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Abstract Let R be a ring with involution ′∗′. Next, let N0 be the set of all nonnegative in-
tegers, and D = (dn)n∈N0 a family of additive mappings of a ∗-ring R such that d0 = idR.
D is called a Jordan (α, β)-higher ∗-derivation (respectively, a Jordan triple (α, β)-higher ∗-
derivation) ofR ifDn(x2) =

∑
i+j=n di(β

j(x))dj(αi(x∗
i

)) (respectively, dn(xyx) =
∑

i+j+k=n di

(βj+k(x))dj(βk(αi(y∗
i

)))dk(αi+j(x∗
i+j

))) for all x, y ∈ R and each n ∈ N0. The main aim of
this paper is to characterize Jordan triple (α, β)-higher ∗-derivation of semiprime rings with in-
volution. As an application, we prove that every Jordan triple (α, β)-higher ∗-derivation onto a
6-torsion free semiprime ring is a Jordan higher ∗-derivation.

1 Introduction

This research is motivated by the recent work of Alhazmi et al. [1] and Ezzat [15]. Throughout
this paper, unless otherwise mentioned, R will denote an associative ring. Following [20], an
additive mapping, d : R → R, is called a derivation (respectively, Jordan derivation) if d(xy) =
d(x)y + xd(y) (respectively, d(x2) = d(x)x+ xd(x)) holds for all x, y ∈ R. Following Brešar
[12], an additive mapping F : R → R is said to be a generalized derivation (respectively,
generalized Jordan derivation) on R if there exists a derivation d : R → R such that F (xy) =
F (x)y + xd(y) (correspondingly, F (x2) = F (x)x+ xd(x)) holds for all x, y ∈ R.

For given endomorphisms α and β, an additive mapping d : R → R is said to be an (α, β)-
derivation (respectively, Jordan (α, β)-derivation) if d(xy) = d(x)α(y)+β(x)d(y) (respectively,
d(x2) = d(x)α(x)+β(x)d(x)) holds for all x, y ∈ R. According to Ashraf et al. [8], an additive
mapping F : R → R is called a generalized (α, β)-derivation (correspondingly, generalized
Jordan (α, β)-derivation) onR if there exists an (α, β)-derivation, d : R→ R, such that F (xy) =
F (x)α(y)+ β(x)d(y) (correspondingly, F (x2) = F (x)α(x)+ β(x)d(x)) holds for all x, y ∈ R.
It is obvious to see that every generalized (α, β)-derivation on a ring is a generalized Jordan
(α, β)-derivation, but the converse need not be true in general ([8], Example 3.1). A number
of authors have studied this problem in the setting of prime and semiprime rings. Recently, Ali
and Haetinger [5], proved that every generalized Jordan (α, β)-derivation on a 2-torsion free
semiprime ring is a generalized (α, β)-derivation (see also [9] for more related results).

The concept of derivations was extended to higher derivations by Hasse and Schmidt [19].
Let D = {dn}n∈N0 be a family of additive mappings on R. D is said to be a higher derivation
(correspondingly, Jordan higher derivation) on R if d0 = idR (where idR is the identity map
on R) and dn(xy) =

∑
i+j=n di(x)dj(y) (correspondingly, dn(x2) =

∑
i+j=n di(x)dj(x)) for

all x, y ∈ R. A family D = (dn)n∈N0 of additive mappings of a ring R, where d0 = idR,
is called a Jordan triple higher derivation if dn(xyx) =

∑
i+j+k=n di(x)dj(y

i)dk(xi+j) holds
for all x, y ∈ R. Ferrero and Haetinger [16] proved that in a 2-torsion free ring every Jor-
dan higher derivation is a Jordan triple higher derivation. They also showed that in a 2-torsion
free semiprime ring every Jordan triple higher derivation is a higher derivation. It is easy to
see that the first member of each higher derivation is itself a derivation. More related re-
sults can be found in Haetinger [18]. Later on, Cortes and Haetinger [13] defined general-
ized higher derivations: a family F = (fn)n∈N0 of additive mappings of a ring R, such that
f0 = idR, is said to be a generalized higher derivation (correspondingly, generalized Jordan
higher derivation) of R if there exists a higher derivation (correspondingly, Jordan higher deriva-
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tion) D = {dn}n∈N0 and for each n ∈ N0, fn(xy) =
∑

