SOME RESULTS ON GROUP S_{3} CORDIAL REMAINDER LABELING

A. Lourdusamy, S. Jenifer Wency and F. Patrick
Communicated by Ayman Badawi

MSC 2010 Classifications: 05 C 78.
Keywords and phrases: Group S_{3} cordial remainder labeling, ladder, double fan.

Abstract

Let $G=(V(G), E(G))$ be a graph and let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_{3} cordial remainder labeling of G if $\left|v_{g}(x)-v_{g}(y)\right| \leq 1$ and $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$, where $v_{g}(x)$ denotes the number of vertices labeled with x and $e_{g}(i)$ denotes the number of edges labeled with $i(i=0,1)$. A graph G which admits a group S_{3} cordial remainder labeling is called a group S_{3} cordial remainder graph. In this paper, we prove that lotus inside a circle, double fan, ladder, slanting ladder and triangular ladder graphs admit a group S_{3} cordial remainder labeling.

1 Introduction

Graphs considered here are finite, undirected and simple. The vertex set and the edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. Let A be a group. The order of $a \in A$ is the least positive integer n such that $a^{n}=e$. We denote the order of a by $o(a)$. Terms not defined here are taken from Harary [3]. Graph labeling was first introduced in 1960's. Most of the graph labeling trace their origins in the paper presented by Alex Rosa in 1967 [9]. The complete survey of graph labeling is in [2]. Cordial labeling is a weaker version of graceful labeling and harmonious labeling introduced by I. Cahit in [1]. Lourdusamy et al. [5] introduced the concept of the group S_{3} cordial remainder labeling and they proved that path, cycle, star, bistar, complete bipartite graph, wheel, fan, comb and crown graph admit a group S_{3} cordial remainder labeling. In [4], they proved that shadow graph of cycle and path, splitting graph of cycle, armed crown, umbrella graph and dumbbell graph admit a group S_{3} cordial remainder labeling. Also they proved that snake related graphs are a group S_{3} cordial remainder graphs. In [$6,7,8]$, they investigated the behaviour of group S_{3} cordial remainder labeling of subdivision of star, subdivision of bistar, subdivision of wheel, subdivision of comb, subdivision of crown, subdivision of fan, subdivision of ladder, helm graph, flower graph, closed helm graph, gear graph, sunflower graph, triangular snake, quadrilateral snake, square of the path, duplication of a vertex by a new edge in path and cycle graphs, duplication of an edge by a new vertex in path and cycle graph, total graph of cycle and path graph.

The join of two graphs G_{1} and G_{2} is denoted by $G_{1}+G_{2}$ and whose vertex set is $V\left(G_{1}+G_{2}\right)=$ $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set is $E\left(G_{1}+G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{u v: u \in V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. The double fan $D F_{n}$ is defined as $P_{n}+2 K_{1}$.

The lotus inside a circle $L C_{n}$ is obtained from the cycle $C_{n}: v_{1} v_{2} \cdots v_{n} v_{1}$ and a star $K_{1, n}$ with central vertex u and the end vertices $u_{1} u_{2} \cdots u_{n}$ by joining each u_{i} to v_{i} and $v_{i+1}(\bmod n)$.

The Cartesian product $G_{1} \times G_{2}$ of two graphs is defined to be the graph with vertex set $V_{1} \times V_{2}$ and two vertices $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if either $u_{1}=v_{1}$ and u_{2} is adjacent to v_{2} or $u_{2}=v_{2}$ and u_{1} is adjacent to v_{1}. The ladder L_{n} is defined as $P_{n} \times P_{2}$. The slanting ladder $S L_{n}$ is the graph obtained from two paths $u_{1}, u_{2}, \cdots, u_{n}$ and $v_{1}, v_{2}, \cdots, v_{n}$ by joining each u_{i} with v_{i+1} for $1 \leq i \leq n-1$. The triangular ladder $T L_{n}$ is the graph obtained from L_{n} by adding the edges $u_{i} v_{i+1}, 1 \leq i \leq n-1$, where u_{i} and $v_{i}, 1 \leq i \leq n$ are the vertices of L_{n} such that $u_{1}, u_{2}, \cdots, u_{n}$ and $v_{1}, v_{2}, \cdots, v_{n}$ are two paths of length n in the graph L_{n}.

