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Abstract: In this paper we find a necessary and sufficient conditions and inclusion relations
for Pascal distribution series to be in two subclasses of uniformly spirallike and convex functions.
Further, we examined an integral operator related to Pascal distribution series. Several corollaries
and consequences of the main results are also investigated.

1 Introduction and Definitions

Let A denote the class of functions of the form

f(z) = z +
∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk D = {z ∈ C : |z| < 1} and normalized by the conditions
f(0) = 0 = f ′(0)− 1. Also, let T be the subclass of A consisting of functions of the form,

f(z) = z −
∞∑
n=2

anz
n, an ≥ 0.

For functions f ∈ A given by (1.1) and g(z) = z +
∞∑
n=2

bnz
n, the Hadamard product (or convo-

lution) is defined as

(f ∗ g)(z) = z +
∞∑
n=2

anbnz
n, (z ∈ U).

A function f ∈ A is said to be spirallike if

<
(
e−iϑ

zf ′(z)

f(z)

)
> 0

for some ϑ with | ϑ |< π
2 and for all z ∈ D, this class was introduced by Spaček [38]. Also f(z)

is convex spirallike if zf ′(z) is spirallike. In [35], Selvaraj and Geetha introduced the following
subclasses of uniformly spirallike and convex functions.

Definition 1.1. A function f(z) of the form (1.1) is said to be in the class SPP (ϑ, δ), if it satisfies
the analytic characterization

<
(
e−iϑ

zf ′(z)

f(z)

)
>

∣∣∣∣zf ′′(z)f ′(z)
− 1
∣∣∣∣+ δ, (| ϑ |< π/2; 0 ≤ δ < 1)

and f ∈ UCVP (ϑ, δ) if and only if zf ′ ∈ SPP (ϑ, δ).
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We write
T SPP (ϑ, δ) = SPP (ϑ, δ) ∩ T

and
UCT P (ϑ, δ) = UCVP (ϑ, δ) ∩ T .

In particular, SPp(ϑ, 0) = SPP (ϑ) and UCVP (ϑ, 0) = UCVP (ϑ), the classes of uniformly
spirallike and uniformly convex were introduced by Ravichandran et al. [32]. For ϑ = 0, the
classes UCVP (ϑ) and SPP (ϑ), respectively, reduces to the classes UCV and SP introduced and
studied by Rønning [34]. For more thought-provoking advancements of some classes related
to subclasses of uniformly spirallike and uniformly convex spirallike, the readers may be re-
ferred to the works of Frasin [17, 6], Goodman [20, 19], Al-Hawary and Frasin [1], Kanas and
Wisniowska [21, 22] and Rønning [33, 34].

A variable X is said to be Pascal distribution if it takes the values 0, 1, 2, 3, . . . with proba-
bilities

(1− q)m,
qm(1− q)m

1!
,
q2m(m+ 1)(1− q)m

2!
,
q3m(m+ 1)(m+ 2)(1− q)m

3!
, . . .

respectively, where q and m are called the parameters, and thus

P (X = k) =

(
k +m− 1
m− 1

)
qk(1− q)m, k = 0, 1, 2, 3, · · · .

Very recently, El-Deeb et al. [5] provided a power series whose coefficients are probabilities of
Pascal distribution

Ψ
m
q (z) = z +

∞∑
n=2

(
n+m− 2
m− 1

)
qn−1(1− q)mzn, z ∈ D,

where m ≥ 1; 0 ≤ q ≤ 1 and one can easily verify that the radius of convergence of above series
is infinity by ratio test. This series laid the path to many young researches. We also define the
series

Φ
m
q (z) = 2z −Ψ

m
q (z) = z −

∞∑
n=2

(
n+m− 2
m− 1

)
qn−1(1− q)mzn, z ∈ D.

In this article we investigate the mapping properties of the function F(z) which is the linear
combination of Φm

q (z) and its derivative such that

F(z) = (1− µ)Φm
q (z) + µz(Φm

q (z))
′, µ ≥ 0

F(z) = z −
∞∑
n=2

(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)mzn, z ∈ D.

