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Abstract In this paper we establish the new concept of r-almost Yamabe soliton for space-
like hypersurfaces immersed into a Lorentzian manifold, which involves the Newton tensors and
extends in a natural way the notion of immersed almost Yamabe solitons introduced by Bar-
bosa and Ribeiro [3]. In this setting, we exhibit some examples and prove nonexistence and
rigidity results of these geometric objects under suitable constraints on the potential and soliton
functions.

1 Introduction

A Yamabe soliton is a Riamannian manifold (Σn, g) that admits a smooth vector field X on Σn

such that
1
2
LXg = (Scal− λ)g, (1.1)

where LX denotes the Lie derivative in the direction of the vector field X , Scal is the scalar
curvature of (Σn, g) and λ is a real number. In the particular case of X being a gradient, that is,
there exists a smooth function f : Σn → R such that X = ∇f , (Σn, g) is said a gradient Yamabe
soliton and f the potential function. Equation (1.1) then becomes

Hessf = (Scal− λ)g, (1.2)

where Hessf stands for the Hessian of f .
It is well known that Yamabe solitons correspond to self-similar solutions of the Yamabe

flow,
∂tg(t) = −Scal(t)g(t),

which was introduced by Hamilton [17, 18]. Motivated by the results on the context of Ricci
solitons, the geometry of Yamabe solitons has been subject of great highlight and started to be
investigated in the last few years (see, for instance, [14, 6, 16, 21, 12, 7, 9, 10, 20, 3, 15, 29, 5,
19, 24, 30] and the references therein). Among others, a remarkable result is due to Chow et
al. [12] where the authors proved that every compact Yamabe soliton must have constant scalar
curvature (see also [20, 15]).

In a recent work, Barbosa and Ribeiro [3] extended the definition of Yamabe solitons by
adding the condition on the parameter λ to be a real smooth function on Σn, attracting a lot
of attention in the mathematical community. They defined an almost Yamabe soliton to be a
Riemannian manifold (Σn, g) satisfying (1.1) with λ : Σn → R being a smooth function, called
of soliton function. When X = ∇f the almost Yamabe soliton is said a gradient almost Yamabe
soliton, and equation (1.1) agrees with (1.2). In particular, an almost Yamabe soliton is called
expanding, steady, or shrinking, respectively, if λ < 0, λ = 0, or λ > 0.

Based on the ideas of [13], our aim in this paper is to introduce the concept of r-almost
Yamabe soliton immersed into a Lorentzian manifold and to study the properties of this new
geometric object. As we are going to explain, it will give a natural extension of the concept of
gradient almost Yamabe soliton, which appears to be natural and meaningful. In order to do this,
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our approach is based in the use of the so-called Newton tensors Pr and their associated second
order differential operators Lr (see Section 3 for more details).

Precisely, let Σn be an oriented and connected spacelike hypersurface immersed into a (n+1)-
dimensional Lorentzian manifold Ln+1, which means that the induced metric g on Σn via the
immersion is a Riemannian metric. We say that Σn is an r-almost Yamabe soliton, for some
0 ≤ r ≤ n, if there exists a smooth function f : Σn → R such that the following equation holds:

Pr ◦Hessf = (Scal− λ)g, (1.3)

for some smooth function λ : Σn → R.
Here, we interpret the term on the left-hand side of (1.3) as being the tensor given by

Pr ◦Hessf(X,Y ) = 〈Pr∇X∇f, Y 〉,

for tangent vector fields X,Y ∈ X(Σ). In particular, when r = 0 we have that P0 = I is
the identity operator and, consequently, we recover the definition of a gradient almost Yamabe
soliton. When the potential f is constant, an r-almost Yamabe soliton will be called trivial,
otherwise it will be a nontrivial r-almost Yamabe soliton.

Having realized the above conceptual point, in the rest of the paper we shall study isometric
immersions of r-almost Yamabe solitons into a Loretzian manifold and provide some obstruction
results in order to obtain a maximal immersion as well as rigidity results. Actually, the paper
is organized as follow: In Section 2 some examples of nontrivial r-almost Yamabe solitons are
given. Next, in Section 3 we recall some basic facts and notations which will appear throughout
this paper. Afterwards, in Section 4 we prove nonexistence and rigidity results for r-almost Yam-
abe solitons. Finally, in Section 5 we consider the case of 1-almost Yamabe solitons immersed
into a locally symmetric Einstein manifold.