2 Group S_{3} Cordial Remainder Graphs

Definition 2.1. Consider the symmetric group S_{3}. Let the elements of S_{3} be e, a, b, c, d, f where

$$
\begin{aligned}
& e=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right) \quad a=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right) \quad b=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right) \\
& c=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) d=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \quad f=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
\end{aligned}
$$

We have $o(e)=1, o(a)=o(b)=o(c)=2, o(d)=o(f)=3$.
Definition 2.2. Let $G=(V(G), E(G))$ be a graph and let $g: V(G) \rightarrow S_{3}$ be a function. For each edge $x y$ assign the label r where r is the remainder when $o(g(x))$ is divided by $o(g(y))$ or $o(g(y))$ is divided by $o(g(x))$ according as $o(g(x)) \geq o(g(y))$ or $o(g(y)) \geq o(g(x))$. The function g is called a group S_{3} cordial remainder labeling of G if $\left|v_{g}(x)-v_{g}(y)\right| \leq 1$ and $\left|e_{g}(1)-e_{g}(0)\right| \leq 1$, where $v_{g}(x)$ denotes the number of vertices labeled with x and $e_{g}(i)$ denotes the number of edges labeled with $i(i=0,1)$. A graph G which admits a group S_{3} cordial remainder labeling is called a group S_{3} cordial remainder graph.

Example 2.3. A group S_{3} cordial remainder labeling of graph is given in Figure 1.

Figure 1.

Theorem 2.4. Lotus inside a circle $L C_{n}$ is a group S_{3} cordial remainder graph for $n \geq 3$.
Proof. Let $V\left(L C_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L C_{n}\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\} \bigcup\left\{v_{i} u_{i+1}\right.$, $\left.v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \bigcup\left\{v_{n} u_{1}, v_{n} v_{1}\right\}$. Therefore, $\left|V\left(L C_{n}\right)\right|=2 n+1$ and $\left|E\left(L C_{n}\right)\right|=4 n$. Define $g: V\left(L C_{n}\right) \rightarrow S_{3}$ as follows:
Case 1. $n=3$.

$$
\begin{aligned}
& g(u)=d ; \\
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
d & \text { if } i=2 \\
e & \text { if } i=3 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}c & \text { if } i=1 \\
b & \text { if } i=2 \\
f & \text { if } i=3 .\end{cases} \right.
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=1, v_{g}(d)=2$ and $e_{g}(0)=e_{g}(1)=6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n=4$.

$$
\begin{aligned}
& g(u)=d ; \\
& g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
c & \text { if } i=2 \\
f & \text { if } i=3 \\
d & \text { if } i=4 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}f & \text { if } i=1 \\
b & \text { if } i=2 \\
e & \text { if } i=3 \\
c & \text { if } i=4 .\end{cases} \right.
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(e)=1, v_{g}(c)=v_{g}(d)=v_{g}(f)=2$ and $e_{g}(0)=e_{g}(1)=8$.
Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n=5$.

$$
g(u)=d
$$

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=1 \\
d & \text { if } i=2 \\
b & \text { if } i=3 \\
c & \text { if } i=4 \\
f & \text { if } i=5 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}a & \text { if } i=1 \\
b & \text { if } i=2 \\
f & \text { if } i=3 \\
c & \text { if } i=4 \\
e & \text { if } i=5\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(f)=2, v_{g}(e)=1$ and $e_{g}(0)=e_{g}(1)=10$.
Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 4. $n \geq 6$.
Subcase 4.1. $n \equiv 0(\bmod 6)$.
Let $n=6 k$ and $k \geq 1$.

