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Abstract An innovative number theoretic function (arithmetic function) is introduced having
analogous and additional new properties to the most commonly occurring arithmetic functions in
the analytic number theory. This new function involves the general exponential term of the form
V (n) = aΩ(n) where Ω (n) is the total number of prime factors of n counted with multiplicity,
and a is any integer. Many existing arithmetic functions become special cases of V (n) as it is
exciting to note that on the set of square-free positive integers and for a = −1, V (n) = µ (n)
where µ (n) is the Möbius µ-function. Further, for a = −1, and for all n, V (n) = λ (n), thus
V (n) reduces to the traditional Liouville λ-function. In this respect, function V (n) may be
thought of as an extension of the Liouville and Möbius functions. Some new results are also
formulated and studied using this general exponential arithmetic functionV (n).

1 Introduction

Number theory is a gigantic and mesmerizing field of mathematics, also referred to as higher
arithmetic, which studies the properties of numbers. Since the integers and the prime num-
bers have fascinated the people since the ancient times. Analytic number theory is theory of
number where one makes use of the techniques of real and complex analysis to address number-
theoretical problems and establishes its truth: (cf. [1], [5], [7], [8]). A feature of analytic number
theory is the treatment of number-theoretical problems and provide answers to long-standing
intrinsic interesting problems concerning what happens for large values of some parameter and
also enumerate problems involving primes, Diophantine equations, or similar number-theoretic
objects..

Also mathematical analysis tools are being used to prove various results about prime numbers
and functions with integer’s domain. A class of functions with any real or complex valued
function with domain of the positive integers is said to be an arithmetic function. In the literature
of the analytic number theory, there are definitions for a range of arithmetic functions or also
refereed as number theoretic functions. There are numerous meticulous arithmetic functions,
connected with some important notions, which appear in number theory, and are engaged in
studies on the various properties of numbers. A foremost category of arithmetic functions which
are frequently occurring are: number of divisors τ (n) or sum of divisor σ (n) Möbius function
µ (n), Euler’s totient function φ (n), Liouville’s function λ (n), Von Mangoldt function Λ (n)
with their traditional symbolic notations (cf. [1], [4],[9]). Keeping in view the scattered and
of autonomous interest of arithmetic functions in various fields of their study constitutes an
important field of study. The definition and rules governing the variant of arithmetic functions
are usually not illustrated by straight forward methods, also the asymptotic activities in terms of
arithmetical functions is determined. The study of their common values is of great importance, as
numerous arithmetic functions are not invariant. There are many generalizations of the arithmetic
functions, as well as analogous functions described by different authors: (cf. [2], [4], [9]),
they have introduced and studied properties of arithmetic functions. Articles related to a new
arithmetic functions introduced and studied by authors (cf. [3], [7]).

In the present paper, a new arithmetic function V (n) is introduced, which is defined V : N→
C as follows:
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V (n) =


1 if n = 1 or a = 1

aΩ(n) if n > 1, a 6= 1 and n =
k∏
i=1

pαi
i .

(1.1)

Here is a is any integer and Ω (n) is the total number of prime factors of n counted with
multiplicity. Clearly, the domain of for this function is the set of all positive integers, therefore
V (n) is an arithmetic function. Arithmetic function V (n) defined in (1.1) is further incorporated
to infinite products, partition of an integer and expressions connecting with others arithmetic
functions in the field of analytic number theory. It has also been shown that Möbius function,
Liouville’s function are special cases of this function under certain conditions. Various other
new results are established and studied using this general exponential arithmetic function.

2 Properties of the Function V (n)

If in the definition of an arithmetic function V (n) defined in (1.1), taking a = −1, and n is
square free, thenV (n) = (−1)k, V (n) is equivalent to the Mobius function µ (n) on the set
of square-free positive integers. If a is restricted to -1 in the definition of V (n), then V (n) =
λ (n) , Liouville’s function. Hence Mobius function and Liouville’s function can be deduced
fromV (n)under above stated conditions.

2.1 Special Cases

2.1.1 Case I

When n = p, p is a prime number, then V (n) = a, a is any integer.