2 Examples

In order to give examples of hypersurfaces satisfying the structure of r-almost Yamabe solitons
let us denote by Ln+1

c the standard model of an (n + 1)-dimensional Lorentzian space form
with constant sectional curvature c, where c ∈ {0, 1,−1}. Actually, Ln+1

c denotes the Lorentz-
Minkowski space Rn+1

1 when c = 0, that is, the (n + 1)-dimensional Euclidean space Rn+1

endowed with the Lorentzian metric

〈 , 〉1 = −dx1 + . . .+ dxn+1, (2.1)

the (n+ 1)-dimensional de Sitter space

Sn+1
1 = {p ∈ Rn+2

1 ; 〈p, p〉1 = 1} ⊂ Rn+2
1

endowed with the Lorentzian metric induced from Rn+2
1 when c = 1, and the (n+1)-dimensional

anti-de Sitter space
Hn+1

1 = {p ∈ Rn+2
2 ; 〈p, p〉2 = −1} ⊂ Rn+2

2

endowed with the Lorentzian metric induced from Rn+2
2 when c = −1. Here, Rn+2

2 stands for
the (n+ 2)-dimensional Euclidean space Rn+2 endowed with the semi-Riemannian metric

〈 , 〉2 = −dx1 − dx2 + . . .+ dxn+2. (2.2)

In order to simplify the notation, when c = ±1 we agree to denote by 〈 , 〉 without distinction,
both the Lorentzian metric (2.1) on Rn+2

1 and the semi-Riemannian metric (2.2) on Rn+2
2 . Also

we agree to denote by 〈 , 〉 the corresponding Lorentzian metric induced on Ln+1
c ↪→ Rn+2. In

this context, we are ready to provide some examples.

Example 2.1. Every totally geodesic spacelike hypersurface of a Lorentzian manifold is an r-
almost
Yamabe soliton with 1 ≤ r ≤ n. In particular, all gradient almost Yamabe soliton Σn viewed as a
totally geodesic hypersurface in standard product space Σn ×R1 is an r-almost Yamabe soliton.
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Moreover, denoting by Σn a totally geodesic spacelike hypersurface of Ln+1
c , we know that: (i)

when c = 0, Σn = Rn; (ii) when c = 1, by Montiel [23] the only totally geodesic spacelike hy-
persurface in the de Sitter space Sn+1

1 is the unit sphere Sn; (iii) when c = −1, it is well known
that the hyperbolic space Hn is the only totally geodesic spacelike hypersurface immersed into
the anti-de Sitter space Hn+1

1 (see, for instance, Section 4 of [1]).

Example 2.2. Let us consider the standard immersion of the n-dimensional hyperbolic space Hn

into the Lorentz-Minkowski space Rn+1
1 endowed with induced metric g = 〈 , 〉. It is well known

that Hn can be represented as the warped product R ×cosh t Hn−1 (for more details we refer to
Montiel [22]). In particular, according to Proposition 2.2 of [26], by choosing the functions

λ(t, p) = a sinh t− (n− 1) and f(t, p) = a sinh t+ b,

for some constants a, b ∈ R, we have that Hn satisfies Ric+Hess f = λg (that is, it is an almost
gradient Ricci soliton). On the other hand, we have that Hn is a totally umbilical spacelike
hypersurface with r-th Newton tensor given by Pr = αrI , for every 0 ≤ r ≤ n − 1 and some
αr ∈ R. Hence, taking the smooth functions f̃ = α−1f and λ̃ = −λ − (n − 1)(n + 1) we get
that Hn is a nontrivial r-almost Yamabe soliton.