$$
\begin{aligned}
& g(u)=d ; \\
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{aligned}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=2 k, v_{g}(d)=2 k+1$ and $e_{g}(0)=$ $e_{g}(1)=12 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.2. $n \equiv 5(\bmod 6)$.
Let $n=6 k+5$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase 4.1 and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
f & \text { if } i=6 k+5 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4 \\
e & \text { if } i=6 k+5\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(f)=2 k+2, v_{g}(e)=2 k+1$ and $e_{g}(0)=e_{g}(1)=12 k+10$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.3. $n \equiv 4(\bmod 6)$.
Let $n=6 k+4$ and $k \geq 1$.

$$
\begin{aligned}
& g(u)=d ; \\
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
\end{aligned}
$$

$$
g\left(v_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ a & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
$$

and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2 \\
b & \text { if } i=6 k+3 \\
e & \text { if } i=6 k+4
\end{array} \quad g\left(v_{i}\right)= \begin{cases}a & \text { if } i=6 k+1 \\
f & \text { if } i=6 k+2 \\
d & \text { if } i=6 k+3 \\
c & \text { if } i=6 k+4\end{cases}\right.
$$

Here we have $v_{g}(b)=v_{g}(c)=v_{g}(e)=2 k+1, v_{g}(a)=v_{g}(d)=v_{g}(f)=2 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+8$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase 4.1 and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
d & \text { if } i=6 k+2 \\
e & \text { if } i=6 k+3 ;
\end{array} \quad g\left(v_{i}\right)= \begin{cases}c & \text { if } i=6 k+1 \\
b & \text { if } i=6 k+2 \\
f & \text { if } i=6 k+3\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=2 k+1, v_{g}(d)=2 k+2$ and $e_{g}(0)=e_{g}(1)=12 k+6$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.5. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 1$. We assign the labels to the vertices u, u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase 4.3 and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)=\left\{\begin{array}{ll}
a & \text { if } i=6 k+1 \\
e & \text { if } i=6 k+2
\end{array} \quad g\left(v_{i}\right)= \begin{cases}f & \text { if } i=6 k+1 \\
c & \text { if } i=6 k+2\end{cases}\right.
$$

Here we have $v_{g}(a)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=2 k+1, v_{g}(b)=2 k$ and $e_{g}(0)=$ $e_{g}(1)=12 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Subcase 4.6. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 1$. Assign the labels to the vertices u, u_{i}, v_{i} for $1 \leq i \leq 6 k$ as in Subcase 4.3, except for the vertices $u_{6 k+1}, v_{6 k+1}$ which are labeled by f, b respectively. Here we have $v_{g}(a)=v_{g}(c)=v_{g}(e)=2 k, v_{g}(b)=v_{g}(d)=v_{g}(f)=2 k+1$ and $e_{g}(0)=e_{g}(1)=$ $12 k+2$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Thus g is a group S_{3} cordial remainder labeling. Hence, lotus inside a circle $L C_{n}$ is a group S_{3} cordial remainder graph for $n \geq 3$.

Example 2.5. A group S_{3} cordial remainder labeling of $L C_{7}$ is given in Figure 2.

Theorem 2.6. Double fan $D F_{n}$ is a group S_{3} cordial remainder graph for $n \geq 2$.

Proof. Let $V\left(D F_{n}\right)=\left\{v, w, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(D F_{n}\right)=\left\{v u_{i}, w u_{i}: 1 \leq i \leq n\right\} \bigcup\left\{u_{i} u_{i+1}\right.$: $1 \leq i \leq n-1\}$. Therefore $D F_{n}$ is of order $n+2$ and size $3 n-1$. Table 1 gives group S_{3} cordial remainder labeling of $D F_{n}$ for $2 \leq n \leq 5$.

Assume $n \geq 6$. Define $g: V\left(D F_{n}\right) \rightarrow S_{3}$ as follows:
Case 1. $n \equiv 0(\bmod 6)$.
Let $n=6 k$ and $k \geq 1$.

$$
g(v)=\bar{d} ; g(w)=a
$$

Figure 2.