i+j=n fi(x)dj(y) (correspondingly,
fn(x2) =

∑
i+j=n)fi(x)dj(x)) holds for all x, y ∈ R. Obviously, every generalized higher

derivation is a generalized Jordan higher derivation, but the converse need not be true. The con-
verse has already been proved for by Cortes and Haetinger [5] for square closed Lie ideals of a
prime ring R. Later, Wei and Xao [24] established this result for a 2-torsion free semiprime ring.
In 2010, Ashraf et al. [7] introduced the concept of (α, β)-higher derivations as follows: a family
D of additive mappings dn on R is said to be an (α, β)-higher derivation (correspondingly, Jor-
dan (α, β)-higher derivation) of R if d0 = idR and dn(xy) =

∑
i+j=n di

(
βn−i(x)

)
dj
(
αn−j(y)

)
(correspondingly, dn(x2) =

∑
i+j=n di

(
βn−i(x)

)
dj
(
αn−j(x)

)
) for all x, y ∈ R and for each

n ∈ N0. For given endomorphisms α and β, a family F = (fn)n∈N0 of additive mappings
fn : R → R is said to be a generalized (α, β)-higher derivation (correspondingly, generalized
Jordan (α, β)-higher derivation) of R if there exists an (α, β)-higher derivation D = {dn}n∈N0

and for each n ∈ N0, fn(xy) =
∑

i+j=n fi
(
βn−i(x)

)
dj
(
αn−j(y)

)
(correspondingly, fn(x2) =∑

i+j=n fi
(
βn−i(x)

)
dj
(
αn−j(x)

)
) holds for all x, y ∈ R. It is straightforward to check that any

generalized (α, β)-higher derivation is a generalized Jordan (α, β)-higher derivation. However,
the converse statement need not be true. Ashraf and Khan [6] proved that every generalized
Jordan (α, β)-higher derivation is a generalized (α, β)-higher derivation on Lie ideals of a prime
ring R. Some more related results can be found in [1], and [6].

Motivated by the recent work’s Alhazmi et al. [1] and Ezzat [15], we introduce the following
notions:

Definition 1.1. Let N0 be the set of all nonnegative integers, α, β be the endomorphisms of R,
and let D = (dn)n∈N0 be a family of additive mappings of R such that d0 = idR. D said to be

(i) an (α, β)-higher ∗-derivation of R if for each n ∈ N0,

dn(xy) =
∑

i+j=n

di(β
j(x))dj(α

i(y∗
i

)) for all x, y ∈ R;

(ii) a Jordan (α, β)-higher ∗-derivation of R if for each n ∈ N0,

dn(x
2) =

∑
i+j=n

di(β
j(x))dj(α

i(x∗
i

)) for all x ∈ R;

(iii) a Jordan triple (α, β)-higher ∗-derivation of R if for each n ∈ N0,

dn(xyx) =
∑

i+j+k=n

di(β
i+j(x))dj(β

k(αi(y∗
i

)))dk(α
i+j(x∗

i+j

)) for all x, y ∈ R.

In this definition, if we take α = β = idR, the identity map on R then we obtain the notion
of higher ∗-derivations, Jordan higher ∗-derivations and Jordan triple higher ∗-derivations. Also
the first member of this family is an (α, β)∗-derivation. Therefore, the interesting thing about
this new concept is that they covers the notions of higher ∗-derivations, Jordan (α, β)-higher
∗-derivations etc.

The main objective of this paper is to characterize Jordan triple (α, β)-higher ∗-derivations
and related mappings in semiprime rings with involution. As consequences of our main theo-
rems, many known results can be either generalized or deduced.

2 Preliminaries

Throughout this section, we will use the following notations: Let D = (dn)n∈N0 be a Jordan
triple (α, β)-higher ∗-derivation of R. For every fixed n ∈ N0 and each x, y ∈ R, we denote by
An(x) and Bn(x, y) the elements of R and defined by
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An(x) = dn(x
2)−

∑
i+j=n

di(β
j(x))dj(α

i(x∗
i

)),

Bn(x, y) = dn(xy + yx)−
∑

i+j=n

di(β
j(x))dj(α

i(y∗
i

))

−
∑

i+j=n

di(β
j(y))dj(α

i(x∗
i

)).