2.1.2 Case II

When n = pk, k > 1, p is a prime number, then V (n) = ak, a is any integer.

2.1.3 Case III

When a = p, p is a prime number, then and V (n) = pΩ(n).

3 V (n)is multiplicative and completely multiplicative function

Since an arithmetic function f is called multiplicative if f(n1n2) = f(n1)f(n2) for all n1, n2 ∈
N with condition (n1, n2) = 1. An arithmetic function f is called completely multiplicative if
f(n1n2) = f(n1)f(n2) for all positive integers n1, n2 ∈ N . Since for any positive integern, the
Möbius function µ(n) is defined by the following three properties:

µ(n) =


1 if n = 1
0 if p2/n for some prime p

(−1)k if n =
k∏
j=1

pj where pj are distinct primes
(3.1)

λ (n) =

{
1 if n = 1

(−1)Ω(n)if n > 1
(3.2)

where Ω (n) is the total number of prime factors of n counted with multiplicity.

4 Some Theorems on V (n)

Theorem 4.1. V (n) is multiplicative function.
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Proof: Let m,n ∈ N such that gcd(m,n) = 1. If m = n = 1, or m 6= 1, n = 1 or m = 1, n 6= 1
then nothing to prove. If m 6= 1, n 6= 1, using the fundamental theorem of arithmetic, m and n
can be written as

m = pα1
1 pα2

2 pα3
3 · · · p

αk

k

and
n = qβ1

1 q
β2
2 q

β3
3 · · · q

βl

l

.
mn = (pα1

1 pα2
2 pα3

3 · · · p
αk

k )
(
qβ1

1 q
β2
2 q

β3
3 · · · q

βl

l

)
.

Since gcd(m,n) = 1, therefore all pi and qj are distinct primes. Using definition of V (n),
we have V (m) = aα1+α2+···+αk , and V (n) = aβ1+β2+···+βl .

⇒ V (mn) = a(α1+α2+···+αk)+(β1+β2+···+βl)

= aα1+α2+···+αkaβ1+β2+···+βl

= V (m)V (n)

Hence V (mn) = V (m)V (n) with m,n ∈ N with (m,n) = 1 . This proves that V (n) is a
multiplicative function. 2

Remark 4.2. V (n) is completely multiplicative function, as V (mn) = V (m)V (n) for all
m,n ∈ N.

Remark 4.3. V (n) is not additive function i.e.V (mn) 6= V (m) + V (n).

Example 4.4. Let m = 23.52.7and n = 32.11, here gcd(m,n) = 1 ,therefore V (m) = a6 and,
V (n) = a3. Now mn = 23.52.7.32.11, V (mn) = a9. Thus V (mn) 6= V (m) + V (n). Hence
V (n) is not an additive function .

Theorem 4.5. For n ≥ 1 ,a 6= 1 and n =
k∏
j=1

pj where pj are distinct primes. Then

∑
d|n

V (d) =


1

(1−a)k
k∏
j=1

(
1− aαj+1

)
if a < 1

1
(a−1)k

k∏
j=1

(
aαj+1 − 1

)
if a > 1.

Proof. Since V (n) is a multiplicative arithmetic function and let

F (n) =
∑
d|n

V (d)

. Then F (n) is also multiplicative function. Firstly let n = pk, k > 1, p is a prime number

F
(
pk
)
=
∑
d|pk

V (d)

= V (1) + V (p) + V
(
p2
)
+ · · ·+ V

(
pk
)

= 1 + a+ a2 + · · · ak =
k∑
j=0

aj

=

{
ak+1−1
a−1 ifa > 1

1−ak+1

1−a ifa < 1
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Now when n = pα1
1 pα2

2 pα3
3 · · · p

αk

k . Using above, we obtain

F (n) = F (pα1
1 pα2

2 pα3
3 · · · p

αk

k )

= F (pα1
1 )F (pα2

2 ) · · ·F (pαk

k )

=


1

(a−1)k

k∏
j=1

(
aαj+1 − 1

)
if a > 1

1
(1−a)k

k∏
j=1

(
1− aαj+1

)
if a < 1

.