Nature of n	v	w	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}
$n=2$	d	a	b	f			
$n=3$	d	a	b	c	f		
$n=4$	d	a	e	b	f	c	
$n=5$	d	a	e	b	d	c	f

Table 1.

$$
g\left(u_{i}\right)= \begin{cases}e & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ a & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ b & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ f & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq 6 k \\ c & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq 6 k\end{cases}
$$

Here we have $v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=k, v_{g}(a)=v_{g}(d)=k+1$ and $e_{g}(0)=$ $9 k-1, e_{g}(1)=9 k$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 2. $n \equiv 5(\bmod 6)$.
Let $n=6 k+5$ and $k \geq 1$. Assign the labels to the vertices v, w, u_{i} for $1 \leq i \leq 6 k$ as in Case 1 and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\ b & \text { if } i=6 k+2 \\ d & \text { if } i=6 k+3 \\ c & \text { if } i=6 k+4 \\ f & \text { if } i=6 k+5\end{cases}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(e)=v_{g}(f)=k+1, v_{g}(d)=k+2$ and $e_{g}(0)=$ $9 k+7, e_{g}(1)=9 k+7$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 3. $n \equiv 4(\bmod 6)$.
Let $n=6 k+4$ and $k \geq 1$. Assign the labels to the vertices v, w, u_{i} for $1 \leq i \leq 6 k$ as in Case 1 and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)= \begin{cases}e & \text { if } i=6 k+1 \\ b & \text { if } i=6 k+2 \\ f & \text { if } i=6 k+3 \\ c & \text { if } i=6 k+4\end{cases}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(e)=v_{g}(f)=k+1$ and $e_{g}(0)=$
$9 k+6, e_{g}(1)=9 k+5$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 4. $n \equiv 3(\bmod 6)$.
Let $n=6 k+3$ and $k \geq 1$. Assign the labels to the vertices v, w, u_{i} for $1 \leq i \leq 6 k$ as in Case 1 and for the remaining vertices assign the following labels:

$$
g\left(u_{i}\right)= \begin{cases}b & \text { if } i=6 k+1 \\ c & \text { if } i=6 k+2 \\ f & \text { if } i=6 k+3\end{cases}
$$

Here we have $v_{g}(a)=v_{g}(b)=v_{g}(c)=v_{g}(d)=v_{g}(f)=k+1, v_{g}(e)=k$ and $e_{g}(0)=$ $9 k+4, e_{g}(1)=9 k+4$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 5. $n \equiv 2(\bmod 6)$.
Let $n=6 k+2$ and $k \geq 1$. We assign the labels to the vertices v, w, u_{i} for $1 \leq i \leq 6 k$ as in Case 1, except that the last two vertices $u_{6 k+1}, u_{6 k+2}$ which is labeled by b, f respectively. Here we have $v_{g}(a)=v_{g}(b)=v_{g}(d)=v_{g}(f)=k+1, v_{g}(c)=v_{g}(e)=k$ and $e_{g}(0)=$ $9 k+2, e_{g}(1)=9 k+3$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.
Case 6. $n \equiv 1(\bmod 6)$.
Let $n=6 k+1$ and $k \geq 1$. We assign the labels to the vertices v, w, u_{i} for $1 \leq i \leq 6 k$ as in Case 1, except that the last vertex $u_{6 k+1}$ which is labeled by b. Here we have $v_{g}(a)=v_{g}(b)=$ $v_{g}(d)=k+1, v_{g}(c)=v_{g}(e)=v_{g}(f)=k$ and $e_{g}(0)=9 k+1, e_{g}(1)=9 k+1$. Therefore $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$.

Thus g is a group S_{3} cordial remainder labeling. Hence, double fan $D F_{n}$ is a group S_{3} cordial remainder graph for $n \geq 2$.
Example 2.7. A group S_{3} cordial remainder labeling of $D F_{5}$ is given in Figure 3.

Figure 3.