Now, we define the linear operator

Lmq (z) : A → A

defined by the convolution or Hadamard product

Lmq f(z) = F(z) ∗ f(z) = z +
∞∑
n=2

(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)manzn, z ∈ D.

Inspired by noticeable earlier results on relations between different subclasses of analytic and
univalent functions by using hypergeometric functions, special functions (see for example, [2,
18, 23, 36, 37, 30]) and by the recent investigations (see for example, ([4], [7]-[16], [24, 25,
27, 28, 29, 31]), in the present paper we determine the necessary and sufficient conditions for
F(z) to be in our classes T SPp(ϑ, δ) and UCT p(ϑ, δ) and relations of these subclasses with
Rτ (η, ν) introduced by Swaminathan [39]. Finally, we provide conditions for the integral oper-
ator Gmq (z) =

∫ z
0

F(t)
t dt belonging to the above classes.
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Lemma 1.2. [35] A function f(z) of the form (1.1) is in T SPp(ϑ, δ) if and only if it satisfies
∞∑
n=2

(2n− cosϑ− δ) |an| ≤ cosϑ− δ, (|ϑ| < π/2; 0 ≤ δ < 1).

In particular, when δ = 0, we obtain a necessary and sufficient condition for a function f(z)
of the form (1.1) to be in the class T SPp(ϑ) is that

∞∑
n=2

(2n− cosϑ) |an| ≤ cosϑ, (|ϑ| < π/2).

Lemma 1.3. [35] A function f(z) of the form (1.1) is in UCT p(ϑ, δ) if and only if it satisfies
∞∑
n=2

n(2n− cosϑ− δ) |an| ≤ cosϑ− δ, (|ϑ| < π/2; 0 ≤ δ < 1).

In particular, when δ = 0, we obtain a necessary and sufficient condition for a function f(z)
of the form (1.1) to be in the class UCT p(ϑ) is that

∞∑
n=2

n(2n− cosϑ) |an| ≤ cosϑ, (|ϑ| < π/2).

2 The necessary and sufficient conditions

For convenience throughout in the sequel, we use the following identities that hold for m ≥ 1
and 0 ≤ q < 1:

∞∑
n=0

(
n+m− 1
m− 1

)
qn =

1
(1− q)m

,

∞∑
n=0

(
n+m− 2
m− 2

)
qn =

1
(1− q)m−1 ,

∞∑
n=0

(
n+m

m

)
qn =

1
(1− q)m+1 ,

∞∑
n=0

(
n+m+ 1
m+ 1

)
qn =

1
(1− q)m+2 .

By simple calculations we derive the following relations:
∞∑
n=2

(
n+m− 2
m− 1

)
qn−1 =

∞∑
n=0

(
n+m− 1
m− 1

)
qn − 1 =

1
(1− q)m

− 1, (2.1)

∞∑
n=2

(n− 1)
(
n+m− 2
m− 1

)
qn−1 = qm

∞∑
n=0

(
n+m

m

)
qn =

qm

(1− q)m+1 , (2.2)

∞∑
n=3

(n− 1)(n− 2)
(
n+m− 2
m− 1

)
qn−1 = q2m(m+ 1)

∞∑
n=0

(
n+m+ 1
m+ 1

)
qn

=
q2m(m+ 1)
(1− q)m+2 . (2.3)

and
∞∑
n=4

(n− 1)(n− 2)(n− 3)
(
n+m− 2
m− 1

)
qn−1 = q3m(m+ 1)(m+ 2)

∞∑
n=0

(
n+m+ 2
m+ 2

)
qn

=
q3m(m+ 1)(m+ 2)

(1− q)m+3 . (2.4)

Unless otherwise mentioned, we shall assume through out this paper that |ϑ| < π/2, 0 ≤ δ < 1
and 0 ≤ q < 1.

First we obtain the necessary and sufficient conditions for F(z) to be in T SPP (ϑ, δ) and
UCT p(ϑ, δ).
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Theorem 2.1. If m ≥ 1, then F(z) is in T SPp(ϑ, δ) if and only if

2µm(m+ 1)q2

(1− q)2 +
(2 + µ(4− cosϑ− δ))mq

1− q
+(2−cosϑ−δ) [1− (1− q)m] ≤ cosϑ−δ. (2.5)

Proof. Since

F(z) = z −
∞∑
n=2

(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)mzn.