Example 2.3. Let a ∈ Rn+1
1 be a fixed nonzero vector with |a|2 ∈ {0, 1,−1}. For every τ ∈ R,

with τ 2 > |a|2, we define the spacelike hypersurface Στ isometrically immersed into the de Sitter
space Sn+1

1 by setting
Στ = {p ∈ Sn+1

1 ; 〈p, a〉 = τ}.
By Montiel [23] (see Example 1 of [23]), it is well known that Στ is a totally umbilical spacelike

hypersurface with r-th mean curvature given by Hr =

(
τ√

τ 2−|a|2

)r
and the corresponding

Newton tensor Pr = αrI for some suitable constant αr ∈ R. Let us analyze three cases.
First, when |a|2 = 1 we know that Στ is isometric to an n-dimensional hyperbolic space

Hn(−
√
τ 2 − 1) and we can reason as in Example 2.2 to conclude that Στ is a nontrivial r-almost

Yamabe soliton for every 0 ≤ r ≤ n− 1.
In the case |a| = 0, we have Στ is isometric to the n-dimensional Euclidean space Rn. On

the other hand, let us recall that the Euclidean space Rn endowed with its standard metric and
potential function f(x) = 1

4 |x|
2 has structure of almost gradient Ricci soliton, called of Gaussian

soliton (see, for instance, Section 4.2 of [12]). Hence, reasoning once more as in Example 2.2 it
is not difficult to verify that Στ is a nontrivial r-almost Yamabe soliton for every 0 ≤ r ≤ n− 1.

Finally, when |a|2 = −1, we obtain that Στ is isometric to an n-dimensional Euclidean
sphere Sn(

√
τ 2 + 1). By using Example 1 of [4], it follows that Sn(

√
τ 2 + 1) has structure of

almost gradient Ricci soliton. Therefore, the analogous of Example 2.2 applies here again to
Sn(
√
τ 2 + 1) and in this case Στ can also be endowed as a nontrivial r-almost Yamabe soliton

for every 0 ≤ r ≤ n− 1, provided that τ 6= 0. The case τ = 0 is contained in Example 2.1.

Example 2.4. Let Στ be the spacelike hypersurface immersed into the anti-de Sitter space Hn+1
1

given by
Στ = {p ∈ Hn+1

1 ; 〈p, a〉 = τ},

where a ∈ Rn+1
2 is a unit timelike vector, that is, 〈a, a〉 = −1, and τ 2 < 1. It is well known that

Στ is a totally umbilical hypersurface which is isometric to an n-dimensional hyperbolic space
Hn(−

√
1− τ 2) (see, for instance, Section 4 of [1]). Then, as aforementioned we can check that

Στ has the structure of a nontrivial r-almost Yamabe soliton for every 0 ≤ r ≤ n− 1.

3 preliminaries

Let Σn be an oriented and connected spacelike hypersurface immersed into an (n+1)-dimensional
Lorentzian manifold Ln+1, which means that the induced metric on Σn via the immersion is a
Riemannian metric. Let A : X(Σ) → X(Σ) be the second fundamental form of Σn in Ln+1 with
respect to a fixed orientation. Then by the Gauss equation the scalar curvature of Σn is given by

Scal =
n∑
i,j

〈R(ei, ej)ej , ei〉 − n2H2 + |A|2, (3.1)
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where R denotes the curvature tensor of Ln+1, {e1, . . . , en} is an orthonormal frame on TΣ,
H = − 1

n tr(A) is the mean curvature of Σn and | · | denotes the Hilbert-Schmidt norm. When
Ln+1 = Ln+1

c is a Lorentzian space form of constant sectional curvature c, we have the identity

Scal = n(n− 1)c− n2H2 + |A|2. (3.2)

For each 0 ≤ r ≤ n, the r-th mean curvature Hr of the immersion is defined by

H0 = 1 and
(
n

r

)
Hr = (−1)r

∑
i1<...<ir

ki1 · · · kir .

In particular, when r = 1 we have H1 = H the mean curvature of Σn. We also recall that a
hypersurface is said maximal when its mean curvature vanishes identically, H ≡ 0.

The r-th Newton tensor Pr : X(Σ)→ X(Σ) is defined by setting P0 = I (the identity operator)
and, for 1 ≤ r ≤ n, via the recurrence relation

Pr =
r∑
j=0

(
n

j

)
HjA

r−j . (3.3)

Proceeding, associated to each Newton tensor Pr one has the second order linear differential
operator Lr : C∞(Σ)→ C∞(Σ) defined by

Lru = tr(Pr ◦Hess u).

When r = 0, we note that L0 = ∆ is just the Laplacian operator. Moreover, it is not difficult to
see that

divΣ(Pr∇u) =
n∑
i=1

〈(∇eiPr)(∇u), ei〉+
n∑
i=1

〈Pr(∇ei∇u), ei〉

= 〈divΣPr,∇u〉+ Lru, (3.4)

where the divergence of Pr on Σn is given by

divΣPr = tr(∇Pr) =
n∑
i=1

(∇eiPr)(ei).

