are bounded distributive lattices unless otherwise mentioned.

3 D-filters of a lattice

In this section, the notion of D-filters is introduced in a lattice L and then some of the prop-
erties of D-filters are investigated. A set of equivalent conditions is given for every D-filter of L
to become a maximal filter. Some equivalent conditions are also given for the set D of all dense
elements to become a maximal filter.

Definition 3.1. A filter F' of a lattice L is called a D-filter if D C F.

Clearly D is a D-filter and in fact it is the smallest D-filter of L. If L has a unique dense
element, precisely 1, then {1} is the smallest D-filter of L.

Example 3.2. Consider the lattice L = {0, a, b, ¢, 1} whose Hasse diagram is given in the fol-
lowing figure.
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Consider the filters F| = {a,c,1} and F, = {b,¢,1}. Clearly D C F| and D C F,. Hence F)
and F; are D-filters of L. But the filter F53 = {1} is not a D-filter of L.

Denote that F(L) is the set of all filters of a lattice L. It is well-known that (L) is a
distributive lattice.

Lemma 3.3. The set of all D-filters of a lattice L is a sublattice to F(L).

Proof. Let F and G be two D-filters of a lattice L. Then D C Fand D C G. Hence D C F NG.
Therefore F'N G is a D-filter of L. Since D C F C F'V G, we get F'V G is a D-filter. Therefore
the set of all D-filters of L is a sublattice to F(L). i

Definition 3.4. For any non-empty subset S of lattice L, define (S)p = [S) V D. For S = {a},
we have ({a})p = (a)p = [a) vV D. Here (a)p is called a principal D-filter generated by a.

Lemma 3.5. Let S be a non empty subset of a lattice L. Then (S)p is the smallest D-filter of L
which is containing S.

Proof. Let S be a nonempty subset of L. Since [S) and D are filters of L, we get [S) vV D is a
filter of L. Thus (S)p = [S) Vv D is filter of L. Since D C (S)p, we get (S)p is a D-filter of L.
Let F be a D-filter of L that is containing S. Then D C F. Since S C F', we get [S) C [F) = F.
Now (S)p =[S) v D C FV D =F. Therefore (S)p C F. o

The following corollary is a direct consequence of the above lemma:
Corollary 3.6. For any a € L, (a)p = [a) V D is the smallest D-filter containing a.

Proposition 3.7. For any lattice L, the set of all D-filters of L satisfies the following properties:

(1) If G is a D-filter and F is a filter of L such that G C F, then F is also a D-filter of L;
(2) If Fy and F;, are two D-filters of L, then both F\ N F and F\ V F, are also D-filters of L

(3) If { Fu } aca be an indexed family of D-filters of L, then ] F,, is also a D-filter of L.
aEA

Proof. (1) and (2) are clear from the definition of D-filters of L.
(3) Assume that F, is a D-filter for each « € A. Hence D C F,, for each o € A. It is enough to
prove that [[ D, C ][ F., where D, = D for each a. Let (d,ds,d3,d4...,dyn,...) € [ Fas

a€A a€A a€A
where dy, dy,d3,ds, ... ,d,,... € D, = D. Since each F, is a D-filter, we get D = D, C F,

for each a. Hence dy,dy,...,d,,... € F, for each a. Thus (dy,dp,...,dp,...) € ][] Fa.
aEA
Therefore [] F, is a D-filter of L. ]
aEA

Proposition 3.8. Every maximal filter of a lattice L is a D-filter.

Proof. Let M be a maximal filter of L. Let x € D. Then (2)* = {0}. Let us suppose that z ¢ M.
Then M V [z) = L. Since 0 € L =M V [z), we get 0 = a A z for some 0 # a € L. By the
definition of (z)*, we get a € (x)* = {0}. Hence a = 0, which is a contradiction to 0 # a € L.
Thus z € M. Therefore M is a D-filter of L. O

Corollary 3.9. For any lattice L, D C (\{M | M is a maximal filter of L}.
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Theorem 3.10. In any lattice L, the following assertions are equivalent:
(1) Every D-filter is maximal;
(2) D is a maximal filter of L;
(3) Every element of L is dense;
(4) L contains a unique D-filter.