Using the Lemma 1.2, it suffices to show that
∞∑
n=2

(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m ≤ cosϑ− δ. (2.6)

From (2.6) we let

L1(m,n, ϑ, δ) =
∞∑
n=2

(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m

= 2µ
∞∑
n=2

n2
(
n+m− 2
m− 1

)
qn−1(1− q)m

+[2(1− µ)− µ(cosϑ+ δ)]
∞∑
n=2

n

(
n+m− 2
m− 1

)
qn−1(1− q)m

−(cosϑ+ δ)(1− µ)
∞∑
n=2

(
n+m− 2
m− 1

)
qn−1(1− q)m.

Writing
n = (n− 1) + 1

and
n2 = (n− 1)(n− 2) + 3(n− 1) + 1,

we get

L1(m,n, ϑ, δ) = 2µ
∞∑
n=2

(n− 1)(n− 2)
(
n+m− 2
m− 1

)
qn−1(1− q)m

+[2(1 + 2µ)− µ(cosϑ+ δ)]
∞∑
n=2

(n− 1)
(
n+m− 2
m− 1

)
qn−1(1− q)m

+[2− (cosϑ+ δ)]
∞∑
n=2

(
n+m− 2
m− 1

)
qn−1(1− q)m

Now using (2.1) - (2.3), we get

L1(m,n, ϑ, δ) =
2µm(m+ 1)q2

(1− q)2 +
(2 + µ(4− cosϑ− δ))mq

1− q
+(2− cosϑ− δ) [1− (1− q)m] .

Hence L1(m,n, ϑ, δ) is bounded above by cosϑ− δ if and only if (2.5) holds.

Theorem 2.2. If m ≥ 1, then F(z) is in UCT p(ϑ, δ) if and only if

2µm(m+ 1)(m+ 2)q3

(1− q)3 +
m(m+ 1)q2(2 + µ[12− cosϑ− δ])

(1− q)2

+
q m

1− q
(6− cosϑ− δ + µ[14− 2 cosϑ− 2δ])

+(2µ+ 2− cosϑ− δ) [1− (1− q)m] ≤ cosϑ− δ. (2.7)
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Proof. In view of Lemma 1.3, we have to show that

∞∑
n=2

n(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m ≤ cosϑ− δ. (2.8)

From (2.8), consider the expression

L2(m,n, ϑ, δ) =
∞∑
n=2

n(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m

= 2µ
∞∑
n=2

n3
(
n+m− 2
m− 1

)
qn−1(1− q)m

+(2− µ [2 + cosϑ+ δ])
∞∑
n=2

n2
(
n+m− 2
m− 1

)
qn−1(1− q)m

+(1− µ)(− cosϑ− δ)
∞∑
n=2

n

(
n+m− 2
m− 1

)
qn−1(1− q)m

Writing
n = (n− 1) + 1

n2 = (n− 1)(n− 2) + 3(n− 1) + 1

and
n3 = (n− 1)(n− 2)(n− 3) + 6(n− 1)(n− 2) + 7(n− 1) + 1

and using (2.1) - (2.4), we get

L2(m,n, ϑ, δ) =
2µm(m+ 1)(m+ 2)q3

(1− q)3 +
m(m+ 1)q2[2 + µ(12− cosϑ− δ)]

(1− q)2

+
mq

1− q
[6− cosϑ− δ + 2µ(12− cosϑ− δ)]

+(2µ+ 2− cosϑ− δ) [1− (1− q)m] .

Hence, L2(m,n, ϑ, δ) is bounded above by cosϑ− δ if (2.7) is satisfied.

3 Inclusion Properties

A function f ∈ A is said to be in the class Rτ (η, υ), (τ ∈ C\{0}, 0 < η ≤ 1; υ < 1), if it
satisfies the inequality∣∣∣∣∣ (1− η) f(z)z + ηf ′(z)− 1

2τ(1− υ) + (1− η) f(z)z + ηf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ D).

The class Rτ (η, υ) was introduced earlier by Swaminathan [39] (for special cases see the
references cited there in) and obtained the following estimate.