Then, it is straightforward to check that An(x + y) = An(x) + An(y) + Bn(x, y), An(x) =
An(−x) and Bn(−x, y) = −Bn(x, y) for all x, y ∈ R.

Lemma 2.1. ([10], Lemma 2.1). Let R be a 2-torsion free semiprime ring. If x, y ∈ R are such
that xry = 0 for all r ∈ R, then yrx = xy = yx = 0.

Lemma 2.2. Let R be a 2-torsion free semiprime ∗-ring and m,n ∈ N0. Next, let D = (dn)n∈N0

a Jordan triple (α, β)-higher ∗-derivation of R such that β is an automorphism of R and αβ =
βα. If Am(x) = 0 for all x ∈ R and for each m ≤ n, then βn(x2)An(x) = An(x)βn(x2) = 0
for all x ∈ R and for each n ∈ N0.

Proof. Compute the value of M = dn(x2yx2) in two different ways:

First by substitution of xyx for y in the definition of Jordan triple (α, β)-higher ∗-derivation,
we find that

M =
∑

i+j+k=n

di(β
j+k(x))dj(β

k(αi((xyx)∗
i

)))dk(α
i+j(x∗

i+j

))

=
∑

i+j+k=n

di(β
i+k(x))

( ∑
p+q+r=j

dp(β
q+r+k(αi(x∗

i

)))

×dq(βr+k(αp+i(y∗
p+i

)))dr(β
k(αp+q+i(x∗

p+q+i

)))
)
dk(α

i+j(x∗
i+j

))

=
∑

i+p+q+r+k=n

di(β
p+q+r+k(x))dp(β

q+r+k(αi(x∗
i

)))

×dq(βr+k(αp+i(y∗
p+i

)))dr(β
k(αp+q+i(x∗

p+q+i

)))

×dk(αi+p+q+r(x∗
i+p+q+r

))

=
∑

i+p=n

di(β
p(x))dp(α

i(x∗
i

))αn(y∗
n

x2∗n

)

+βn(x2y)
∑

r+k=n

dr(β
r(x))dk(α

r(x∗
r

))

+
∑

i+p+q+r+k=n
i+p 6=n,r+k 6=n

di(β
p+q+r+k(x))dp(β

q+r+k(αi(x∗
i

)))

×dq(βr+k(αp+i(y∗
p+i

)))dr(β
k(αp+q+i(x∗

p+q+i

)))

×dk(αi+p+1+r(x∗
i+p+q+r

)).

The second way to compute M is the substitution of x2 for x in the definition of Jordan triple
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(α, β)-higher ∗-derivation and using our assumption that Am(x) = 0 for m < n, we find that

M =
∑

i+j+k=n

di(β
j+k(x2)dj(β

k(αi(y)∗
i

)))dk(α
i+j(x2∗i+j

))

= dn(x
2)αn(y∗

n

x2∗n

+ βn(x2y)dn(x
2)

+
∑

i+j+k=n
i+6=n,k 6=n

di(β
j+k(x2))dj(β

k(αi(y)∗
i

))dk(α
i+j(x2i+j

))

= dn(x
2)αn(y∗

n

x2∗n

+ βn(x2y)dn(x
2)

+
∑

i+j+k=n
i+6=n,k 6=n

( ∑
u+v=i

du(β
v+j+k(x))dv(β

j+k(αu(x∗
u

)))
)
dj(β

k(αi(y)∗
i

))

×
( ∑

s+t=k

ds(β
t(αi+j(x∗

i+j

)))dt(α
s+i+j(x∗

i+j+s

))
)

= dn(x
2)αn(y∗

n

x2∗n

+ βn(x2y)dn(x
2)

+
∑

u+v+j+s+t=n
u+v 6=n,s+t6=n

du(β
v+j+k(x))dv(β

j+k(αu(x∗
u

)))dj(β
k(αu+v(y)∗

u+v

))

×ds(βt(αu+v+j(x∗
u+v+j

)))dt(α
s+u+v+j(x∗

u+v+j+s

)).