Proof. (1) = (2): Assume that every D-filter is maximal. Since D is a D-filter, we get D is a
maximal filter.

(2) = (3): Assume that D is a maximal filter of L. Suppose (z)* # {0} for some 0 # = € L.
Then = ¢ D. Hence D C D V [z). Since D is maximal, we get D V [z) = L. Thus 0 € D V [x).
Hence 0 = d A z for some d € D. Thus z € (d)* = {0}. Hence = = 0, which is a contradiction.
Therefore (z)* = {0} forall 0 # x € L.

(3) = (4): Assume that every element of L is dense. Suppose L has a proper D-filter M such
that D # M. Since M is a D-filter, we get D C M. Choose x € M — D. Since M is proper, we
get z # 0. By condition (3), = should be a dense element. Hence =z € D, which is a contradiction
tox € M — D. Therefore D = M. Thus L has a unique D-filter, precisely D.

(4) = (1): Let F be a proper D-filter of L. Suppose G is a proper filter such that F C G. Since
D C F C G, we get that G is also a D-filter. Since L has the unique D-filter D, we must have
D = F = @. Therefore F is a maximal filter of L. O

Theorem 3.11. The following assertions are equivalent in a lattice L:
(1) Every filter is a D-filter;
(2) Every principal filter is a D-filter;
(3) L contains a unique dense element.

Proof. (1) = (2): Itis clear.
(2) = (3): Assume that every principal filter is a D-filter of L. Since 1 € F, we get [1) is a
D-filter of L. Hence D C [1). Thus D = {1}. Thus L has a unique dense element, precisely 1.

(3) = (1): Let F be a filter of L. By (3), we get D = {1}. Hence D = {1} C F. Therefore F'
is a D-filter of L. 0

4 D-ideals of a lattice

In this section, the notion of D-ideals is introduced in a lattice L. A set of equivalent con-
ditions is given for a D-ideal of a lattice L to become a maximal ideal. It is proved that the
intersection of all maximal ideals of a lattice is containing the set D.

Definition 4.1. Let D be the set of all dual dense elements of L. i.e D = {z € L | (x)" = {1}}.

We know that an element a € L is called dual dense if (a)* = {1}. Clearly 0 is the dual dense
element. Since 1 is the only element such that 0 vV 1 = 1, we get (0)" = {1}.

Lemma 4.2. In any lattice L, D is an ideal of L.

Proof. Clearly 0 € L and (0)" = {1}. Hence D # (. Let z,y € X. Suppose z,y € D. Then
we get (zVy)tt = (2)""N(y)tT = LNL=L. Thus (zVy)"*" = Lt = {1}. Hence
(xVy)T = {1}. Therefore z Vy € D. Letz € D and y < x. Then (y)* C (x)*. Hence y € D.
Therefore D is the ideal of L. O

Definition 4.3. An ideal I of a lattice L is called a D-ideal of L it D C I.
Lemma 4.4. Every maximal ideal of lattice L is a D-ideal.

Proof. Let M be a maximal ideal of L. Let z € D. Then (x)™ = {1}. Let us suppose that
x ¢ M. Then MV (] = L. Since 1 € L =M V (z], we get 1| = aV z for some 1 # a € L.
From the definition of (z)*, we get a € (z)™ = {1}. Hence a = 1, which is a contradiction to
that 1 # a € L. Hence « € M. Thus D C M. Therefore M is a D-ideal. O
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Corollary 4.5. For any lattice L, D C (\{M | M is mazimal ideal of L}.