In particular, when the ambient space has constant sectional curvature, equation (3.4) reduces to
Lru = divΣ(Pr∇u), because divΣPr = 0 (see [2] and [27] for more details).

To close this section we quote two very useful maximum principles. The former one due to
Caminha et al. [8] (for more details, see Proposition 1 of [8]).

Lemma 3.1. Let X be a smooth vector field on the n-dimensional, complete, noncompact, ori-
ented Riemannian manifold Σn, such that divΣX does not change sign on Σn. If |X| ∈ L1(Σ),
then divΣX = 0.

Here, for each p ≥ 1, we use the notation Lp(Σ) = {u : Σn → R ;
∫

Σ
|u|pdΣ < +∞}. The

next key lemma is due to Yau and corresponds to Theorem 3 of [31].

Lemma 3.2. Let u be a nonnegative smooth subharmonic function on a complete Riemannian
manifold Σn. If u ∈ Lp(Σ), for some p > 1, then u is constant.

4 Main results

We start this section by proving a result which gives conditions for nonexistence of maximal
immersions of a (spacelike) r-almost Yamabe soliton immersed into a Lorentzian space form.

Theorem 4.1. Let Σn be a complete r-almost Yamabe soliton immersed into a Lorentzian space
form Ln+1

c , with bounded second fundamental form and potential function such that |∇f | ∈
L1(Σ). Then:
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(i) If c ≥ 0 and λ < 0, then Σn cannot be maximal;

(ii) If c > 0 and λ ≤ 0, then Σn cannot be maximal;

(iii) If c = 0, λ ≤ 0 and Σn is maximal, then Σn is isometric to the Euclidean space Rn.

Proof. To prove the first and second claim we shall proceed by contradiction, that is, assuming
that Σn is maximal. In this case, follows directly from equation (3.2) jointly with the assumption
c ≥ 0 (c > 0) that the scalar curvature of Σn satisfies Scal ≥ 0 (Scal > 0). Hence, contracting
equation (1.3) we have Lrf = n(Scal− λ) > 0 in both cases.

On the other hand and for further reference, we observe that since the ambient space has
constant sectional curvature, by equation (3.4) the operator Lr is a divergent type operator. Now
observe that since Σn has bounded second fundamental form it follows from (3.3) that the New-
ton tensor Pr has bounded norm. In particular,

|Pr∇f | ≤ |Pr||∇f | ∈ L1(Σ).

So taking into account Lemma 3.1, we must have Lrf = 0, arriving to a contradiction.
For the last assertion, let us observe that c = 0 and Σn be maximal imply jointly with equation

(3.2) that Scal = |A|2 ≥ 0. Then Lr(f) = n(Scal − λ) ≥ 0. By using that Lru = divΣ(Pr∇u)
and |Pr∇f | ∈ L1(Σ) we have once more from Lemma 3.1 that Lrf = 0 on Σn. Hence, we
conclude that Scal = |A|2 = 0. Therefore, the r-almost Yamabe soliton Σn must be totally
geodesic and flat.

Next, we are in condition to prove the following result, which holds when the ambient space
is an arbitrary Lorentzian manifold.

Theorem 4.2. Let Σn be a complete r-almost Yamabe soliton immersed into a Lorentzian mani-
fold Ln+1 of sectional curvatureK, such that Pr is bounded from above (in the sense of quadratic
forms) and the potential function is nonnegative with f ∈ Lp(Σ) for some p > 1. Then:

(i) If K ≥ 0 and λ < 0, then Σn cannot be maximal;

(ii) If K > 0 and λ ≤ 0, then Σn cannot be maximal;

(iii) If K ≥ 0, λ ≤ 0 and Σn is maximal, then Σn is flat and totally geodesic.

Proof. Regarding to (i) and (ii), let us assume once more by contradiction that Σn is maximal.
So our assumption on the sectional curvature of the ambient space and equation (3.1) imply that
Scal ≥ 0 (Scal > 0). Hence, contracting equation (1.3) we have Lrf = n(Scal− λ) > 0. Thus,
since we are assuming that Pr is bounded from above, there exists a positive constant β such
that Lrf ≤ β∆f , so that ∆f > 0. In particular, from Lemma 3.2 we get that f must be constant,
which gives a contradiction. Finally, reasoning as in the proof of Theorem 4.1 we can also prove
(iii).