This proves the theorem. 2

Corollary 4.6. If a = −1 ,n > 1 , n = pα1
1 pα2

2 pα3
3 · · · p

αk

k .. Then

∑
d|n

V (d) =

{
1 if a = −1, n = m2 for some integer m

0 otherwise

Proof: In the result of above theorem putting a = −1, we have

∑
d|n

V (d) =
1
2k

k∏
j=1

(
1− (−1)αj+1

)
Now if any of αi (1 ≤ i ≤ k) in n = pα1

1 pα2
2 pα3

3 · · · p
αk

k is odd, then for that αi, αi+1 is even
which give (−1)αj+1

= 1 consequently product on the right hand side of (4.1) is zero. Now
if none of αi (1 ≤ i ≤ k) in n = pα1

1 pα2
2 pα3

3 · · · p
αk

k is odd, then each αi is even (αi = 2βi),
therefore each αi+1 is odd and n = p2β1

1 p2β2
2 p2β3

3 · · · p2βk

k = m2. Consequently each (−1)αj+1
=

−1, In this case (4.1) gives

∑
d|n

V (d) =
1
2k

k∏
j=1

(
1− (−1)αj+1

)

=
1
2k

k∏
j=1

(2.2.2 · · · k times) =
1
2k

2k = 1.

Hence the result. 2

Remark 4.7. Similar result is also established with the Liouville functionλ (n).

Theorem 4.8. For n ≥ 1 ,

∑
d|n

µ (d)V (d) =

{
1 if n = 1

(1− a)k if (n > 1), n = pα1
1 pα2

2 pα3
3 · · · p

αk

k

where µ(n) is the Möbius function .

Proof. If n = 1, then ∑
d|1

µ (d)V (d) =µ (1)V (1) = 1.1 = 1

.
Since V (n) and µ (n) are multiplicative function, therefore F (n) defined by

F (n) =
∑
d|n

µ (d)V (d)

is also a multiplicative arithmetic function. Firstly, let n = pk, k > 1, where p is a prime number.
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F
(
pk
)
=
∑
d|pk

µ (d)V (d) = µ (1)V (1) + µ (p)V (p) + · · ·+ µ
(
pk
)
V
(
pk
)

= 1.1 + (−1)V (p) + · · ·+ 0.V
(
pk
)

= 1− V (p) = 1− a.

Now when n = pα1
1 pα2

2 pα3
3 · · · p

αk

k , we have

F (n) = F (pα1
1 pα2

2 pα3
3 · · · p

αk

k )

= F (pα1
1 )F (pα2

2 ) · · ·F (pαk

k )

= (1− a)k =
∏
p|n

(1− V (a)).

This proves the theorem. 2

Theorem 4.9. For n ≥ 1 , n = pα1
1 pα2

2 pα3
3 · · · p

αk

k∑
d|n

V
(n
d

)
2ω(n) =

k∏
j=1

(
aαj+1 + aαj − 2

a− 1

)
where ω(n) is the number of distinct divisors of n.

Proof. Let (n) =
∑
d|n

V
(
n
d

)
2ω(n), where F (n) is a Multiplicative function. Firstly, let n = pk,

k > 1, where p is a prime number.

F
(
pk
)
=
∑
d|pk

V

(
pk

d

)
2ω(p

k)

= V

(
pk

1

)
2ω(1) + V

(
pk

p

)
2ω(p) + · · ·+ V

(
pk

pk−1

)
2ω(p

k−1) + V

(
pk

pk

)
2ω(p

k)

= ak20 + ak−121 + · · ·+ a21 + 1.21 ,
(
∵ ω (1) = 0, ω(p) = ω(p2) = · · ·ω(pk) = 1

)
= ak + 2

(
ak−1 + ak−2 + · · · a+ 1

)
= ak + 2

(
ak − 1

)
a− 1

=
ak+1 + ak − 2

a− 1
.