Now, subtracting the two values so obtained for M and using our notation, we obtain

An(x)α
n(y∗

n

y2∗n

) + βn(x2y)An(x) = 0. (2.1)

In case n is even (2.1) reduces to

An(x)α
n(yx2) + βn(x2y)An(x) = 0 for all x, y ∈ R. (2.2)

Replacing y by rx2y, r ∈ R in (2.2), we get

An(x)α
n(rx2)αn(yx2) + βn(x2r)βn(x2y)An(x) = 0 for all x, y, r ∈ R.

Using (2.2) for the value of An(x)αn(rx2), we obtain

−βn(x2r)An(x)α
n(bx2) + βn(x2r)βn(x2y)An(x) = 0 for all x, y, r ∈ R.

Again, using (2.2) for the value of An(x)αn(yx2) yields, in view of R is 2-torsion free, that

βn(x2r)βn(x2y)An(x) = 0 for all x, y, r ∈ R.

Now put r = yβ−n(An(x))r in the last expression, we reach to

βn(x2y)An(x)β
n(r)βn(x2y)An(x) = 0 for all x, y, r ∈ R.

Since β onto, the last relation implies that

βn(x2y)An(x)Rβ
n(x2y)An(x) = {0} for all x, y ∈ R.

The semiprimeness of R yields βn(x2y)An(x) = 0 for all x, y ∈ R. Again since β is onto we
have βn(x2)RAn(x) = {0} for all x ∈ R, and by Lemma 2.1, we reach to βn(x2)An(x) =
An(x)βn(x2) = 0 for all x ∈ R.

In case n is odd (2.1) reduces to

An(x)α
n(y∗x2∗

) + βn(x2y)An(x) = {0} for all x, y ∈ R. (2.3)
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Putting y = rx2y gives for all x, y, r ∈ R that

An(x)α
n(y∗x2∗

)αn(r∗x2∗
) + βn(x2r)βn(x2y)An(x) = 0.

Substituting the value of An(x)αn(y∗x2∗
) from (2.3) in the last relation gives for all x, y, r ∈ R

that
−βn(x2y)An(x)α

n(r∗x2∗
) + βn(x2r)βn(x2y)An(x) = 0.

Again by using (2.3) for the value of An(x)αn(r∗x2∗
), we get for all x, y, r ∈ R

βn(x2)
(
βn(yx2r) + βn(rx2y)

)
An(x) = 0. (2.4)

Taking r = y in (2.4) leads, in view of R in 2-torsion free, to

βn(x2y)βn(x2y)An(x) = 0 for all x, y ∈ R. (2.5)

Now putting r = yβ−n(An(x))r in (2.4) gives for all x, y, r ∈ R

βn(x2y)βn(x2y)An(x)β
n(r)An(x) + βn(x2y)βn(rx2y)An(x) = 0

But using (2.5), the first summand fo the last equation is zero. Hence, we get βn(x2y)βn(rx2y)An(x) =
0 for all x, y, r ∈ R. Surjectiveness of β leads to βn(x2y)Rβn(x2y)An(x) = {0} for all x, y ∈ R
and since R is semiprime we get βn(x2)βn(y)An(x) = 0 for all x, y, r ∈ R. Again by using the
surjectiveness of β, we find βn(x2)RAn(x) = {0} for all x ∈ R. Thus, since R is semiprime we
get by Lemma 2.1 that An(x)βn(x2) = βn(x2)An(x) = 0 for all x ∈ R.

Proposition 2.3. Let R be a 2-torsion free ∗-ring and n ∈ N0. Then every Jordan (α, β)-higher
∗-derivation D = (dn)n∈N0 of R is a Jordan triple (α, β)-higher ∗-derivation of R.

Proof. By the assumption, we have

dn(x
2) =

∑
i+j=n

di(β
j(x))dj(α

i(x∗
i

)). (2.6)

for all x, y ∈ R. Write w = x+ y and using (2.6), we get

dn(w
2) =

∑
i+j=n

di(β
j(x+ y))dj(α

i((x+ y)∗
i

))

=
∑

i+j=n

(diβ
j(x))dj(α

i(x∗
i

)) + diβ
j(x))dj(α

i(y∗
i

))

+diβ
j(y))dj(α

i(x∗
i

)) + diβ
j(y))dj(α

i(y∗
i

))),

and

dn(w
2) = dn(x

2 + xy + yx+ y2)

= dn(x
2) + dn(y

2) + dn(xy + yx)

=
∑

l+m=n

dl(β
m(x))dm(αl(x∗

i

)) +
∑

r+s=n

dr(β
s(y))ds(α

r(y∗
r

))

+dn(xy + yx).

