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Abstract. In this paper, we extend the notion of IK convergence of sequence of real numbers
to IK−st convergence by using the notion of K−statistical convergence. We investigate some of
its properties and study its relation with some other known types of convergence.

1 Introduction

The notion of statistical convergence was first introduced in the year 1951 independently by Fast
[9] and Steinhaus [23] in connection with summability theory. Following them, the concept was
investigated by Fridy ([10],[11]), Salat [19], and many others from the sequence space point of
view. In 2000, the concept of I and I∗−convergence was introduced by Kostrkyo and Salat
[15] mainly as an extension of statistical convergence. Since then rapid development occurred
in this direction due to Kostorkyo [14], Demicri[8], Gogola[12], Gurdal[18], Tripathy[20], and
many others. IK−convergence was one of the tremendous extensions of I∗−convergence by
M. Macaj and M. Sleziak in [16], where two ideals I and K got involved. In the case of
I∗−convergence, the type of convergence along a set from the associated filter F(I) was the
usual notion of convergence. But in the case of IK−convergence that usual convergence was
replaced by ideal convergence for some ideal K and eventually I∗−convergence becomes a par-
ticular kind of IK−convergence for K = If . For more on IK−convergence, one may refer
([1],[2],[3],[5],[6],[13]).

On the other hand in 2011, Das et. al.[4] introduced the notion of I−statistical convergence
as a generalization of statistical convergence. Later on, several investigations in this direction
have been made by Debnath [7], Mursaleen [17], Savas ([21],[22]), and many others.

In this paper, using the notion of IK−convergence and I−statistical convergence, we intro-
duce the notion of IK−st convergence. We study various properties of the newly introduced
convergence concept and relations with some existing notions of convergence.

2 Definitions and Preliminaries

Definition 2.1. [11] IfK is a subset of the positive integers N, thenKn denotes the set {k ∈ K : k ≤ n}.
The natural density of K is given by d(K) = lim

n→∞
|Kn|
n .

Definition 2.2. [11] A sequence x = (xn) is said to be statistically convergent to l if for every
ε > 0, the set A (ε) = {k ∈ N :| xk − l |≥ ε} has natural density zero. l is called the statistical
limit of the sequence (xn) and symbolically st− lim x = l.

Definition 2.3. [15] A family I ⊂ 2X of subsets of a nonempty set X is said to be an ideal in
X if and only if (i) ∅ ∈ I (ii) A,B ∈ I implies A ∪ B ∈ I (Additive) and (iii) A ∈ I, B ⊂ A
implies B ∈ I (Hereditary).



506 Chiranjib Choudhury and Shyamal Debnath

If ∀x ∈ X, {x} ∈ I then I is said to be admissible. Also, I is said to be non-trivial if X /∈ I
and I 6= {∅}.

Some standard examples of ideal are given below:
(i) The set If of all finite subsets of N is an admissible ideal in N.
(ii) The set Id of all subsets of natural numbers having natural density 0 is an admissible ideal in
N.
(iii) The set Ic = {A ⊆ N :

∑
a∈A a

−1 <∞} is an admissible ideal in N.

(iv) Suppose N =
∞⋃
p=1

Dp be a decomposition of N (for i 6= j, Di ∩Dj = ∅). Then the set I of

all subsets of N, which intersects finitely many Dp’s forms an ideal in N.
More important examples can be found in [12] and [14].

Definition 2.4. [15] A family F ⊂ 2X of subsets of a nonempty set X is said to be a filter in X
if and only if (i) ∅ /∈ F (ii) M,N ∈ F implies M ∩ N ∈ F and (iii) M ∈ F , N ⊃ M implies
N ∈ F .

If I is a proper non-trivial ideal in X , then F(I) = {M ⊂ X : ∃A ∈ I s.t M = X \A} is a
filter in X . It is called the filter associated with the ideal I.

Definition 2.5. [15] A sequence x = (xk) is said to be I−convergent to l if and only if for every
ε > 0, the set {k ∈ N : |xk − l| ≥ ε} belongs to I. The real number l is called the I−limit of the
sequence x = (xk). Symbolically, I − limx = l.

Definition 2.6. [15] Let I be an admissible ideal in N. A sequence x = (xk) is said to be
I∗−convergent to l, if there exixts a set M = {m1 < m2 < ... < mk < ...} in the associated
filter F(I) such that lim

k
xmk

= l.

Definition 2.7. [4] A sequence x = (xk) is said to be I−statistically convergent to l if and only
if for every ε > 0, δ > 0,

{k ∈ N :
1
k
|{n ≤ k : |xn − l| ≥ ε}| ≥ δ} ∈ I.

If a sequence x = (xk) is I−statistically convergent to l, then it is denoted by I−st−limx =
l.

Theorem 2.8. ([7], Theorem 3.2) For any sequence x = (xk), st − limx = l implies I − st −
limx = l.