Proposition 4.6. For any lattice L, the set of all D-ideals of L satisfies the following properties:

(1) If J is a D-ideal and I is an ideal of L such that J C I, then I is also a D-ideal of L;
(2) IfI,J are two D-ideals of L, then both I N J and I \/ J are also D-ideals of L;
(3) If {1,}aen be an indexed family of D-ideals of L, then ] 1 is also a D-ideal of L.
a€A
Proof. (1) and (2) are clear from the definition of D-ideals of L.
(3) Assume that 1, is D-ideal for each o € A. Hence D C I, for each o € A. It is enough to

provethat [T D C [] I. Let(dy,da,d3,ds,...,dp,...) € T] I, where (di,da,d3,ds ... dy,. ..

a€cA a€A a€cA
D,. Since each I, is a D-ideal, we get D = D, C o, where dy,da, ..., dy,... € I,. Thus
(d1,da,...,dn,...) € T] Iu. Therefore [] I, is a D-ideal of L. O
a€A a€cA

Theorem 4.7. In any lattice L, the following assertions are equivalent:
(1) Every D-ideal is a maximal ideal of L;
(2) D is a maximal ideal of L;
(3) Every element of L is dual dense;
(4) L contains a unique D-ideal.

Proof. (1) = (2): Assume that every D-ideal of the lattice L is a maximal ideal. Since D is a
D-ideal of L, we get D is the maximal ideal of L.

(2) = (3): Assume that D is a maximal ideal of L. Suppose (z)* # {1} for some 1 # z € L.
Hence z ¢ D. Thus D C DV (z] = L. Since 1 € L,we get 1 € DV (z]. Hence | = dV z
for some d € D. Thus # € (d)* = {1}. Hence x = 1, which is a contradiction. Therefore
(z)t ={1}forall 1 #x € L.

(3) = (4): Assume that every element of L is dual dense. Suppose L has a proper D-ideal M
such that D # M. Since M is a D-ideal, we get D C M. Choose z € M — D. Since M is
proper, we get x # 1. By condition (3), z should be a dual dense element. Hence = € D, which
is a contradiction to # € M — D. Therefore D = M. Thus L has a unique D-ideal, precisely D.

(4) = (1): Let I be a proper D-ideal of L. Suppose .J is proper ideal of L such that I C .J.
Since D C I C J, we get J is also a D-ideal. Since L has the unique D-ideal D, we must have

D = I = J. Therefore I is a maximal ideal of L. O

Theorem 4.8. The following assertions are equivalent in a lattice L:
(1) Every ideal is a D-ideal;
(2) Every principal ideal is a D-ideal;
(3) L contains a unique dual dense element.

Proof. (1) = (2): Itis clear.

(2) = (3): Assume that every principal ideal of L is a D-ideal. Since 0 € I, we get that (0] is
a D-ideal of L. Hence D C (0]. Thus D = {0}. Therefore L has a unique dual dense element,
precisely 0.

(3) = (1): Let I be an ideal of L. By (3), we get D = {0}. Hence D = {0} C I. Therefore I is
a D-ideal of L. O

Theorem 4.9. The following statements are equivalent in a lattice L:

(1) Every element of L is dual dense;
(2) D is maximal;
(3) L contains a unique D-ideal.

Proof. (1) = (2): Assume that every element of L is dual dense. Suppose there exists a proper
ideal M of L such that D ¢ M. Choose x € M — D. By (1), = is dual dense. Hence x € D,
which is a contradiction. Therefore D is maximal.

(2) = (3): Assume that D is a maximal ideal of L. Let us suppose that L has a D-ideal M such
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that D # M. Since M is a D-ideal, we get D C M. Choose x € M — D. Then D V (z] = L.
Hence d V2 = 1 for some d € D. Thus x € (d)" and x # 1. Hence d ¢ D, which is a
contradiction. Therefore L has a unique D-ideal, precisely D.

(3) = (1): Assume that L has a unique D-ideal, precisely D. Let 1 # z € L. Suppose
(x)* # {1}. Thenz ¢ D. Hence D C D V (x]. Thus D V (z] is a D-ideal, which is different
from D. Hence z € D. Therefore every element of L is dual dense. O

S Principal D-filters

In this section, the concept of principal D-filters is introduced in a lattice L and its properties
are studied. A one-to-one correspondence is obtained between the set of all D-filters of L and
the set of all ideals of PDF (L), where PDF (L) is the lattice of all principal D-filters of L.

Lemma 5.1. Let L be a lattice and a,b € L. Then we have
(1) a € Difand only if (a)p = D,
(2) Ifa <b, then (b)p C (a)p,
(3) Ifb € {a)p, then (b)p C (a)p,
(4) (aVvb)p = (a)p N (b)p,
(5) (anb)p =(a)pV (b)p.