Lemma 3.1. [39] If f ∈ Rτ (η, υ) is of form (1.1), then

|an| ≤
2 |τ | (1− υ)
1 + η(n− 1)

, n ∈ N \ {1}. (3.1)

The bounds given in (3.1) are sharp.

Making use of the Lemma 3.1, we will focus the influence of the Pascal distribution series on
the classes T SPp(ϑ, δ) and UCT p(ϑ, δ).
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Theorem 3.2. Let m > 1 and f ∈ Rτ (η, υ). Then Lmq f(z) is in the class T SPp(ϑ, δ) if

2 |τ | (1− υ)
η

[
(2− µ[2 + cosϑ+ δ]) (1− (1− q)m) +

2µmq
1− q

−(1− µ)(cosϑ+ δ)

q(m− 1)
(1− q − (1− q)m [1 + q(m− 1)])

]
≤ cosϑ− δ. (3.2)

Proof. In view of Lemma 1.2, it is required to show that

∞∑
n=2

(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m |an| ≤ cosϑ− δ.

Since f ∈ Rτ (η, υ) then by Lemma 3.1 we have

|an| ≤
2 |τ | (1− υ)
1 + η(n− 1)

, n ∈ N \ {1}.

Thus, we have

L3(m,n, ϑ, δ)

=
∞∑
n=2

(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m |an|

≤ 2 |τ | (1− υ)

[
∞∑
n=2

1
1 + η(n− 1)

(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m

]
.

Since 1 + η(n− 1) ≥ nη, we get

L3(m,n, ϑ, δ)

≤ 2 |τ | (1− υ)
η

[ ∞∑
n=2

1
n
(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m

]

=
2 |τ | (1− υ)

η

[
(2− µ[cosϑ+ δ])

∞∑
n=2

(
n+m− 2
m− 1

)
qn−1(1− q)m

+2µ
∞∑
n=2

(n− 1)
(
n+m− 2
m− 1

)
qn−1(1− q)m + 2µ

∞∑
n=2

(
n+m− 2
m− 1

)
qn−1(1− q)m

− (1− µ)(cosϑ+ δ)
∞∑
n=2

1
n

(
n+m− 2
m− 1

)
qn−1(1− q)m

]

≤ 2 |τ | (1− υ)
η

[
(2− µ[cosϑ+ δ]) (1− q)m

∞∑
n=0

(
n+m− 1
m− 1

)
qn

+2µ(1− q)m
∞∑
n=0

(
n+m

m

)
qn + 2µ(1− q)m

( ∞∑
n=0

(
n+m− 1
m− 1

)
qn−1 − 1

)

− (1− µ)(cosϑ+ δ)(1− q)m 1
q(m− 1)

( ∞∑
n=0

(
n+m− 2
m− 2

)
qn − 1− (m− 1)q

)]

=
2 |τ | (1− υ)

η

[
(2− µ[cosϑ+ δ]) (1− (1− q)m) +

2µmq
1− q

− (1− µ)(cosϑ+ δ)

q(m− 1)
(1− q − (1− q)m [1 + q(m− 1)])

]
.

But the above equation is bounded by cosϑ − δ, if (3.2) holds. This completes the proof of
Theorem 3.2.
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Theorem 3.3. Let f ∈ Rτ (η, υ). Then Lmq f(z) is in the class UCT p(ϑ, δ) if

2 |τ | (1− υ)
η

[
2µm(m+ 1)q2

(1− q)2 + (2− cosϑ− δ) [1− (1− q)m] +
(2 + µ(4− cosϑ− δ))mq

1− q

]
≤ cosϑ− δ.

Proof of Theorem 3.3 is omitted because it can be made similar to the proof of Theorem 3.2.

Remark 3.4. For the special case µ = 1, Theorems 2.1 - 2.2 and Theorems 3.2 - 3.3 provide
similar results obtained by Murugusundaramoorthy et al. [26].