Theorem 2.9. ([7], Theorem 3.4) For any sequence x = (xk), I − limx = l implies I − st −
limx = l.

Definition 2.10. [16] Let I and K be two ideals in N. A sequence x = (xk) is said to be
IK−convergent to l if, there exists M ∈ F(I) such that the sequence y = (yk) defined by

yk =

{
xk, k ∈M
l, k /∈M

is K−convergent to l.

If we consider K = If , then the IK−convergence concept coincides with I∗−convergence
[15]. Further, if we take K = Id, then we get I∗−statistical convergence which was introduced
by Debnath and Rakshit in [7]. Note that IId−convergence implies I−statistical convergence.

Throughout the paper, unless stated, the symbols I, K, I1, I2, K1, and K2 stands for non-
trivial admissible ideal in N, and the sequences that we have considered are real sequences.

3 Main Results

Definition 3.1. A sequence x = (xk) is said to be IK−statistical convergent (in short IK−st
convergent) to a real number l, if there exists a set M ∈ F(I) such that the sequence y = (yk)
defined as,
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yk =

{
xk, k ∈M
l, k /∈M

is K−statistical convergent to l. Symbolically we write, IK−st − limx = l.

Example 3.2. Consider the decomposition of N given by N =
∞⋃
p=1

Dp, where Dp = {2p−1(2q −

1) : q = 1, 2, 3, ..}. Let I be the ideal consisting of all subsets of N which intersects a finite
number of Dp’s. Consider the sequence x = (xk) defined by xk = 1

p if k ∈ Dp. Then the
sequence is IK−stconvergent to 0, for I = K.

Theorem 3.3. For any sequence x = (xk), if IK − limx = l, then IK−st − limx = l.

Proof. The proof follows from the fact that K − limx = l implies K − st limx = l, using
Theorem 2.9.

But the converse of the above theorem is not necessarily true.

Example 3.4. Consider I = K = If . Then the sequence x = (xk) defined by

xk =

{
0, k = m2,m ∈ N
1, otherwise

is IK−stconvergent to 1 but not IK−convergent to 1.

Theorem 3.5. For any sequence x = (xk), if I∗ − st− limx = l then IK−st − limx = l.

Proof. The proof follows from the fact that st− limx = l implies K− st limx = l, by Theorem
2.8.

It is clear from Theorem 3.3 and Theorem 3.5 that IK−st convergence of a sequence is a
generalization of IK convergence as well as I∗ − st−convergence.

Theorem 3.6. Suppose x = (xk) be a sequence such that IK−st − limx = l. Then, l is unique.

Proof. If possible suppose IK−st− limx = l1 and IK−st− limx = l2 for some l1 6= l2. Then by
Definition 3.1, there exists M,N ∈ F(I) such that the sequences y = (yk) and z = (zk) defined
by,

yk =

{
xk, k ∈M
l1, k /∈M

and zk =

{
xk, k ∈ N
l2, k /∈ N

are K − st convergent to l1 and l2 respectively. In other words, for every ε > 0, δ > 0, the two
sets A1, A2 ∈ F(K) where

A1 = {k ∈ N :
1
k
| {n ≤ k : |yn − l1| ≥ ε} |< δ}

and
A2 = {k ∈ N :

1
k
| {n ≤ k : |zn − l2| ≥ ε} |< δ}.

Eventually, A1 ∩ A2 ∈ F(K) and is an infinite set. Choose ε = |l1−l2|
3 and a natural number

p ∈ A1 ∩ A2 large enough to gurantee the existence of an element ξ ∈ [1, p] ∩M ∩ N and a δ
small enough to agree |yξ − l1| < ε as well as |zξ − l2| < ε. Thus we have,

3ε = |l1 − l2| ≤ |xξ − l1|+ |xξ − l2|
= |yξ − l1|+ |zξ − l2|
< ε+ ε = 2ε, which is a contradiction.

Hence we must have l1 = l2. This completes the proof.
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Theorem 3.7. Let I,K be non-trivial ideal in N such that IK−st−limx = l1 and IK−st−lim y =
l2. Then, (i) IK−st − lim(x+ y) = l1 + l2 and (ii) IK−st − lim(xy) = l1l2.

Proof. Let IK−st − limx = l1 and IK−st − lim y = l2. Then, by Definition 3.1, there exists
M,N ∈ F(I) such that the sequences u = (uk) and v = (vk) defined by

uk =

{
xk, k ∈M
l1, k /∈M

and vk =

{
yk, k ∈ N
l2, k /∈ N

are respectively K− st convergent to l1 and l2. Consequently the sequence u+ v = (uk + vk) is
also K − st convergent to l1 + l2. Therefore ∀ε > 0, δ > 0,

{k ∈ N :
1
k
| {n ≤ k : |(un + vn)− (l1 + l2)| ≥ ε} |≥ δ} ∈ K. (3.1)

Now consider M1 =M ∩N ∈ F(I) and construct the sequence w = (wk) defined by

wk =

{
xk + yk, k ∈M1

l1 + l2, k /∈M1
.