Theorem 2.8. Ladder L_{n} is a group S_{3} cordial remainder graph for every n.
Proof. Let $u_{1}, u_{2}, \cdots, u_{n}, v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of the ladder L_{n}. Let $E\left(L_{n}\right)=\left\{u_{i} u_{i+1}\right.$, $\left.v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Then L_{n} is of order $2 n$ and size $3 n-2$. Define $g: V\left(L_{n}\right) \rightarrow S_{3}$ as follows:
Case 1. n is odd.

$$
g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ d & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

$$
g\left(v_{i}\right)= \begin{cases}f & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ a & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

Case 2. n is even.

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}d & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}b & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
\end{aligned}
$$

From Table 2, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling. Hence, L_{n} is a group S_{3} cordial remainder graph for every n.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$	$e_{g}(0)$	$e_{g}(1)$
$6 k-5(k \geq 1)$	$2 k-1$	$2 k-2$	$2 k-2$	$2 k-2$	$2 k-2$	$2 k-1$	$9 k-9$	$9 k-8$
$6 k-4(k \geq 1)$	$2 k-2$	$2 k-1$	$2 k-2$	$2 k-1$	$2 k-1$	$2 k-1$	$9 k-7$	$9 k-7$
$6 k-3(k \geq 1)$	$2 k-1$	$9 k-6$	$9 k-5$					
$6 k-2(k \geq 1)$	$2 k$	$2 k-1$	$2 k-1$	$2 k-1$	$2 k-1$	$2 k$	$9 k-4$	$9 k-4$
$6 k-1(k \geq 1)$	$2 k-1$	$2 k-1$	$2 k$	$2 k$	$2 k$	$2 k$	$9 k-3$	$9 k-2$
$6 k(k \geq 1)$	$2 k$	$9 k-1$	$9 k-1$					

Table 2.

Example 2.9. A group S_{3} cordial remainder labeling of L_{5} is given in Figure 4.

Figure 4.

Corollary 2.10. $C_{n} \times P_{2}$ is a group S_{3} cordial remainder graph for $n \geq 3$.
Proof. The same labeling pattern as in Theorem 2.8 is followed, except that the label ' a ' is replaced by the label ' d ' for the last vertex v_{n} if $n \equiv 4(\bmod 6)$. Hence it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling of $C_{n} \times P_{2}$ for $n \geq 3$.

Theorem 2.11. The slanting ladder $S L_{n}$ is a group S_{3} cordial remainder graph.
Proof. Let $V\left(S L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S L_{n}\right)=\left\{v_{i} v_{i+1}, u_{i} u_{i+1}, u_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\}$. Then $S L_{n}$ is of order $2 n$ and size $3 n-3$. Define $g: V\left(S L_{n}\right) \rightarrow S_{3}$ as follows:

$$
\begin{aligned}
& g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
f & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n ;\end{cases} \\
& g\left(v_{i}\right)= \begin{cases}f & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\
e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\
c & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\
d & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\
b & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\
a & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n .\end{cases}
\end{aligned}
$$

From Table 3, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$	$e_{g}(0)$	$e_{g}(1)$
$6 k-5(k \geq 1)$	$2 k-1$	$2 k-2$	$2 k-2$	$2 k-2$	$2 k-2$	$2 k-1$	$9 k-9$	$9 k-9$
$6 k-4(k \geq 1)$	$2 k-1$	$2 k-2$	$2 k-2$	$2 k-1$	$2 k-1$	$2 k-1$	$9 k-7$	$9 k-8$
$6 k-3(k \geq 1)$	$2 k-1$	$9 k-6$	$9 k-6$					
$6 k-2(k \geq 1)$	$2 k-1$	$2 k-1$	$2 k-1$	$2 k$	$2 k$	$2 k-1$	$9 k-5$	$9 k-4$
$6 k-1(k \geq 1)$	$2 k-1$	$2 k$	$2 k$	$2 k$	$2 k$	$2 k-1$	$9 k-3$	$9 k-3$
$6 k(k \geq 1)$	$2 k$	$9 k-1$	$9 k-2$					

Table 3.

