Covering properties by (a)- θ -open sets in (a)topological spaces

Sheetal Luthra, Harsh V. S. Chauhan, B. K. Tyagi and Cemil Tunc

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 54A05, Secondary 54E55, 54A10.

Keywords and phrases: Selection principles, covering properties, continuous functions, (a)- θ -open sets, (a)- θ -compact, (a)- θ -Menger.

Abstract We introduced the concept of (a)- θ -compactness and (a)- θ -Mengerness in (a)topological spaces. We discussed the relationship of the above notions with the other known covering properties. It is shown that the product of two (a)- θ -Menger (resp. (a)- θ -compact) spaces is (a)- θ -Menger (resp. (a)- θ -compact) if one of them is $(a)^s$ -compact. If \mathcal{X}^i is (a)- θ -Menger for each finite *i*, then (a)topological space \mathcal{X} satisfies the selection principle $S_{fin}(\Theta - \Omega(\mathcal{X}), \Theta - \Omega(\mathcal{X}))$. Further, it is shown that the (a)- θ -Menger covering property is preserved under (a)- θ -continuous and (a)-strongly- θ -continuous map.

1 Introduction

Many authors [9, 10, 16, 17, 29, 36, 38, 41] investigated several covering properties extensively in topological spaces. All these covering properties are related with selection principles, introduced by Scheepers [11, 37]. The theory of selection principles is further studied by many authors. At first we recall one of the classical selection principle:

The selection principle $S_{fin}(\mathcal{P}, \mathcal{Q})$ is defined as:

For each sequence $\langle P_n : n \in \mathbb{N} \rangle$ of elements of \mathcal{P} , there exists a finite set $\mathcal{Q}_n \subseteq \mathcal{P}_n$ (for each $n \in \mathbb{N}$) such that $\bigcup_{n \in \mathbb{N}} \mathcal{Q}_n \in \mathcal{Q}$ (see [17, 18]).

The property $S_{fin}(\mathcal{G},\mathcal{G})$, where \mathcal{G} is the family of all open covers of a topological space, is known as the the Menger covering property [29] (or the Menger property). Various weaker forms of the Menger property have been discussed in [1, 13, 14, 28, 31, 32, 35, 39]. Recently, Kočinac et al. [21, 32] studied weak versions of the classical Menger covering property by using several other forms of open sets. In selection principles theory, authors study mainly in two directions: (1). The closure operator is used in the definition of selection principle [1, 7, 13, 15, 16, 27, 28, 31, 34] and (2). Sequences of open covers are replaced by sequences of covers by some weak or strong form of open sets [19, 20, 21, 32, 33]. Recently, Luthra et al. [26] worked in first direction and studied various selective version of separability in (*a*)topological spaces which is more general than bitopological spaces [12], (ω)topological spaces [2, 3, 5] and (\aleph_0)topological spaces [4]. (*a*)topological space, introduced by Choudhury et. al. [6], is a non empty set on which a sequence of topologies are imposed. Here, we concerned in the second direction by using the notion of (*a*)- θ -open sets in (*a*)topological spaces. We introduced (*a*)- θ open sets and studied various types of continuity. We investigated the classical Menger covering property and the compactness property by using (*a*)- θ -open sets.

In 1966, Velicko [42] introduced θ -closed sets in topological spaces. In [24, 25, 30], the different types of continuity via θ -open sets are introduced and studied in detail. By using θ -open sets, some covering properties are discussed by Kohli et. al. in [22]. In this paper, we define (a)- θ -open sets in (a)topological spaces. We studied the notion of (a)- θ -open set in (a)subspaces, product (a)spaces and discussed its relationship with (a)-open sets [26]. We discussed various types of continuity and some covering properties in detail. In Section 2, we discussed various properties of (a)- θ -open sets. We characterize (a)- θ -open sets in bi(a)spaces. Section 3 deals with different types of continuity in (a)topological spaces and inter-relationships between them. We characterize (a)- θ -open sets in (a)subspaces. Further, we characterize (a)-strongly- θ -map in product (a)topological spaces. In Section 4, we discussed the classical Menger covering property and the compactness property via (a)- θ -open sets. We construct many counterexamples that shows the inter-relationships between various covering properties. It is shown that the property of (a)- θ -Menger is hereditary under (a)-clopen subspaces. The product of two (a)- θ -Menger (resp. (a)- θ -compact) spaces is (a)- θ -Menger (resp. (a)- θ -compact) if one of them is $(a)^s$ -compact. If \mathcal{X}^i (a)- θ -Menger covering property is preserved under (a)- θ -continuous and (a)-strongly- θ -continuous map.