Proof. (1) Leta,b € L. Suppose a € D. Then (a)* = {0}. Now D C [a) V D = (a)p. Hence
D C {(a)p. Conversely, let z € (a)p = [a) V D. Then z = y A d for some y € [a) and d € D.
Since y € [a), we gety = t V a for some ¢t € L. Now (z)** = (y Ad)*™* = [(t Va) Ad]*™* =
(tva) n(d)™ = (tVa)”nL=(Va) =[{) N(a)] = [()n{0}] = {0} = L.
Thus (x)*** = L* = {0}. Hence (z)* = {0}, which means z € D. Thus (a)p C D. There fore
(a)p = D. Conversely, assume that (a)p = D. Then [a) V D = D, which gives a € [a) C D.
(2) Leta < b. Then [b) C [a). Now (a)p N (b)p = ([a) VD) N ([b) VD) = ([a)N[b)) VD =
[b) V D = (b)p. Hence (a)p N (b)p = (b) p. Therefore (b)p C (a)p

(3) Suppose b € (a)p. Lett € (byp. Thent > b A d; for some d; € D. Since b € (a)p, we
getb > a A dp for some dy € D. Since dy,dy € D, wegetd; Ady, € D. Thent > bAd; >
(aNdy) Ndy =aA(di Ndy) € (a)p. Hence t € (a)p. Therefore (b)p C (a)p.

(4) Leta,be L. Then (aVb)p=[aVvb)VD = ([a)n[b)VD=(a)VvD)n(pb)V D)=
{a)p N (b)p

(5) Leta,b € L. Then (a Abyp =[aANb)V D= (a)VI[b)VD=/(a)VvD)V(bVD)=
(a>D \Y <b>D O

The filter (a)p is called the principal D-filter of L. Then the following proposition is clear
from the above lemma.

Proposition 5.2. The set PDF (L) of all principal D-filters of a lattice L forms a bounded dis-
tributive lattice in which the smallest element is D and the greatest element is L.

Definition 5.3. For any D-filter F of a lattice L, define F'© = {{(a)p | a € F'}.
Lemma 5.4. For any D-filter F' of a lattice L, F* is an ideal of PDF (L) such that D¢ C F*.

Proof. Since | € F, we get (1)p € F°. Hence F* is non-empty. Let (a)p, (b)p € F°. Then
a,b € F. Since F is a filter, we get a A b € F. Hence (a)p V (b)p = (a Ab)p € F°.
Let (a)p € F° and (z)p € PDF(L). Thena € F and x € L. Since a V z € F, we get
(ayp N {x)p = (a V x)p € Fe. Therefore F is an ideal of PDF(L). It is enough to prove that
D¢ C Fe. Let (x)p € D¢. Thenz € D C F. Hence (z)p € F°. Therefore D¢ C F°. ]

Lemma 5.5. Let L be a lattice. For any ideal K of the lattice PDF (L), define K¢ = {a € L |
(a)p € K}. Then K€ is a D-filter of L.

Proof. Let K be an ideal of PDF(L). Then (1)p € K. Hence 1 € K¢. Thus K is non-empty.
Let a,b € K¢ Then (a)p, (b)p € K. Since K is an ideal, we get (a Ab)p = (a)p V (b)p € K.
Thus a Ab € K¢. Leta € K°and z € L. Then (a)p € K and (z)p € PDF(L). Now
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(aVz)p ={(a)pN{z)p € K. Hence a V x € K°. Therefore K° is a filter of L. It is enough to
prove that K¢ is a D-filter. Let x € D. Then (z)p = D = (1)p € K. Since (1)p is the least
element of PDF(L), we get x € K¢. Therefore D C K°. O

Lemma 5.6. In any lattice L, we have the following properties:

(1) For any two D-filters F,G of L, F C G implies F¢ C G¢,

(2) Forany two ideals I,J of PDF(L), I C J implies I¢ C J€,

(3) For any D-filter F of L, (F¢)¢ = F,

(4) For any ideal I of PDF(L), (I°)¢ = I.
Proof. (1) Let F' and G be two D-filters of L. Suppose FF C G. Let (a)p € F°. Then
a € F C G. Thus (a)p € G°. Therefore F© C G°.
(2) Let I and J be two ideals of PDF(L). Suppose I C J. Leta € I¢. Then (a)p € I C J.
Hence (a)p € J, which means a € J¢. Therefore ¢ C J°.
(3) Let F be a D-filter of L. Now z € (F¢)¢ < (z)p € F¢ < x € F. Therefore (F€)¢ = F.
(4) Let I be an ideal of PDF(L). Then, we get (z)p € (I°)¢ < x € I° < (x)p € I. Therefore
(I¢)e =1. ]

Theorem 5.7. Let L be a lattice. Then there is a one-to-one correspondence between the set of
all D-filters of L and the set of all ideals of PDF(L).

Proof. Tt is an immediate consequence of the above results. O

Theorem 5.8. For any filter I of a lattice L, the following assertions are equivalent:

(1) Fisa D-filter;

(2) Forany x € L,x € F implies (x)p C F;

(3) Forany z,y € L,{x)p = (y)p and x € F imply thaty € F;

4) F= U (z)p.

rzelF
Proof. (1) = (2): Assume that F' is a D-filter of L. Letx € F and ¢t € (z)p = [z) V D. The
t>xzANdforsomede D C F.Sincex € Fandd € F, we gett € F. Therefore (x)p C F.
(2) = (3): Let x,y € L be such that (z)p = (y)p. Suppose x € F. Then by (2), we get
(z)p € F. Hence y € (y)p = (x)p C F. Therefore y € F
(3) = (4): Assume the condition (3). Clearly [z) C (z)p forall z € F. Hence F = |J [z) C
el
U (z)p. Therefore F C |J (z)p. Conversely, let z € F and y € (z)p. Then (y)p C (x)p.
F

TEF IS
Therefore (y V 2)p = (y)p N (z)p = (y)p. Since x € F and F is a filter, we get y V = € F.

Since (y Vz)p = (y)p and y V = € F, by the assumed condition (3), we get y € F. Hence
(x)p C Fforall z € F. Therefore |J (z)p C F. ]
el
‘We now introduce the notion of perfect lattices.
Definition 5.9. A lattice L is called a perfect lattice if (x)p = (y)p then x = y for all z,y € L.

Example 5.10. Every Boolean algebra is a perfect lattice. Indeed, if L is a Boolean algebra,
then L has a unique dense element. Hence every filter is a D-filter. Let z,y € L be such that
(x)p = (y) p- Suppose = # y. Then there exists a prime filter P of L suchthatx € Pandy & P.
Then by the hypothesis, P is a D-filter. Since (x)p = (y)p and = € P, we gety € P, which is
contradiction. Hence = = y. Therefore L is a perfect lattice.

The converse of the above statement is not true. i.e. every perfect lattice need not be a
Boolean algebra. However, in the following theorem, we give some equivalent conditions for a
perfect lattice to become a Boolean algebra. For this, we need the following lemma:

Theorem 5.11. Let L be a quasicomplemented lattice. Then the following assertions are equiv-
alent:

(1) L is a Boolean algebra;

(2) L is a perfect lattice;

(3) L contains a unique dense element.
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Proof. (1) = (2): From the above example, it is clear.

(2) = (3): Assume that L is a perfect lattice. Suppose a and b are two different dense elements
in L. Then by Lemma 4.1(1), we get (a)p = D = (b) p. Since L is perfect lattice, we must have
a = b. Therefore L has a unique dense element.

(3) = (1): Assume that L has a unique dense element, precisely 1. Let 2z € L. Since L is quasi-
complimented, there exists ' € L such that x A 2’ = 0 and = V 2’ is dense. Hence z V 2’ = 1.
Thus 2’ is the complement of = in L. Therefore L is a Boolean algebra. O

Theorem 5.12. The following assertions are equivalent in a lattice L:
(1) L is a perfect lattice;
(2) Every filter is a D-filter;
(3) Every proper filter is a D-filter;
(4) Every prime filter is a D-filter.

