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Abstract Let G = (V (G), E(G)) be a graph and let g : V (G)→ S3 be a function. For each
edge xy assign the label r where r is the remainder when o(g(x)) is divided by o(g(y)) or o(g(y))
is divided by o(g(x)) according as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is
called a group S3 cordial remainder labeling of G if |vg(x)−vg(y)| ≤ 1 and |eg(1)− eg(0)| ≤ 1,
where vg(x) denotes the number of vertices labeled with x and eg(i) denotes the number of edges
labeled with i (i = 0, 1). A graph G which admits a group S3 cordial remainder labeling is called
a group S3 cordial remainder graph. In this paper, we prove that lotus inside a circle, double fan,
ladder, slanting ladder and triangular ladder graphs admit a group S3 cordial remainder labeling.

1 Introduction

Graphs considered here are finite, undirected and simple. The vertex set and the edge set of a
graph G are denoted by V (G) and E(G) respectively. Let A be a group. The order of a ∈ A
is the least positive integer n such that an = e. We denote the order of a by o(a). Terms not
defined here are taken from Harary [3]. Graph labeling was first introduced in 1960’s. Most
of the graph labeling trace their origins in the paper presented by Alex Rosa in 1967 [9]. The
complete survey of graph labeling is in [2]. Cordial labeling is a weaker version of graceful
labeling and harmonious labeling introduced by I. Cahit in [1]. Lourdusamy et al. [5] introduced
the concept of the group S3 cordial remainder labeling and they proved that path, cycle, star,
bistar, complete bipartite graph, wheel, fan, comb and crown graph admit a group S3 cordial
remainder labeling. In [4], they proved that shadow graph of cycle and path, splitting graph of
cycle, armed crown, umbrella graph and dumbbell graph admit a group S3 cordial remainder
labeling. Also they proved that snake related graphs are a group S3 cordial remainder graphs. In
[6, 7, 8], they investigated the behaviour of group S3 cordial remainder labeling of subdivision
of star, subdivision of bistar, subdivision of wheel, subdivision of comb, subdivision of crown,
subdivision of fan, subdivision of ladder, helm graph, flower graph, closed helm graph, gear
graph, sunflower graph, triangular snake, quadrilateral snake, square of the path, duplication of
a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path
and cycle graph, total graph of cycle and path graph.

The join of two graphs G1 and G2 is denoted by G1+G2 and whose vertex set is V (G1+G2) =
V (G1)∪V (G2) and edge set is E(G1 +G2) = E(G1)∪E(G2)∪{uv : u ∈ V (G1), v ∈ V (G2)}.
The double fan DFn is defined as Pn + 2K1.

The lotus inside a circle LCn is obtained from the cycle Cn : v1v2 · · · vnv1 and a star K1,n
with central vertex u and the end vertices u1u2 · · ·un by joining each ui to vi and vi+1(mod n).

The Cartesian product G1×G2 of two graphs is defined to be the graph with vertex set V1×V2
and two vertices u = (u1, u2) and v = (v1, v2) are adjacent in G1 ×G2 if either u1 = v1 and u2
is adjacent to v2 or u2 = v2 and u1 is adjacent to v1. The ladder Ln is defined as Pn × P2. The
slanting ladder SLn is the graph obtained from two paths u1, u2, · · · , un and v1, v2, · · · , vn by
joining each ui with vi+1 for 1 ≤ i ≤ n − 1. The triangular ladder TLn is the graph obtained
from Ln by adding the edges uivi+1, 1 ≤ i ≤ n− 1, where ui and vi, 1 ≤ i ≤ n are the vertices
of Ln such that u1, u2, · · · , un and v1, v2, · · · , vn are two paths of length n in the graph Ln.
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2 Group S3 Cordial Remainder Graphs

Definition 2.1. Consider the symmetric group S3. Let the elements of S3 be e, a, b, c, d, f where

e =

(
1 2 3
1 2 3

)
a =

(
1 2 3
1 3 2

)
b =

(
1 2 3
3 2 1

)

c =

(
1 2 3
2 1 3

)
d =

(
1 2 3
2 3 1

)
f =

(
1 2 3
3 1 2

)
We have o(e) = 1, o(a) = o(b) = o(c) = 2, o(d) = o(f) = 3.