Let $(\mathcal{X}, \{\tau_n\})$ be an (a)topological space and $\mathcal{Y} \subseteq \mathcal{X}$. Then we say $(\mathcal{Y}, \{\tau_n\mathcal{Y}\})$ is an (a)subspace of \mathcal{X} , where $\tau_n\mathcal{Y}$ is the induced subspace topology on \mathcal{Y} inherited from τ_n for each $n \in \mathbb{N}$. If \mathcal{Y} is (a)-open (resp. (a)-closed, (a)-clopen) in \mathcal{X} , we say \mathcal{Y} is an (a)-open (resp. (a)-closed, (a)-clopen) subspace of \mathcal{X} .

Throughout the paper, $(\mathcal{X}, \{\tau_n\})$ denotes an (a)topological space and if there is no scope of confusion, we will write \mathcal{X} instead of $(\mathcal{X}, \{\tau_n\})$. For $A \subseteq \mathcal{X}$, the (τ_n) interior (resp. (τ_n) closure) of A in \mathcal{X} is denoted by τ_n -int(A) (resp. τ_n -cl(A)). In (a)subspace $(\mathcal{Y}, \{\tau_n\mathcal{Y}\})$ of $(\mathcal{X}, \{\tau_n\})$, τ_n -int $\mathcal{Y}(A)$ (resp. τ_n -cl $\mathcal{Y}(A)$) denotes the τ_n -interior (resp. τ_n -closure) of A in \mathcal{Y} . By \mathcal{X}^k , we mean the cartesian product of k-copies of \mathcal{X} . Following are the standard notions used in this paper.

- τ_d Discrete Topology
- au_u Usual Topology on $\mathbb R$
- τ_c Cocountable Topology
- τ_f Cofinite Topology
- τ_l Lower limit Topology on $\mathbb R$

For general notion of topology, we follow [8] and one can see [17, 18, 35, 41] for other basic notions regarding selection principles.

2 (a)- θ -open sets

Definition 2.1. [6] If $\langle \tau_n : n \in \mathbb{N} \rangle$ is a sequence of topologies on a non empty set \mathcal{X} , then $(\mathcal{X}, \{\tau_n\}_{n \in \mathbb{N}})$ is called an (*a*)topological space (in short, (*a*)space).

Definition 2.2. [26] A set $G \subseteq \mathcal{X}$ is said to be:

- (1). τ_n -open if $G \in \tau_n$.
- (2). (a)-open if G is τ_n -open for all $n \in \mathbb{N}$.
- (3). (a)-closed if $\mathcal{X} G$ is (a)-open.

We denote the family of all (a)-open sets and (a)-closed sets by $\mathcal{O}(\mathcal{X})$ and $\mathcal{C}(\mathcal{X})$, respectively. If there is no scope of confusion, we will write \mathcal{O} and \mathcal{C} instead of $\mathcal{O}(\mathcal{X})$ and $\mathcal{C}(\mathcal{X})$, respectively.

Remark 2.3. $\mathcal{O}(\mathcal{X})$ forms a topology on \mathcal{X} .

Definition 2.4. Let $(\mathcal{X}, \{\tau_n\})$ be an (a)space. A point $g \in \mathcal{X}$ is said to be (m, n)- θ -cluster point of $G \subseteq \mathcal{X}$ if for every $O \in \tau_n$ containing g, τ_m -cl $(O) \cap G \neq \emptyset$. The set $\{g \in \mathcal{X} : g \text{ is } (m, n)$ - θ -cluster point of $G\}$, denoted by $\tau_{(m,n)}$ -cl $_{\theta}(G)$, is the (m, n)- θ -closure of G. If $\tau_{(m,n)}$ -cl $_{\theta}(G) = G$, then G is called (m, n)- θ -closed. G is (m, n)- θ -open if $\mathcal{X} - G$ is (m, n)- θ -closed. In case, G is (m, n)- θ -open (resp. (m, n)- θ -closed) for all $m \neq n$, we say G is (a)- θ -open (resp. (a)- θ -closed).

We denote the family of all (m, n)- θ -open sets, (a)- θ -open sets and (a)- θ -closed sets by $\mathcal{O}_{\theta}(m, n)(\mathcal{X})$, $\mathcal{O}_{\theta}(\mathcal{X})$ and $\mathcal{C}_{\theta}(\mathcal{X})$, respectively. If there is no scope of confusion, we will write $\mathcal{O}_{\theta}(m, n)$, \mathcal{O}_{θ} and \mathcal{C}_{θ} instead of $\mathcal{O}_{\theta}(m, n)(\mathcal{X})$, $\mathcal{O}_{\theta}(\mathcal{X})$ and $\mathcal{C}_{\theta}(\mathcal{X})$, respectively.