Remark 4.3. Let us recall that a Riemannian manifold Σn is said to be parabolic if the only
subharmonic functions f ∈ C∞(Σ) with sup

Σ
f < +∞ are the constant ones. In Theorem 4.2,

we can replace the hypothesis that f is nonnegative and f ∈ Lp(Σ), for some p > 1, by assuming
that f is bounded from above and Σn being parabolic. More generally, when Lr is eliptic, we
said that Σn is Lr-parabolic if the only functions f ∈ C∞(Σ) with Lrf ≥ 0 and sup

Σ
f < +∞

are the constant ones. In particular, the assumption that f is nonnegative and f ∈ Lp(Σ) can be
replaced by f is bounded from above and Σn is Lr-parabolic.

In our next result we give conditions for an immersed r-almost Yamabe soliton to be totally
umbilical since it has bounded second fundamental form. In particular, such an r-almost Yamabe
soliton must have constant scalar curvature. More precisely, we prove the following:

Theorem 4.4. Let Σn be a complete r-almost Yamabe soliton immersed into a Lorentzian space
form Ln+1

c , with bounded second fundamental form and potential function such that |∇f | ∈
L1(Σ). Then:

(i) If λ ≤ n(n − 1)(c − H2), then Σn is totally umbilical. In particular, the scalar curvature
Scal = n(n− 1)KΣ is constant, where KΣ = λ

n(n−1) is the sectional curvature of Σn;
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(ii) If λ ≤ n(n − 1)c − n2H2, then Σn is totally geodesic, with λ = n(n − 1)c and scalar
curvature Scal = n(n− 1)c.

Proof. To prove (i), we observe that by definition of r-almost Yamabe soliton jointly with equa-
tion (3.2) we find

Lrf = n
(
n(n− 1)c− n2H2 + |A|2 − λ

)
. (4.1)

Let Φ = A + HI be the traceless second fundamental form of the hypersurface. Then |Φ|2 =
tr(Φ2) = |A|2 − nH2 ≥ 0, with equality if and only if Σn is totally umbilical. It follows that
equation (4.1) can be rewrite as

Lrf = n|Φ|2 + n
(
n(n− 1)(c−H2)− λ

)
. (4.2)

Hence from our assumption on λ we get that Lrf is a nonnegative function on Σn. In particular,
by Lemma 3.1 we obtain that Lrf vanishes identically. Therefore from equation (4.2) we con-
clude that Σn is totally umbilical. In particular, the principal curvature κ of Σn is constant and Σn

has constant sectional curvature given by KΣ = c − κ2. This jointly with equation (4.2) assures
that

λ = n(n− 1)(c−H2) = n(n− 1)(c− κ2) = n(n− 1)KΣ,

which implies that Scal = n(n− 1)KΣ, proving the claim (i).
For the second assertion, let us begin observing that equation (4.1) and our hypothesis on λ

give
Lrf ≥ 0.

Then, by applying Lemma 3.1 once more we have Lrf = 0. This implies that |A|2 = 0, that
is, Σn is a totally geodesic and λ = n(n − 1)c. Moreover, it is clear from equation (3.2) that
Scal = n(n− 1)c, as desired.

As a consequence from Theorem 4.4 we have the following result.

Corollary 4.5. Let Σn be a complete r-almost Yamabe soliton immersed into a Lorentzian space
form Ln+1

c , with bounded second fundamental form and potential function such that |∇f | ∈
L1(Σ). Suppose that λ ≤ n(n− 1)(c−H2). Then:

(i) If Σn is compact, then c = 1 and Σn is isometric to a Euclidean sphere Sn;

(ii) If c = 0, then Σn is isometric either to the Euclidean space Rn or to a hyperbolic space
Hn;

(iii) If c = −1, then Σn is isometric to a hyperbolic space Hn.

Proof. The proof follows from classification of the totally umbilical spacelike hypersurfaces of
Ln+1
c .

As another application of Lemma 3.2 we also get.