Definition 2.2. Let G = (V (G), E(G)) be a graph and let g : V (G)→ S3 be a function. For each
edge xy assign the label r where r is the remainder when o(g(x)) is divided by o(g(y)) or o(g(y))
is divided by o(g(x)) according as o(g(x)) ≥ o(g(y)) or o(g(y)) ≥ o(g(x)). The function g is
called a group S3 cordial remainder labeling of G if |vg(x)−vg(y)| ≤ 1 and |eg(1)− eg(0)| ≤ 1,
where vg(x) denotes the number of vertices labeled with x and eg(i) denotes the number of
edges labeled with i (i = 0, 1). A graph G which admits a group S3 cordial remainder labeling
is called a group S3 cordial remainder graph.

Example 2.3. A group S3 cordial remainder labeling of graph is given in Figure 1.

Figure 1.

Theorem 2.4. Lotus inside a circle LCn is a group S3 cordial remainder graph for n ≥ 3.

Proof. Let V (LCn) = {u, ui, vi : 1 ≤ i ≤ n} and E(LCn) = {uui, uivi : 1 ≤ i ≤ n}
⋃
{viui+1,

vivi+1 : 1 ≤ i ≤ n − 1}
⋃
{vnu1, vnv1}. Therefore, |V (LCn)| = 2n + 1 and |E(LCn)| = 4n.

Define g : V (LCn)→ S3 as follows:
Case 1. n = 3.

g(u) = d;

g(ui) =


a if i = 1
d if i = 2
e if i = 3 ;

g(vi) =


c if i = 1
b if i = 2
f if i = 3 .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(f) = 1, vg(d) = 2 and eg(0) = eg(1) = 6.
Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 2. n = 4.

g(u) = d;

g(ui) =


a if i = 1
c if i = 2
f if i = 3
d if i = 4 ;

g(vi) =


f if i = 1
b if i = 2
e if i = 3
c if i = 4 .

Here we have vg(a) = vg(b) = vg(e) = 1, vg(c) = vg(d) = vg(f) = 2 and eg(0) = eg(1) = 8.
Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 3. n = 5.

g(u) = d;
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g(ui) =



a if i = 1
d if i = 2
b if i = 3
c if i = 4
f if i = 5 ;

g(vi) =



a if i = 1
b if i = 2
f if i = 3
c if i = 4
e if i = 5 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(f) = 2, vg(e) = 1 and eg(0) = eg(1) = 10.
Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 4. n ≥ 6.
Subcase 4.1. n ≡ 0 (mod 6).

Let n = 6k and k ≥ 1.
g(u) = d;

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k
d if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k
b if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k
c if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k
f if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k
e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ;

g(vi) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k
b if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k
d if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k
e if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k
c if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k
f if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(f) = 2k, vg(d) = 2k + 1 and eg(0) =
eg(1) = 12k. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Subcase 4.2. n ≡ 5 (mod 6).

Let n = 6k + 5 and k ≥ 1. Assign the labels to the vertices u, ui, vi for 1 ≤ i ≤ 6k as in
Subcase 4.1 and for the remaining vertices assign the following labels:

g(ui) =



a if i = 6k + 1
d if i = 6k + 2
b if i = 6k + 3
c if i = 6k + 4
f if i = 6k + 5 ;

g(vi) =



a if i = 6k + 1
b if i = 6k + 2
f if i = 6k + 3
c if i = 6k + 4
e if i = 6k + 5 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(f) = 2k + 2, vg(e) = 2k + 1 and
eg(0) = eg(1) = 12k + 10. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Subcase 4.3. n ≡ 4 (mod 6).

Let n = 6k + 4 and k ≥ 1.
g(u) = d;

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k
b if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k
d if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k
c if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k
f if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k
e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ;
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g(vi) =



d if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k
a if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k
b if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k
f if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k
c if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k
e if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k ;

and for the remaining vertices assign the following labels:

g(ui) =


a if i = 6k + 1
f if i = 6k + 2
b if i = 6k + 3
e if i = 6k + 4 ;

g(vi) =


a if i = 6k + 1
f if i = 6k + 2
d if i = 6k + 3
c if i = 6k + 4 .

Here we have vg(b) = vg(c) = vg(e) = 2k + 1, vg(a) = vg(d) = vg(f) = 2k + 2 and
eg(0) = eg(1) = 12k + 8. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Subcase 4.4. n ≡ 3 (mod 6).