Proof. (1) = (2): Assume that L is a perfect lattice. Let F be a filter of L. Let 2,y € L be such
that (z)p = (y)p and = € F. Since L is perfect, we get y = = € F'. Thus F is a D-filter of L.
(2) = (3): Itis clear.

(3) = (4): It is clear.

(4) = (1): Let 2,y € L be such that (z)p = (y)p. Suppose x # y. Then by well-known
Stone’s theorem, there exist a prime filter P such that x € P and y ¢ P. By the hypothesis, P is
a D-filter. Since = € P, we must have y € P, which is contradiction. Hence = y and therefore
L is a perfect lattice. O

6 Congruences and D-filters

In this section, we introduce two congruences: one in terms of D and the other in terms of the
principal D-filters of a lattice L. A necessary and sufficient condition is given for any filter of a
lattice L to become a D-filter.

Definition 6.1. Let L be a lattice and z,y € L. Define a binary relation 6 on L by (z,y) € 6 if
and only if (z)" = (y)*.

Lemma 6.2. For any lattice L, the relation 0 defined above is a congruence on L.

Proof. Clearly 6 is an equivalence relation on L. Let z,y € L be such that (x,y) € 6. Then
()" = (y)". Forany a € L, we have (xAa)™" = (2)"TV(a)™ = (y) T V(a)" = (yAa)™
Hence (z Aa)t™t = (yAa)™™, which gives (z Aa)™ = (yAa)T. Therefore (x Aa,yAa) € 6.
Foranyt € L,wegett € (zVa)t ©tV(zVa)=1<tV(eVe)=1& (tVa)Ve =
le (tvVa) e (o))" =Wt etVvavy=1&tV(yVva) =1«te (yVva)t. Thus
(xVa)t = (yVa)". Hence (z Va,yVa) € 6. Therefore 6 is a congruence on L. o

Definition 6.3. Let L be a lattice and x,y € L. Define a binary relation 65 on L by (z,y) € 0
ifandonly if x Vd =y Vv dforsomed e D.

Lemma 6.4. Let L be a lattice. Then the relation 0y, defined above is a congruence on L.

Proof. Clearly 6, is an equivalence relation on L. Let (x,y) € 6p. Then 2V d = y V d for
somed € D.Fora€ L, (zxVa)Vd=(aVz)Vd=aV (zVd) =aV(yVvd) =(aVy)Vd.
Hence (z Va)Vd = (yVa)Vd. Therefore (xV a,yVa) € 0. Fora € L,(x Na)Vd=
(zvd)A(avd)=(yVd)A(aVd)=(yAa)Vd. Hence (z Aa,yAa) € 0p. Therefore 0 is
a congruence on L. O

Theorem 6.5. Let L be a lattice such that for each x € L, there exists ¥’ € L such that (z)*" =
(z')*. Let 0 and 0 be the congruences on L as defined above. Then 0 = 0y,

Proof. Let x,y € L. Suppose (z,y) € 6. Then (z)™ = (y)*. By the assumption, there exists
x' € Lsuch that (z)™* = (2/)*. Since (z,y) € 6, we get (z,2Vy) € 6. Hence (z)" = (zVy)".
Putd = (zVy)Az'. NowzVd =zV[(zVy) Az = [zV(zVy)|A(zVa') = (zVy)Al =zVy
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andyvVd=yV[(zVy)Aa]=[yV(zVy)|Alyva')=(xzVy)A(yVa') = (zVy) Al =2z Vy.
Hence zVd = yVd Now ()T = ((zVy Az)t = (zvy) ™ nE@)t = (@) n@@)" =
(x)* N (z)** = {1}. Hence d € D. Then (z,y) € 5. Therefore § C 0.

Conversely, let (z,y) € 6. ThenzVd = yVd forsome d € D. Hence ()" = (z)™"NL =
(z) N ()" =(@vd)™ = (yVvd) = ()T N(d)"" = (y)""NL=(y)"", which gives
(x)* = (y)*. Hence (z,y) € 6. Therefore 65 C 6. i

Definition 6.6. For any filter F' of a lattice L, define a binary relation 0z on L by (z,y) € 0p if
and only if [z) V (a)p = [y) V (a)p for some a € F.