Example 2.12. A group S_{3} cordial remainder labeling of $S L_{8}$ is given in Figure 5.

Figure 5.
Theorem 2.13. The triangular ladder $T L_{n}$ is a group S_{3} cordial remainder graph.
Proof. Let $V\left(T L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(T L_{n}\right)=\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1}: 1 \leq i \leq\right.$ $n-1\} \bigcup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$. Then $T L_{n}$ is of order $2 n$ and size $4 n-3$. Define $g: V\left(T L_{n}\right) \rightarrow S_{3}$ as follows:

$$
g\left(u_{i}\right)= \begin{cases}a & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ e & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ f & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ d & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

$$
g\left(v_{i}\right)= \begin{cases}f & \text { if } i \equiv 1(\bmod 6) \text { and } 1 \leq i \leq n \\ c & \text { if } i \equiv 2(\bmod 6) \text { and } 1 \leq i \leq n \\ d & \text { if } i \equiv 3(\bmod 6) \text { and } 1 \leq i \leq n \\ a & \text { if } i \equiv 4(\bmod 6) \text { and } 1 \leq i \leq n \\ e & \text { if } i \equiv 5(\bmod 6) \text { and } 1 \leq i \leq n \\ b & \text { if } i \equiv 0(\bmod 6) \text { and } 1 \leq i \leq n\end{cases}
$$

From Table 4, it is easy to verify that $\left|v_{g}(i)-v_{g}(j)\right| \leq 1$ for $i, j \in S_{3}$ and $\left|e_{g}(0)-e_{g}(1)\right| \leq 1$. Therefore g is a group S_{3} cordial remainder labeling.

Nature of n	$v_{g}(a)$	$v_{g}(b)$	$v_{g}(c)$	$v_{g}(d)$	$v_{g}(e)$	$v_{g}(f)$	$e_{g}(0)$	$e_{g}(1)$
$n=3 k-2(k \geq 1)$	k	$k-1$	$k-1$	$k-1$	$k-1$	k	$6 k-6$	$6 k-5$
$n=3 k-1(k \geq 1)$	k	$k-1$	k	$k-1$	k	k	$6 k-3$	$6 k-4$
$n=3 k(k \geq 1)$	k	k	k	k	k	k	$6 k-1$	$6 k-2$

Table 4.

Example 2.14. A group S_{3} cordial remainder labeling of $T L_{7}$ is given in Figure 6.

Figure 6.

References

[1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin., 23, 201-207 (1987).
[2] J. A. Gallian, A dynamic survey of graph labeling, The Electronic J. Combin., 21, \# DS6 (2018).
[3] F. Harary, Graph Theory, Addison-wesley, Reading, Mass, (1972).
[4] S. Jenifer Wency, A. Lourdusamy and F. Patrick, Several result on group S_{3} cordial remainder labeling, AIP Conference Proceedings, 2261, 030035 (2020).
[5] A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling, International Journal of Recent Technology and Engineering, 8(4), 8276-8281 (2019).
[6] A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling for subdivision of graphs, Journal Applied Mathematics \& Informatics, 38(3-4), 221-238 (2020).
[7] A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling for wheel and snake related graphs, Jordan Journal of Mathematics and Statistics, 14(2), 267-286 (2021).
[8] A. Lourdusamy, S. Jenifer Wency and F. Patrick, Group S_{3} cordial remainder labeling for path and cycle related graphs, Journal Applied Mathematics \& Informatics, 39(1-2), 223-237 (2021).
[9] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Rome, July 1966), Gordon and Breach, N. Y. and Paris, 349-355 (1967).

Author information

A. Lourdusamy, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, India.
E-mail: lourdusamy15@gmail.com
S. Jenifer Wency, Reg. No. 17211282092013 , Research Scholar, Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, India.
E-mail: jeniferwency@gmail.com
F. Patrick, Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai-627002, India.

E-mail: patrick881990@gmail.com
Received: February 21, 2021.
Accepted: August 14, 2021