Subtracting the last two expressions of dn(w2) gives

dn(xy + yx) =
∑

i+j=n

(
diβ

j(x))dj(α
i(y∗

i

)) + diβ
j(y))dj(α

i(x∗
i

))
)
. (2.7)
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Now take c = x(xy + yx) + (xy + yx)x. Using (2.7), we get

dn(c) =
∑

i+j=n

di(β
j(x))dj(α

i((xy + yx)∗
i

))

+
∑

i+j=n

di(β
j(xy + yx))dj(α

i(x∗
i

))

=
∑

i+r+s=n

(
di(β

r+s(x))dr(β
s(αi(x∗

i

)))ds(α
i+r(y∗

i+r

))

+di(β
r+s(x))dr(β

j(αi(y∗
i

)))ds(α
i+r(x∗

i+r

))
)

=
∑

k+l+j=n

(
dk(β

l+j(x))dl(β
j(αk(y∗

k

)))dj(α
k+l(x∗

k+l

))

+dk(β
l+j(y))dl(β

j(αk(x∗
k

)))dj(α
k+l(x∗

k+l

))
)

=
∑

i+r+s=n

di(β
r+s(x))dr(β

s(αi(x∗
i

)))ds(α
i+r(y∗

i+r

))

+2
∑

i+j+k=n

di(β
j+k(x))dj(β

k(αi(y∗
i

)))dk(α
i+j(x∗

i+j

))

+
∑

k+l+j=n

dk(β
l+j(y))dl(β

j(αk(x∗
k

)))dj(α
k+l(x∗

k+l

)).

Also, we have

dn(c) = dn(2xyx+ (x2y + yx2))

= 2dn(xyx) + dn(x
2y + yx2)

= 2dn(xyx) +
∑

i+r+s=n

di(β
r+s(x))dr(β

s(αi(x∗
i

)))ds(α
i+r(y∗

i+r

))

+
∑

k+l+j=n

dk(β
l+j(y))dl(β

j(αk(x∗
k

)))dj(α
k+l(x∗

k+l

)).

Subtracting the last two expressions of dn(c) and using the fact that R is 2-torsion free, we get

dn(xyx) =
∑

i+j+k=n

di(β
j+k(x))dj(β

k(αi(y∗
i

)))dk(α
i+j(x∗

i+j

))

for all x, y ∈ R. This proves the theorem.

3 Main results

The main result of the present paper is the following theorem.

Theorem 3.1. Let R be a 6-torsion free semiprime ∗-ring and β an autmorphism of R. Then
every Jordan triple (α, β)-higher ∗-derivation D = (dn)n∈N0 of R, with αβ = βα, is a Jordan
(α, β)-higher ∗-derivation of R.

Proof. We will use induction on n in our proof. We see trivially that A0(x) = 0 for all x ∈ R.
In case n = 1, we get from ([4], Theorem 2.1) that A1(x) = 0 for all x ∈ R. So we suppose that
Am(x) = 0 for all x ∈ R and m < n. In view of Lemma 2.2, we have

An(x)x
2 = 0 for all x ∈ R (3.1)

and

x2An(x) = 0 for all x ∈ R. (3.2)
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The replacement of x+ y for x in (3.1) gives

An(x)β
n(y2) +An(y)β

n(x2) +Bn(x, y)β
n(x2 + y2) + (An

(x) +An(y) +Bn(x, y))β
n(xy + yx) = 0 for all x, y ∈ R. (3.3)

By replacing x by −x in (3.3) we obtain

An(x)β
n(y2) +An(y)β

n(x2)−Bn(x, y)β
n(x2 + y2)− (An

(x) +An(y)−Bn(x, y))β
n(xy + yx) = 0 for all x, y ∈ R. (3.4)