Let n = 6k + 3 and k ≥ 1. Assign the labels to the vertices u, ui, vi for 1 ≤ i ≤ 6k as in
Subcase 4.1 and for the remaining vertices assign the following labels:

g(ui) =


a if i = 6k + 1
d if i = 6k + 2
e if i = 6k + 3 ;

g(vi) =


c if i = 6k + 1
b if i = 6k + 2
f if i = 6k + 3 .

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(f) = 2k + 1, vg(d) = 2k + 2 and
eg(0) = eg(1) = 12k + 6. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Subcase 4.5. n ≡ 2 (mod 6).

Let n = 6k + 2 and k ≥ 1. We assign the labels to the vertices u, ui, vi for 1 ≤ i ≤ 6k as in
Subcase 4.3 and for the remaining vertices assign the following labels:

g(ui) =

{
a if i = 6k + 1
e if i = 6k + 2 ;

g(vi) =

{
f if i = 6k + 1
c if i = 6k + 2 .

Here we have vg(a) = vg(c) = vg(d) = vg(e) = vg(f) = 2k + 1, vg(b) = 2k and eg(0) =
eg(1) = 12k + 4. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Subcase 4.6. n ≡ 1 (mod 6).

Let n = 6k + 1 and k ≥ 1. Assign the labels to the vertices u, ui, vi for 1 ≤ i ≤ 6k as in
Subcase 4.3, except for the vertices u6k+1, v6k+1 which are labeled by f, b respectively. Here we
have vg(a) = vg(c) = vg(e) = 2k, vg(b) = vg(d) = vg(f) = 2k + 1 and eg(0) = eg(1) =
12k + 2. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.

Thus g is a group S3 cordial remainder labeling. Hence, lotus inside a circle LCn is a group
S3 cordial remainder graph for n ≥ 3.

Example 2.5. A group S3 cordial remainder labeling of LC7 is given in Figure 2.

Theorem 2.6. Double fan DFn is a group S3 cordial remainder graph for n ≥ 2.

Proof. Let V (DFn) = {v, w, ui : 1 ≤ i ≤ n} and E(DFn) = {vui, wui : 1 ≤ i ≤ n}
⋃
{uiui+1 :

1 ≤ i ≤ n− 1}. Therefore DFn is of order n+ 2 and size 3n− 1. Table 1 gives group S3 cordial
remainder labeling of DFn for 2 ≤ n ≤ 5.

Assume n ≥ 6. Define g : V (DFn)→ S3 as follows:
Case 1. n ≡ 0 (mod 6).

Let n = 6k and k ≥ 1.
g(v) = d; g(w) = a;



GROUP S3 CORDIAL REMAINDER LABELING 515

Figure 2.

Nature of n v w u1 u2 u3 u4 u5

n = 2 d a b f

n = 3 d a b c f

n = 4 d a e b f c

n = 5 d a e b d c f

Table 1.

g(ui) =



e if i ≡ 1 (mod 6) and 1 ≤ i ≤ 6k
a if i ≡ 2 (mod 6) and 1 ≤ i ≤ 6k
d if i ≡ 3 (mod 6) and 1 ≤ i ≤ 6k
b if i ≡ 4 (mod 6) and 1 ≤ i ≤ 6k
f if i ≡ 5 (mod 6) and 1 ≤ i ≤ 6k
c if i ≡ 0 (mod 6) and 1 ≤ i ≤ 6k .

Here we have vg(b) = vg(c) = vg(e) = vg(f) = k, vg(a) = vg(d) = k + 1 and eg(0) =
9k − 1, eg(1) = 9k. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 2. n ≡ 5 (mod 6).

Let n = 6k+ 5 and k ≥ 1. Assign the labels to the vertices v, w, ui for 1 ≤ i ≤ 6k as in Case
1 and for the remaining vertices assign the following labels:

g(ui) =



e if i = 6k + 1
b if i = 6k + 2
d if i = 6k + 3
c if i = 6k + 4
f if i = 6k + 5 ;

Here we have vg(a) = vg(b) = vg(c) = vg(e) = vg(f) = k + 1, vg(d) = k + 2 and eg(0) =
9k + 7, eg(1) = 9k + 7. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 3. n ≡ 4 (mod 6).