Lemma 6.7. For any filter F of a lattice L, the relation O defined above is a congruence on L.

Proof. Clearly 0 is reflexive and symmetric. Let (z,y),(y,2) € 6p. Then [z) V (a)p =
[y)V{a)p and [y) V (b)p = [2) V (b) p for some a,b € F. Since a,b € F, we getaAb € F. Now

[z) V{anb)D [z) v{{a)p V (b)p}

ayp}t V(b
a)p}t V(b
b)p}V{a
byp}V{a
= [2)v{(b)p V{a)p}
[2) V{aAb)p.

Vv VD
% YD
% \D
v D

(
(
(
(
(

Hence (z, z) € 0. Thus 6 is an equivalence relation on L. Let (x, ), (z w) € Op. Then there
exista,b € F such that [z) V {(a)p = [y) V (a)p and [z) V (b)p = [w) V (b) p. Since F is a filter,
we get a A b € F. Now, we have

[zvz)Vvianb)p = {l)n[z)}Vv {{a)pV (b)p}
{lz) v ({a)p v (b)p)} N {[2) v ({a)p V (b))}
{([z) v{a)p) v (b)p} N {([2) V (b)) V {a)p}
{(ly) V(a)p) v (b)p} N {([w) V(0)p) V (a)p}
= A{ly)Vv{a)p Vo)t {[w)V{a)p Vv (b))}
{ly)n [w)}v{{a)p Vv (b)p}
= [yVw)V{aAb)p.
Thus (z V z,y V w) € Op. Similarly, we can prove that (z A z,y A w) € 0p. Therefore O is a
congruence on L. O

For any filter I of a lattice L, the co-kernel of the congruence 6 is given by Coker 0 =
{zreLl|(z,1)€bp}={z€L|[r)V(a)p = {a)p for somea € F}.

Lemma 6.8. For any filter F of a lattice L, Coker O is a filter of L.

Proof. Clearly 1 € Coker 0. Let z,y € 0p. Then (x,1) € 0 and (y,1) € 6r. Hence
[z) V {a)p = (a)p for some a € F and [y) V (b)p = (b)p for some b € F. Now

[z Ay) vV ({@)p Vv (b)p)
(=) Vly )) (< oV (b)p)
([z) v{a)p) v ([y) v (b)p)
(
(

[xAy)V{aAb)p

Since anb € F, we get (zAy, 1) € 8. Therefore zAy € Coker 0. Letx € Coker O andx < y.
Then (z,1) € Coker . Since z < y, we get [y) C [x). Then [y) V (a)p C [x) V (a)p = {(a)p
for some a € F. Hence (y, 1) € 0, and so y € Coker 0. Thus Coker 0 is a filter of L. O
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Lemma 6.9. Let F' be a filter of a lattice L. Then F' C Coker 0p.

Proof. Let z € L and z € F. Then [z) V (z)p = (z)p = [1) V (x)p and z € F. Hence
(z,1) € Op. Thus x € Coker 0. Therefore F' C Coker 0. O

Theorem 6.10. Let F' be a filter of a lattice L. Then F is a D-filter of L if and only if F =
Coker OF.

Proof. Assume that F' is a D-filter of L. By Lemma 5.9, we get F' C Coker 0r. Again, let
x € Coker 6. Then (z,1) € 6. Hence [z) V (a)p = (a)p for some a € F. Since F is a
D-filter and @ € F, we get (a)p C F. Thus z € [z) C (z)p V (a)p = (a)p C F. Hence
Coker O C F. Therefore F = Coker 0.

Conversely, assume that ' = Coker 0p. Let z,y € L be such that (z)p = (y)p. Suppose
x € F. Since z € F = Coker 0p, we get [z) V (a)p = (a)p for some a € F. Hence
[*) C {a)p, which gives (z)p C (a)p. Since (z)p = (y)p, we get [y) C (y)p C (a)p. Hence
[y) V {a)p = (a)p. Thus y € Coker O = F. Hence, by Theorem 2.8, F'is a D-filterof L. O
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