Remark 2.5. $\mathcal{O}_{\theta}(\mathcal{X})$ forms a topology on \mathcal{X} .

Proposition 2.6. $\mathcal{O}_{\theta}(\mathcal{X}) \subseteq \mathcal{O}(\mathcal{X})$ for any (*a*)space \mathcal{X} .

Proof. Let $G \in \mathcal{O}_{\theta}$. By definition, G is (m, n)- θ -open for all $m \neq n$. Then $\tau_{(m,n)}$ - $cl_{\theta}(\mathcal{X} - G) = \mathcal{X} - G$ for all $m \neq n$. But τ_n - $cl(\mathcal{A}) \subseteq \tau_{(m,n)}$ - $cl_{\theta}(\mathcal{A})$ for every set \mathcal{A} , so τ_n - $cl(\mathcal{X} - G) = \mathcal{X} - G$. Thus, G is τ_n -open for all $n \in \mathbb{N}$.

The converse of the Proposition 2.6 is not true.

Example 2.7. Let τ_n be the digital topology on \mathbb{Z} generated by $\{\{2k-1, 2k, 2k+1\}: k \in \mathbb{Z}\}$ for each odd n and τ_n be the topology on \mathbb{Z} generated by $\{..., \{-8, -7, -6\}, \{-5, -4, -3\}, \{-2, -1, 0\}, \{1\}, \{2, 3, 4\}, \{5, 6, 7\}, \{8, 9, 10\}, ...\}$ for each even n. Let $G = \{1\}$. It is obvious that $G \in \mathcal{O}$. We will show that $G \notin \mathcal{O}_{\theta}$. Let $U \in \tau_3$ and $1 \in U$. Then $\{0, 1, 2\} \subseteq \tau_1$ -cl(U). This implies that τ_1 -cl(U)) $\cap (\mathbb{Z} - G) \neq \emptyset$. So $1 \in \tau_{(1,3)}$ -cl $_{\theta}(\mathbb{Z} - G)$ and thus, $\tau_{(1,3)}$ -cl $_{\theta}(\mathbb{Z} - G) \neq \mathbb{Z} - G$. Therefore, G is not (1, 3)- θ -open and hence, $G \notin \mathcal{O}_{\theta}$.

In following results, we characterize (m, n)- θ -open sets in (a)spaces.

Theorem 2.8. A set $G \in \mathcal{O}_{\theta}(m, n)(\mathcal{X})$ if and only if for each $g \in G$ there exists $O \in \tau_n$ satisfying $g \in O \subseteq \tau_m$ -cl $(O) \subseteq G$.

Proof. Let $G \in \mathcal{O}_{\theta}(m,n)(\mathcal{X})$. Then $\tau_{(m,n)}$ -cl $_{\theta}(\mathcal{X}-G) = \mathcal{X}-G$. So for each $g \in G$, there exists $O \in \tau_n$ such that $g \in O$ and τ_m -cl $(O) \cap (\mathcal{X}-G) = \emptyset$. Therefore, $g \in O \subseteq \tau_m$ -cl $(O) \subseteq G$. Conversely, let for each $g \in G$ there exists $O \in \tau_n$ such that $g \in O \subseteq \tau_m$ -cl $(O) \subseteq G$. Therefore, τ_m -cl $(O) \cap (\mathcal{X}-G) = \emptyset$. So $\tau_{(m,n)}$ -cl $_{\theta}(\mathcal{X}-G) = \mathcal{X}-G$ and thus, $G \in \mathcal{O}_{\theta}(m,n)(\mathcal{X})$.

Corollary 2.9. A set $G \in \mathcal{O}_{\theta}(\mathcal{X})$ if and only if for each $g \in G$ there exists $O_n \in \tau_n$ (for each $n \in \mathbb{N}$) such that $g \in O_n \subseteq \tau_m$ -cl $(O_n) \subseteq G$ for all $m \neq n$.

Definition 2.10. A set $G \subseteq \mathcal{X}$ is (m, n)-regular-open if $G = \tau_n$ -int $(\tau_m$ -cl(G)).

Proposition 2.11. A set $G \in \mathcal{O}_{\theta}(m, n)(\mathcal{X})$ if and only if for each $g \in G$ there exists an (m, n)-regular-open set R such that $g \in R \subseteq \tau_m$ -cl $(R) \subseteq G$.