Let n = 6k+ 4 and k ≥ 1. Assign the labels to the vertices v, w, ui for 1 ≤ i ≤ 6k as in Case
1 and for the remaining vertices assign the following labels:

g(ui) =


e if i = 6k + 1
b if i = 6k + 2
f if i = 6k + 3
c if i = 6k + 4 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(e) = vg(f) = k + 1 and eg(0) =
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9k + 6, eg(1) = 9k + 5. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 4. n ≡ 3 (mod 6).

Let n = 6k+ 3 and k ≥ 1. Assign the labels to the vertices v, w, ui for 1 ≤ i ≤ 6k as in Case
1 and for the remaining vertices assign the following labels:

g(ui) =


b if i = 6k + 1
c if i = 6k + 2
f if i = 6k + 3 .

Here we have vg(a) = vg(b) = vg(c) = vg(d) = vg(f) = k + 1, vg(e) = k and eg(0) =
9k + 4, eg(1) = 9k + 4. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1.
Case 5. n ≡ 2 (mod 6).

Let n = 6k + 2 and k ≥ 1. We assign the labels to the vertices v, w, ui for 1 ≤ i ≤ 6k
as in Case 1, except that the last two vertices u6k+1, u6k+2 which is labeled by b, f respectively.
Here we have vg(a) = vg(b) = vg(d) = vg(f) = k + 1, vg(c) = vg(e) = k and eg(0) =
9k + 2, eg(1) = 9k + 3. Therefore |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.
Case 6. n ≡ 1 (mod 6).

Let n = 6k + 1 and k ≥ 1. We assign the labels to the vertices v, w, ui for 1 ≤ i ≤ 6k as in
Case 1, except that the last vertex u6k+1 which is labeled by b. Here we have vg(a) = vg(b) =
vg(d) = k + 1, vg(c) = vg(e) = vg(f) = k and eg(0) = 9k + 1, eg(1) = 9k + 1. Therefore
|vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0)− eg(1)| ≤ 1.

Thus g is a group S3 cordial remainder labeling. Hence, double fan DFn is a group S3 cordial
remainder graph for n ≥ 2.

Example 2.7. A group S3 cordial remainder labeling of DF5 is given in Figure 3.

Figure 3.

Theorem 2.8. Ladder Ln is a group S3 cordial remainder graph for every n.

Proof. Let u1, u2, · · · , un, v1, v2, · · · , vn be the vertices of the ladder Ln. Let E(Ln) = {uiui+1,
vivi+1 : 1 ≤ i ≤ n − 1} ∪ {uivi : 1 ≤ i ≤ n}. Then Ln is of order 2n and size 3n − 2. Define
g : V (Ln)→ S3 as follows:
Case 1. n is odd.

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 0 (mod 6) and 1 ≤ i ≤ n ;
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g(vi) =



f if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 0 (mod 6) and 1 ≤ i ≤ n.
Case 2. n is even.

g(ui) =



d if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 0 (mod 6) and 1 ≤ i ≤ n ;

g(vi) =



b if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 0 (mod 6) and 1 ≤ i ≤ n.

From Table 2, it is easy to verify that |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1. Therefore g is a group S3 cordial remainder labeling.
Hence, Ln is a group S3 cordial remainder graph for every n.

Nature of n vg(a) vg(b) vg(c) vg(d) vg(e) vg(f) eg(0) eg(1)
6k − 5(k ≥ 1) 2k − 1 2k − 2 2k − 2 2k − 2 2k − 2 2k − 1 9k − 9 9k − 8
6k − 4(k ≥ 1) 2k − 2 2k − 1 2k − 2 2k − 1 2k − 1 2k − 1 9k − 7 9k − 7
6k − 3(k ≥ 1) 2k − 1 2k − 1 2k − 1 2k − 1 2k − 1 2k − 1 9k − 6 9k − 5
6k − 2(k ≥ 1) 2k 2k − 1 2k − 1 2k − 1 2k − 1 2k 9k − 4 9k − 4
6k − 1(k ≥ 1) 2k − 1 2k − 1 2k 2k 2k 2k 9k − 3 9k − 2

6k(k ≥ 1) 2k 2k 2k 2k 2k 2k 9k − 1 9k − 1

Table 2.