Now when n = pα1
1 pα2

2 pα3
3 · · · p

αk

k , we have

F (n) = F (pα1
1 pα2

2 pα3
3 · · · p

αk

k )

= F (pα1
1 )F (pα2

2 ) · · ·F (pαk

k ) .

Using above results, we obtain

F (n) =
∑
d|n

V
(n
d

)
2ω(n)

=
k∏
j=1

(
aαj+1 + aαj − 2

a− 1

)
.

Hence the theorem. 2
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Corollary 4.10. If a = −1 ,n ≥ 1 , n = pα1
1 pα2

2 pα3
3 · · · p

αk

k . Then the result of above theorem
becomes the corresponding result for the Liouville function λ (n).
Proof. Putting a = −1, in the result of the above theorem we have

F
(
pk
)
=
∑
d|pk

V

(
pk

d

)
2ω(p

k)

=
ak+1 + ak − 2

a− 1

=
(−1)k+1

+ (−1)k − 2
(−1)− 1

=

{
1+(−1)−2
(−1)−1 if k is odd
−1+1−2
(−1)−1 if k is even

= 1.

Thus for a = −1, we have ∑
d|n

V
(n
d

)
2ω(n)

=
k∏
j=1

(
aαj+1 + aαj − 2

a− 1

)

=
k∏
j=1

1 = 1.

This proves the result. 2

Remark 4.11. This corollary is also established with the Liouville functionλ (n).

Theorem 4.12. Let R (x) =
∑
n≤x

V (n) for a function V (n). Then

R (x) = n0 + n1a+ n2a
2 + n3a

3 + n4a
4 + n5a

5 + · · · ,

. where n0 = 1; then S0 = {1}, n1 = number of elements in S1 =
∑
p≤x

1; S1 = {2, 3, 5, · · · }

clearly S1 contains all primes p ≤ x.Similarly n2 = number of elements in S2 =
∑

p2≤x or
p1p2≤x

1; i.e.

S2 = {4, 9, 25, · · · }
⋃
{6, 10, 15, · · · } which are square of prime or product of two primes ≤ x.

Further n3 = number of elements in
S3 =

∑
p3≤x or p1p2p3≤x or p2

1p2≤x
1

S3 = {8, 27, 125, · · · }
⋃
{30, 70, 105, · · · }

⋃
{12, 18, 50, · · · }

which are cubes of prime or product of three primes or product of square of prime a and
another prime ≤ x, and so on.

Further
∞⋃
j=0

Sj = N and
∞⋂
j=0

Sj = φ The polynomial R (x) is a polynomial of degree 1, 2,

3. . . .. in a, accordingly n ≤ 3.99, n ≤ 7.99, n ≤ 15.99. . . .. n ≤ x.

2

Example 4.13. If x = 100.7, then n1 = 25 for all primes p ≤ x n2 = 35, n3 = 21, n4 = 12,

n5 = 4, n6 = 2
6⋃
j=0

nj = {1, 2, 3, 4, ..., 100} and
6⋂
j=1

nj = φ. R (100.7) = 1 + 25a + 35a2 +

21a3 + 12a4 + 4a5 + 2a6 Table.1 above showing the number distribution in nj , j = 1, 2, 3 · · · 6
when n ≤ 100.7
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Table 1.
On taking x=100.7

S1= 2,3,5,7,11,13,17,19,23,29,31,37,41,43, 47,53,59,61,67,71,73,79,83,89,97

S2=
4,6,9,10,14,15,21,22,25,26,33,34,35,38,39,46,49,51,55,57,58,62,63,65,69,
74,77,82,85,86,87,91,93,94,95

S3= 8,12,18,20,27,28,30,42,44,45,50,52,66,68,70,75,76,78,92,98,99
S4= 16,24,36,40,54,56,60,81,84,88,90,100
S5= 32,48,72,80
S6= 64, 96