Theorem 4.6. Let Σn be a complete r-almost Yamabe soliton immersed into a Lorentzian space
form Ln+1

c , such that Pr is bounded from above (in the sense of quadratic forms) and the potential
function is nonnegative with f ∈ Lp(Σ) for some p > 1. Then:

(i) If λ ≤ n(n − 1)(c − H2), then Σn is totally umbilical. In particular, the scalar curvature
Scal = n(n− 1)KΣ is constant, where KΣ = λ

n(n−1) is the sectional curvature of Σn;

(ii) If λ ≤ n(n − 1)c − n2H2, then Σn is totally geodesic, with λ = n(n − 1)c and scalar
curvature Scal = n(n− 1)c.

Proof. Let us begin observing that by equation (4.2) and assumption on λ we get

Lrf = n|Φ|2 + n
(
n(n− 1)(c−H2)− λ

)
≥ 0. (4.3)

Since we are assuming that Pr is bounded from above, ∆f ≥ 0. By Lemma 3.2, we have that
f must be constant. Therefore Lrf = 0, and by equation (4.3) we conclude that Σn is totally
umbilical and Scal = n(n − 1)KΣ is constant with KΣ = λ

n(n−1) , proving item (i). Finally,
reasoning as in Theorem 4.4, it is not difficult to prove item (ii).
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5 Further results

In this section we will extend our previous results to the case of 1-almost Yamabe soliton im-
mersed into a locally symmetric Lorentzian manifold. To this end, we will work with locally
symmetric spaces obeying a standard curvature constraint in the setting of Nishikawa [25], Choi
et al. [11] and Suh et al. [28].

Before stating the main results, let us recall that a Lorentzian manifold is said to be locally
symmetric when all the covariant derivative components of its curvature tensor vanish identically.
In this setting, such spaces consist in an interesting generalization of constant curvature spaces.
Hence, it is a natural question to revisit in this ambient spaces the known results of constant
curvature spaces.

In what follows we introduce our curvature constraint on the ambient space, which will be
assumed in the results of this section. So, let Ln+1 be a locally symmetric Lorentzian manifold.
Following ideas of [25, 11, 28], in this section we will assume that there exists a constant c1
such that the sectional curvature K of Ln+1 satisfies, for any timelike vector η and any spacelike
vector v, the following equality.

K(η, v) = −c1

n
, (5.1)

As mentioned above, a Lorentzian space form Ln+1
c of constant sectional curvature c is a

locally symmetric space and it is easy to see that the curvature condition (5.1) is satisfied with
−c1/n = c. Therefore, in some sense our assumption is a natural generalization of the case
where the ambient space has constant sectional curvature. We observe that the standard static
spacetime Sn ×R1 also satisfies (5.1). On the other hand, Choi et al. [11] exhibited examples of
Lorentzian manifolds which are not Lorentzian space forms satisfying condition (5.1).

LetLn+1 be a locally symmetric Lorentzian manifold satisfying condition (5.1). Let us choice
a local orthonormal frame {e1, . . . , en+1} on TL such that e1, . . . , en are spacelike vectors and
en+1 is a timelike vector. Then, writing εi = 〈ei, ei〉 for 1 ≤ i ≤ n + 1, we get that the scalar
curvature Scal of Ln+1 is given by

Scal =
n+1∑
i=1

εiRic(ei, ei)

=
n∑

i,j=1

〈R(ei, ej)ei, ej〉 − 2
n∑
i=1

〈R(en+1, ei)en+1, ei〉

=
n∑

i,j=1

〈R(ei, ej)ei, ej〉+ 2c1.

Moreover, it is well known that the scalar curvature of a locally symmetric Lorentzian manifold
is constant. Thus, the term

∑n
i,j=1〈R(ei, ej)ei, ej〉 is a constant naturally attached to a locally

symmetric Lorentzian manifold satisfying condition (5.1). So, for the sake of simplicity, we will
adopt the following notation

S :=
1

n(n− 1)

n∑
i,j=1

〈R(ei, ej)ei, ej〉.

In addition, it is worth pointing out that when Ln+1 is a constant sectional curvature space, then
the constant S agrees, up to a multiplicative constant, with its sectional curvature.

The following result extends Theorem 4.1 for the context of 1-almost Yamabe soliton im-
mersed into a locally symmetric Einstein Lorentzian manifold.