Example 2.9. A group S3 cordial remainder labeling of L5 is given in Figure 4.

Figure 4.

Corollary 2.10. Cn × P2 is a group S3 cordial remainder graph for n ≥ 3.

Proof. The same labeling pattern as in Theorem 2.8 is followed, except that the label ‘a’ is
replaced by the label ‘d’ for the last vertex vn if n ≡ 4 (mod 6). Hence it is easy to verify that
|vg(i) − vg(j)| ≤ 1 for i, j ∈ S3 and |eg(0) − eg(1)| ≤ 1. Therefore g is a group S3 cordial
remainder labeling of Cn × P2 for n ≥ 3.
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Theorem 2.11. The slanting ladder SLn is a group S3 cordial remainder graph.

Proof. Let V (SLn) = {ui, vi : 1 ≤ i ≤ n} and E(SLn) = {vivi+1, uiui+1, uivi+1 : 1 ≤ i ≤
n− 1}. Then SLn is of order 2n and size 3n− 3. Define g : V (SLn)→ S3 as follows:

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 0 (mod 6) and 1 ≤ i ≤ n ;

g(vi) =



f if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 0 (mod 6) and 1 ≤ i ≤ n.

From Table 3, it is easy to verify that |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1. Therefore g is a group S3 cordial remainder labeling.

Nature of n vg(a) vg(b) vg(c) vg(d) vg(e) vg(f) eg(0) eg(1)
6k − 5(k ≥ 1) 2k − 1 2k − 2 2k − 2 2k − 2 2k − 2 2k − 1 9k − 9 9k − 9
6k − 4(k ≥ 1) 2k − 1 2k − 2 2k − 2 2k − 1 2k − 1 2k − 1 9k − 7 9k − 8
6k − 3(k ≥ 1) 2k − 1 2k − 1 2k − 1 2k − 1 2k − 1 2k − 1 9k − 6 9k − 6
6k − 2(k ≥ 1) 2k − 1 2k − 1 2k − 1 2k 2k 2k − 1 9k − 5 9k − 4
6k − 1(k ≥ 1) 2k − 1 2k 2k 2k 2k 2k − 1 9k − 3 9k − 3

6k(k ≥ 1) 2k 2k 2k 2k 2k 2k 9k − 1 9k − 2

Table 3.

Example 2.12. A group S3 cordial remainder labeling of SL8 is given in Figure 5.

Figure 5.

Theorem 2.13. The triangular ladder TLn is a group S3 cordial remainder graph.

Proof. Let V (TLn) = {ui, vi : 1 ≤ i ≤ n} and E(TLn) = {uiui+1, vivi+1, uivi+1 : 1 ≤ i ≤
n− 1}

⋃
{uivi : 1 ≤ i ≤ n}. Then TLn is of order 2n and size 4n− 3. Define g : V (TLn)→ S3

as follows:

g(ui) =



a if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

f if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 0 (mod 6) and 1 ≤ i ≤ n ;
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g(vi) =



f if i ≡ 1 (mod 6) and 1 ≤ i ≤ n

c if i ≡ 2 (mod 6) and 1 ≤ i ≤ n

d if i ≡ 3 (mod 6) and 1 ≤ i ≤ n

a if i ≡ 4 (mod 6) and 1 ≤ i ≤ n

e if i ≡ 5 (mod 6) and 1 ≤ i ≤ n

b if i ≡ 0 (mod 6) and 1 ≤ i ≤ n.

From Table 4, it is easy to verify that |vg(i)− vg(j)| ≤ 1 for i, j ∈ S3 and
|eg(0)− eg(1)| ≤ 1. Therefore g is a group S3 cordial remainder labeling.

Nature of n vg(a) vg(b) vg(c) vg(d) vg(e) vg(f) eg(0) eg(1)
n = 3k − 2(k ≥ 1) k k − 1 k − 1 k − 1 k − 1 k 6k − 6 6k − 5
n = 3k − 1(k ≥ 1) k k − 1 k k − 1 k k 6k − 3 6k − 4
n = 3k(k ≥ 1) k k k k k k 6k − 1 6k − 2

Table 4.

Example 2.14. A group S3 cordial remainder labeling of TL7 is given in Figure 6.

Figure 6.
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