In that case

R (100.7) = 1 + 25 (−1) + 35(−1)2
+ 21(−1)3

+ 12(−1)4
+ 4(−1)5

+ 2(−1)6

= 1− 25 + 35− 21 + 12− 4 + 2

= 50− 50 = 0

R (101.5) = 1 + 26 (−1) + 35(−1)2
+ 21(−1)3

+ 12(−1)4
+ 4(−1)5

+ 2(−1)6
= −1

Figure 1. Showing the value and sign of R(x), x ≤ 100.7 with the value of a

5 Riemann Zeta function, Dirichlet Series and V (n)

Since f : N → C define the Dirichlet Series of f to be Df (s) =
∞∑
n=1

f(n)
ns , defined for those

s ∈ C at which the series converges. Also f : N → C is multiplicative, then Riemann Zeta
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function

ζ (s) =
∞∑
n=1

f(n)

ns

=
∏
p

1 +
∑
k≥1

f
(
pk
)

pks


=
∏
p

∑
k≥0

f
(
pk
)

pks

.
Theorem 5.1. Show that DV (s) =

∞∑
n=1

V (n)
ns =

∏
p

(
1− a

ps

)−1
where V (n) = aΩ(n), a 6= 1, n >

1, V (n) = 1, a = 1, n = 1; Ω (n) being the total number of prime numbers in the factorization
of n, including the multiplicity of the primes.

Proof. Since

DV (s) =
∞∑
n=1

V (n)

ns
=
∏
p

(
V (1) +

V (p)

ps
+
V (p2)

p2s + · · · V (p
k)

pks
+ · · ·

)
.

Since V (n) is a completely multiplicative function, therefore V (pk) = V (p)
k.

=
∏
p

(
1 +

a

ps
+

a2

p2s + · · ·
ak

pks
+ · · ·

)

=
∏
p

(
1

1− ap−s

)
=
∏
p

(
1− a

ps

)−1

.

For Re(s) > Re(s0) so long as |ap−s| < 1 for all a, p.. Therefore if a > 1 and finite then

DV (s) =
∞∑
n=1

V (n)

ns
=
∏
p

(
1− a

ps

)−1

. Since the deletion or addition of finite number of terms does not effect the behavior of the
series. Therefore if a> 1 and finite then DV (s) in above equation will convergent for all prime
ps > |a| , a 6= 1. 2
Deduction 1: When a = −1, is substituted in above obtained result we have

DV (s) =
∞∑
n=1

V (n)

ns

=
∏
p

(
1 +

1
ps

)−1

=
∏
p

(
1− 1

p2s

)−1(
1− 1

ps

)

=

∏
p

(
1− 1

p2s

)−1

∏
p

(
1− 1

ps

)−1 =
ζ (2s)
ζ (s)



504 K. L. Verma

Hence DV (s) = Dλ (s) ( of Liouville function) whena = −1.

Deduction 2: When a = 1, is substituted in above obtained result we haveDV (s) =
∞∑
n=1

V (n)
ns =∏

p

(
1− 1

ps

)−1
= ζ (s) Hence DV (s) = DI (s) ( of identity function) when a = 1, .

Theorem 5.2. Let V (n) is a completely multiplicative, therefore
∣∣∣V (n)−1

∣∣∣ ≤ |V (n)| for all

n ≥ 1. Show that DV (s) =
∞∑
n=1

V (n)
ns =

∏
p

(
1− a

ps

)−1
where V (n) = aΩ(n), a 6= 1, n > 1,

V (n) = 1, a = 1, n = 1; Ω (n) being the total number of prime numbers in the factorization of
n, including the multiplicity of the primes.

Proof: Since V (n) is a completely multiplicative. Therefore

V (n)
−1

= µ (n)V (n)

=

{
(−1)kV (p)k, if n = p1p2 · · · pk

0 otherwise

∴
∣∣∣V (n)−1

∣∣∣ = |µ (n)V (n)| ≤ |V (n)| .
Hence the result. 2

6 Conclusions

As this general exponential function V (n) is a newly introduced arithmetic function that appears
to contains much prospective and therefore various characteristics of the analytic number theory
and it can utilize as mathematical analysis tool to establish various other results. Further, V (n)
can initialize and institute new properties in the analytic number theory.
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