Adding (3.3) and (3.4) and using the fact that R is 2-torsion free, we get

Bn(x, y)β
n(x2 + y2) + (An(x) +An(y))

βn(xy + yx) = 0 for all x, y ∈ R. (3.5)

Substituting 2x for x in (3.5) gives in view of the fact that R is 2-torsion free that

4Bn(x, y)β
n(x2) +Bn(x, y)β

n(y2) + 4An(x)β
n

(xy + yx) +An(y)(xy + yx) = 0 for all x, y ∈ R. (3.6)

Comparing (3.5) and (3.6) we have, since R is 3-torsion free

Bn(x, y)β
n(y2) +An(x)β

n(xy + yx) = 0 for all x, y ∈ R. (3.7)

Multiply (3.7) by An(A)x from the right and using (3.2), we arrive at

An(x)β
n(xy)An(x)β

n(x) +An(x)β
n(y)βn(x)

An(x)β
n(x) = 0 for all x, y ∈ R. (3.8)

Substituting y by yx in (3.8) and multiplying by x from the left we obtain using that β is onto
(βn(x)An(x)βn(x))R(βn(x)An(x)βn(x)) = {0} for all x ∈ R. But since R is semiprime
βn(x)An(x)βn(x) = 0 for all x ∈ R. So (3.8) reduces to An(x)βn(y)An(x)βn(x) = 0, for all
x, y ∈ R. Since β is onto, we have An(x)βn(x)RAn(x)βb(x) = {0} for all x ∈ R. Again, since
R is semiprime, we have

An(x)β
n(x) = 0 for all x ∈ R. (3.9)

In view of (3.9), (3.7) reduces to Bn(x, y)βn(x2) + An(x)βn(yx) = 0 for all x, y ∈ R. Mul-
tiplying this relation by βn(x) from left and by An(x) from right we obtain for all x, y ∈
R, βn(x)An(x)βn(x)An(x) = 0. Since β is onto we get for all x ∈ R, βn(x)An(x)Rβn(x)An(x) =
{0} and by the semiprimeness of R we have

βn(x)An(x) = 0 for all x ∈ R. (3.10)

Linearizing (3.9) we have

An(x)β
n(y) +An(y)β

n(x) +Bn(x, y)β
n(x+ y) = 0 for all x, y ∈ R. (3.11)

Taking x = −x in (3.11), we obtain

An(x)β
n(y)−An(y)β

n(x) +Bn(x, y)β
n(x− y) = 0 for all x, y ∈ R. (3.12)

Adding (3.11) and (3.12) we obtain, since R is 2-torsion free

An(x)β
n(y) +Bn(x, y)β

n(x) = 0 for all x, y ∈ R. (3.13)

Right multiplication (3.13) byAn(x) and using (3.10) gives for all x, y ∈ R,An(x)βn(y)An(x) =
0. Since β is onto, we get An(x)RAn(x) = 0 for all x ∈ R. By the semiprimeness of R, we
conclude that An(x) = 0 for all x ∈ R. Hence, every Jordan triple (α, β)-higher ∗-derivation is
a Jordan (α, β)-higher ∗-derivation.
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In view of Theorem 3.1 and Proposition 2.3, we have the following result.

Theorem 3.2. Let R be a 6-torsion free semiprime ring with involution and α, β be the en-
domorphisms of R such that β is onto. If αβ = βα, then the notions of Jordan (α, β)-higher
∗-derivation and Jordan triple (α, β)-higher ∗-derivation on a 6-torsion free semiprime ∗-ring
are equivalent.

The following corollaries are immediate consequences of Theorem 3.2

Corollary 3.3. ([4], Theorem 2.1) Let R be a 6-torsion free semiprime ring with involution and
α, β be the endomorphisms ofR such that β is onto. Then every Jordan triple (α, β)∗-derivation
of R is a Jordan (α, β)∗-derivation.

Corollary 3.4. ([15], Theorem 2.3) LetR be a 6-torsion free semiprime ring. Then, every Jordan
triple higher ∗-derivation on R is a Jordan higher ∗-derivation.

Corollary 3.5. ([23], Theorem 1) Let R be a 6-torsion free semiprime ∗-ring. Then every Jordan
triple ∗-derivation of R is a Jordan higher ∗-derivation of R.
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