Proof. Let $G \in \mathcal{O}_{\theta}(m,n)(\mathcal{X})$. For each $g \in G$, there exists $O \in \tau_n$ satisfying $g \in O \subseteq \tau_m$ cl $(O) \subseteq G$. Let $R = \tau_n \operatorname{-int}(\tau_m \operatorname{-cl}(O))$. Since R is τ_n -open, $R \subseteq \tau_n \operatorname{-int}(\tau_m \operatorname{-cl}(R))$. Also $\tau_n \operatorname{-int}(\tau_m \operatorname{-cl}(R)) = \tau_n \operatorname{-int}(\tau_m \operatorname{-cl}(\tau_n \operatorname{-cl}(O)))) \subseteq \tau_n \operatorname{-int}(\tau_m \operatorname{-cl}(O)) = R$. Thus, R is an (m, n)-regular-open set such that $g \in R \subseteq \tau_m \operatorname{-cl}(R) \subseteq G$. Conversely, every (m, n)-regular-open set is τ_n -open, so the proof follows from Theorem 2.8.

Proposition 2.12. If $A \subseteq B \subseteq \mathcal{X}$, then $A \in \mathcal{O}_{\theta}(\mathcal{X})$ imply that $A \in \mathcal{O}_{\theta}(B)$.

Proof. Let $A \in \mathcal{O}_{\theta}(\mathcal{X})$ with $A \subseteq B \subseteq \mathcal{X}$ and $a \in A$. For each $m \neq n$, there exists $O \in \tau_n$ such that $a \in O$ and τ_m -cl $(O) \subseteq A$. Then $a \in O \cap B$ and $O \cap B \subseteq \tau_m$ -cl $_B(O \cap B) = \tau_m$ -cl $(O \cap B) \cap B \subseteq \tau_m$ -cl(O). Therefore, $G = O \cap B \in \tau_{nB}$ satisfying $a \in G \subseteq \tau_m$ -cl $_B(G) \subseteq A$ for all $m \neq n$. Thus, $A \in \mathcal{O}_{\theta}(B)$.

Let $\{(\mathcal{X}_{\alpha}, \{\tau_{n\alpha}\}_{n\in\mathbb{N}}): \alpha \in \wedge\}$ be an arbitrary family of (a)spaces and $\mathcal{X} = \prod_{\alpha \in \wedge} \mathcal{X}_{\alpha}$. We define an (a)topology structure $(\mathcal{X}, \{\tau_n\})$ on \mathcal{X} by considering τ_n as the product topology on \mathcal{X} generated by the continuous projections $p_{n\alpha}: (\mathcal{X}, \tau_n) \to (\mathcal{X}_{\alpha}, \tau_{n\alpha})$ for every $\alpha \in \wedge$. $(\mathcal{X}, \{\tau_n\})$ is called the product (a)space. In particular, the product of two (a)spaces is called the bi(a)space. In the following two results, we characterize (a)- θ -open sets in bi(a)spaces.

Theorem 2.13. Let $(\mathcal{X}, \{\tau_n\})$ and $(\mathcal{Y}, \{\sigma_n\})$ be two (*a*)spaces. If $A \in \mathcal{O}_{\theta}(\mathcal{X})$ and $B \in \mathcal{O}_{\theta}(\mathcal{Y})$, then $A \times B \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$, where $(\mathcal{X} \times \mathcal{Y}, \{\gamma_n\})$ is a bi(*a*)space.

Proof. Let $A \in \mathcal{O}_{\theta}(\mathcal{X})$, $B \in \mathcal{O}_{\theta}(\mathcal{Y})$ and $(a, b) \in A \times B$. For each $m \neq n$, there exists $A_n \in \tau_n$ and $B_n \in \sigma_n$ such that $a \in A_n \subseteq \tau_m$ -cl $(A_n) \subseteq A$ and $b \in B_n \subseteq \tau_m$ -cl $(B_n) \subseteq B$. It follows that $(a, b) \in A_n \times B_n \subseteq \tau_m$ -cl $(A_n) \times \sigma_m$ -cl $(B_n) \subseteq A \times B$. But τ_m -cl $(A_n) \times \sigma_m$ -cl $(B_n) = \gamma_m$ -cl $(A_n \times B_n)$. Thus, $A \times B \in \mathcal{O}_{\theta}(m, n)(\mathcal{X} \times \mathcal{Y})$ for all $m \neq n$ and hence, $A \times B \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$. \Box