Theorem 5.1. Let Ln+1 be a locally symmetric Einstein Lorentzian manifold satisfying the cur-
vature condition (5.1). Let Σn be a complete 1-almost Yamabe soliton immersed into Ln+1 with
bounded second fundamental form and potential function such that |∇f | ∈ L1(Σ). Then:

(i) If S ≥ 0 and λ < 0, then Σn cannot be maximal;

(ii) If S > 0 and λ ≤ 0, then Σn cannot be maximal;
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(iii) If S = 0, λ ≤ 0 and Σn is maximal, then Σn is totally geodesic.

Proof. To prove (i), let us reason as in the proof of Theorem 4.1 assuming by contradiction that
Σn is maximal. Then, by our hypothesis on the constant S we get from equation (3.1) that the
scalar curvature of Σn satisfies Scal ≥ 0, which implies L1f = n(Scal− λ) > 0.

On the other hand, we recall from the discussion in Section 3 that the differential operator L1
satisfies

L1f = divΣ(P1∇f)− 〈divΣP1,∇f〉. (5.2)

In particular, by taking an orthonormal frame {e1, . . . , en} on TΣ and denoting by N the orien-
tation of Σn, it follows from Lemma 3.1 of [2] that

〈divΣP1,∇f〉 = −
n∑
i=1

〈R(N, ei)∇f, ei〉 = −Ric(N,∇f).

Hence, since Ln+1 was assumed to be Einstein we conclude by equation (5.2) jointly with the
previous identity that

L1f = divΣ(P1∇f).
Moreover, as was observed in Theorem 4.1 we get from our assumption on second fundamental
form that |P1∇f | ∈ L1(Σ). Therefore, we are in position to apply Lemma 3.1 to conclude that
L1f = 0, which gives a contradiction.

Finally, reasoning as above it is not difficult to prove (ii) and (iii).

We continue by obtaining an analogous result to Theorem 4.4 in the case that r = 1 and the
ambient space is a locally symmetric Lorentzian space. More precisely, we get the following.

Theorem 5.2. Let Ln+1 be a locally symmetric Einstein Lorentzian manifold satisfying the cur-
vature condition (5.1). Let Σn be a complete 1-almost Yamabe soliton immersed into Ln+1 with
bounded second fundamental form and potential function such that |∇f | ∈ L1(Σ). Then:

(i) If λ ≤ n(n − 1)(S −H2), then Σn is totally umbilical. In particular, the scalar curvature
Scal = n(n− 1)(S − κ2), where κ is the principal curvature of Σn;

(ii) If λ ≤ n(n − 1)S − n2H2, then Σn is totally geodesic, with λ = n(n − 1)S and scalar
curvature Scal = n(n− 1)S.

Proof. The result follows as in the proof of Theorem 4.4. For the sake of completeness, we give
the following argument which proves (i). By taking trace in (1.3) and using the definition of the
constant S, we obtain from equation (3.1) that

L1f = n|Φ|2 + n
(
n(n− 1)(S −H2)− λ

)
, (5.3)

which implies that L1f ≥ 0 because our hypothesis on λ. Then, by Lemma 3.1 we get that
L1f = 0. Therefore, we conclude from equation (5.3) that Σn is totally umbilical with Scal =
n(n− 1)(S − κ2), proving the result.

We close our paper quoting the following result, which can be obtained with similar argu-
ments to used in the proofs of Theorems 4.6 and 5.2.

Theorem 5.3. Let Ln+1 be a locally symmetric Einstein Lorentzian manifold satisfying the cur-
vature condition (5.1). Let Σn be a complete 1-almost Yamabe soliton immersed into Ln+1 such
that Pr is bounded from above (in the sense of quadratic forms) and the potential function is
nonnegative with f ∈ Lp(Σ) for some p > 1. Then:

(i) If λ ≤ n(n − 1)(S −H2), then Σn is totally umbilical. In particular, the scalar curvature
Scal = n(n− 1)(S − κ2), where κ is the principal curvature of Σn;

(ii) If λ ≤ n(n − 1)S − n2H2, then Σn is totally geodesic, with λ = n(n − 1)S and scalar
curvature Scal = n(n− 1)S.

Remark 5.4. We observe that in Theorems 5.1, 5.2 and 5.3 we can replace the hypothesis that the
ambient space Ln+1 is Einstein by the weaker assumption that the tensor RicN : X(Σ)→ X(Σ),
given by RicN (X) = Ric(N,X), is identically zero.
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