4 An integral operator

Theorem 4.1. If the function Gmq (z) is given by

Gmq (z) =

∫ z

0

F(t)

t
dt, z ∈ D (4.1)

then Gmq (z) ∈ UCT p(ϑ, δ) if and only if

2µm(m+ 1)q2

(1− q)2 +
(2 + µ(4− cosϑ− δ))mq

1− q
+ (2− cosϑ− δ) [1− (1− q)m] ≤ cosϑ− δ.

Proof. Since

Gmq (z) = z −
∞∑
n=2

(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m z

n

n

then by Lemma 1.3, we need only to verify that

∞∑
n=2

n(2n− cosϑ− δ)× 1
n
(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m ≤ cosϑ− δ,

or, equivalently

∞∑
n=2

(2n− cosϑ− δ)(1− µ+ nµ)

(
n+m− 2
m− 1

)
qn−1(1− q)m ≤ cosϑ− δ.

The rest part of the proof of Theorem 4.1 is similar to that of Theorem 2.1, and so we omit the
details.

Theorem 4.2. If m > 1, then the integral operator Gmq (z) given by (4.1) is in the class
T SPp(ϑ, δ) if and only if

(2− µ[cosϑ+ δ]) (1− (1− q)m) +
2µqm
1− q

−(1− µ)(cosϑ+ δ)

q(m− 1)
(1− q − (1− q)m [1 + q(m− 1)]) ≤ cosϑ− δ.

The proof of Theorem 4.2 is omitted because it can be made similar to the proof of Theorem
3.2.

Remark 4.3. For µ = 0, the Theorems 4.1 - 4.2 provide similar results with those recently
attained by Murugusundaramoorthy et al. [26].
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5 Corollaries and consequences

By giving the special value to the parameter δ = 0 in Theorems 2.1 - 2.2, 3.2 - 3.3 and 4.1 - 4.2
we obtain the following corollaries.

Corollary 5.1. If m ≥ 1, then F(z) ∈ T SPp(ϑ) if and only if

2µm(m+ 1)q2

(1− q)2 +
(2 + µ(4− cosϑ))q m

1− q
+ (2− cosϑ) [1− (1− q)m] ≤ cosϑ.

Corollary 5.2. If m ≥ 1, then F(z) is in UCT p(ϑ) if and only if

2µq3m(m+ 1)(m+ 2)
(1− q)3 +

q2 m(m+ 1)(2 + µ[12− cosϑ])
(1− q)2

+
q m

1− q
(6− cosϑ+ µ[14− 2 cosϑ]) + (2µ+ 2− cosϑ) [1− (1− q)m] ≤ cosϑ.

Corollary 5.3. Let m > 1 and f ∈ Rτ (η, υ). Then Lmq f(z) is in the class T SPp(ϑ) if

2 |τ | (1− υ)
η

[
(2− µ cosϑ) (1− (1− q)m) +

2µqm
1− q

−(1− µ) cosϑ
q(m− 1)

(1− q − (1− q)m [1 + q(m− 1)])
]
≤ cosϑ.

Corollary 5.4. Let f ∈ Rτ (η, υ). Then Lmq f(z) is in the class UCT p(ϑ) if

2 |τ | (1− υ)
η

[
2µm(m+ 1)q2

(1− q)2 + (2− cosϑ) (1− (1− q)m) +
(2 + µ(4− cosϑ))q m

1− q

]
≤ cosϑ.

Corollary 5.5. Ifm ≥ 1, then the integral operator Gmq (z) given by (4.1) is in the class UCT p(ϑ)
if and only if

2µm(m+ 1)q2

(1− q)2 +
(2 + µ(4− cosϑ))q m

1− q
+ (2− cosϑ) [1− (1− q)m] ≤ cosϑ.

Corollary 5.6. Ifm > 1, then the integral operator Gmq (z) given by (4.1) is in the class T SPp(ϑ)
if and only if

(2− µ[cosϑ]) (1− (1− q)m) +
2µqm
1− q −

(1− µ)(cosϑ)
q(m− 1)

(1− q − (1− q)m [1 + q(m− 1)]) ≤ cosϑ.

Remark 5.7. For µ = 0, the Corollaries 5.1 - 5.6 which correspond the results very recently
reached by Murugusundaramoorthy et al. [26].
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[21] Kanas S, Wiśniowska A, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999),
no. 1-2, 327–336.
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