Then the following inclusion holds good

{k ∈ N :
1
k
| {n ≤ k : |(un + vn)− (l1 + l2)| ≥ ε} |≥ δ}

⊇ {k ∈ N :
1
k
| {n ≤ k : |wn − (l1 + l2)| ≥ ε} |≥ δ}.

(3.2)

From (3.1) and (3.2) we can conclude that

{k ∈ N :
1
k
| {n ≤ k : |wn − (l1 + l2)| ≥ ε} |≥ δ} ∈ K;

i.e., w = (wk) is K − st convergent to l1 + l2. Hence we have IK−st − lim(x+ y) = l1 + l2.
(ii) The proof is similar to that of (i), so omitted.

Theorem 3.8. Suppose x = (xk) be a sequence such thatK−st limx = l. Then IK−st−limx =
l.

Proof. Since K − st− limx = l, so for every ε > 0, δ > 0,

{k ∈ N :
1
k
| {n ≤ k : |xn − l| ≥ ε} |≥ δ} ∈ K. (3.3)

Choose M = N from F(I). Consider the sequence y = (yk) defined by yk = xk, k ∈ M . Then
using (3.3) we get,

∀ε > 0, δ > 0, {k ∈ N :
1
k
| {n ≤ k : |yn − l| ≥ ε} |≥ δ} ∈ K;

i.e., y = (yk) is K − st−convergent to l. Hence IK−st − limx = l.

Theorem 3.9. Suppose x = (xk) be a sequence such that st− limx = l. Then IK−st− limx = l.

Proof. The proof follows from the fact that st− limx = l implies K− st limx = l (by Theorem
2.8) and applying Theorem 3.8.

But the converse of the above theorem is not necessarily true. Example 3.2 serves as the
counterexample.

Theorem 3.10. Suppose x = (xk) be a sequence such thatK−limx = l. Then IK−st−limx = l.

Proof. The proof follows from the fact that K− limx = l implies K− st limx = l (by Theorem
2.9) and applying Theorem 3.8.
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But the converse of the above theorem is not true.

Example 3.11. Consider the ideals Id = {A ⊆ N : d(A) = 0} and Ic = {A ⊆ N :
∑
a∈A a

−1 <
∞}. Let x = (xk) be the sequence defined as

xk =

{
1, k is prime
0, k is not prime

.

Then x = (xk) is IdIc−st convergent to 0.
But we claim that x = (xk) is not Ic−convergent to 0. For if Ic − limx = 0, then for ε = 1

2 , the
set {k ∈ N : |xk − 0| ≥ 1

2} = set of all prime numbers ∈ Ic, a contradiction.

Theorem 3.12. Let I, I1, I2,K,K1,K2 be admissible ideals in N satisfying I1 ⊆ I2 and K1 ⊆
K2. Then,
(i) IK−st1 − limx = l implies IK−st2 − limx = l;
(ii) IK1−st − limx = l implies IK2−st − limx = l.

Proof. (i) Suppose IK−st1 − limx = l. Then by Definition 3.1, there exists M ∈ F(I1) such that

the sequence y = (yk) defined as, yk =

{
xk, k ∈M
l, k /∈M

is K−statistical convergent to l. Now

since M ∈ F(I1), so N \M ∈ I1 and therefore by hypothesis N \M ∈ I2 which again implies
M ∈ F(I2). Hence we must have IK−st2 − limx = l.

(ii) Suppose IK1−st−limx = l. Then, by Definition 3.1, there existsM ∈ F(I) such that the se-

quence y = (yk) defined as, yk =

{
xk, k ∈M
l, k /∈M

satisfies the following property ∀ε > 0, δ > 0,

{k ∈ N :
1
k
| {n ≤ k : |yn − l| ≥ ε} |≥ δ} ∈ K1.

Now by hypothesis the inclusion K1 ⊆ K2 holds, so we must have ∀ε > 0, δ > 0,

{k ∈ N :
1
k
| {n ≤ k : |yn − l| ≥ ε} |≥ δ} ∈ K2.

Hence IK2−st − limx = l.

Theorem 3.13. Let I andK be two admissible ideal in N such thatK ⊆ I. Then, IK−st−limx =
l implies I − st− limx = l.

Proof. Suppose K ⊆ I and IK−st − limx = l. Then, there exists a set M ∈ F(I) such that the

sequence y = (yk) defined as, yk =

{
xk, k ∈M
l, k /∈M

has the following property ∀ε > 0, δ > 0,

A = {k ∈ N :
1
k
| {n ≤ k : |yn − l| ≥ ε} |≥ δ} ∈ K ⊆ I.

Therefore we must have ∀ε > 0, δ > 0,

{k ∈ N :
1
k
| {n ≤ k : |xn − l| ≥ ε} |≥ δ} ⊆ (N \M) ∪A ∈ I.

Hence, I − st− limx = l.
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