Theorem 2.14. Let $(\mathcal{X}, \{\tau_n\})$ and $(\mathcal{Y}, \{\sigma_n\})$ be two (a)spaces. Let $p_{\mathcal{X}}: (\mathcal{X} \times \mathcal{Y}, \{\gamma_n\}) \to (\mathcal{X}, \{\tau_n\})$ be a map defined by $p_{\mathcal{X}}(x, y) = x$. If $A \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$, then $p_{\mathcal{X}}(A) \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proof. Let $A \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$ and $a \in p_{\mathcal{X}}(A)$. Then there exists $b \in \mathcal{Y}$ such that $(a, b) \in A$. Since $A \in \mathcal{O}_{\theta}(m, n)(\mathcal{X} \times \mathcal{Y})$ for all $m \neq n$, there exists $U_n \in \gamma_n$ (for each n) such that $(a, b) \in U_n \subseteq \gamma_m$ -cl $(U_n) \subseteq A$ for all $m \neq n$. But $U_n = A_n \times B_n$ where $A_n \in \tau_n$ and $B_n \in \sigma_n$, so $(a, b) \in A_n \times B_n \subseteq \tau_m$ -cl $(A_n) \times \sigma_m$ -cl $(B_n) = \gamma_m$ -cl $(A_n \times B_n) \subseteq A$. Thus, $a \in A_n \subseteq \tau_m$ -cl $(A_n) \subseteq p_{\mathcal{X}}(A)$ and hence, $p_{\mathcal{X}}(A) \in \mathcal{O}_{\theta}(\mathcal{X})$.

We conclude from Theorem 2.13 and Theorem 2.14 that $A \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$ if and only if $A = G \times H$, where $G \in \mathcal{O}_{\theta}(\mathcal{X})$ and $H \in \mathcal{O}_{\theta}(\mathcal{Y})$.

Theorem 2.15. Let $(\mathcal{X}, \{\tau_n\})$ and $(\mathcal{Y}, \{\sigma_n\})$ be two (a)spaces. A set $A \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$ if and only if $A = G \times H$, where $G \in \mathcal{O}_{\theta}(\mathcal{X})$ and $H \in \mathcal{O}_{\theta}(\mathcal{Y})$.

Proposition 2.16. If a point $x \in \tau_{(m,n)}$ -cl_{θ}(G) for $G \subseteq \mathcal{X}$, then every (m, n)- θ -open set containing x intersects G.

Proof. Let $G \subseteq \mathcal{X}$ and $x \in \tau_{(m,n)}$ -cl_{θ}(G). Let $O \in \mathcal{O}_{\theta}(m,n)$ with $x \in O$. Then there exists $U \in \tau_n$ such that $x \in U \subseteq \tau_m$ -cl(U) $\subseteq O$. Since $x \in \tau_{(m,n)}$ -cl_{θ}(G), τ_m -cl(U) $\cap G \neq \emptyset$. It follows that $O \cap G \neq \emptyset$.

3 Mappings and (a)- θ -open sets

Definition 3.1. A function $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ is said to be:

- (1). $(a)^s$ -continuous (resp. $(a)^s$ -weakly-continuous) if for each $x \in \mathcal{X}$ and each $O \in \sigma_n$ with $\psi(x) \in O$, there exists $V \in \tau_n$ with $x \in V$ satisfying $\psi(V) \subseteq O$ (resp. $\psi(V) \subseteq \sigma_m$ -cl(O)) for all $m \neq n$.
- (2). (a)^s-faintly-continuous if for each $x \in \mathcal{X}$ and each $O \in \mathcal{O}_{\theta}(m, n)(\mathcal{Y})$ with $\psi(x) \in O$, there exists $V \in \tau_n$ with $x \in V$ satisfying $\psi(V) \subseteq O$ for all $m \neq n$.
- (3). (a)- θ -continuous (resp. (a)-strongly- θ -continuous) if for each $x \in \mathcal{X}$ and each $O \in \sigma_n$ with $\psi(x) \in O$, there exists $V \in \tau_n$ with $x \in V$ satisfying $\psi(\tau_m \text{-cl}(V)) \subseteq \sigma_m \text{-cl}(O)$ (resp. $\psi(\tau_m \text{-cl}(V)) \subseteq O$) for all $m \neq n$.
- (4). (a)- θ -open (resp. (a)- θ -closed) if $\psi(A) \in \mathcal{O}_{\theta}(\mathcal{Y})$ (resp. $\psi(A) \in \mathcal{C}_{\theta}(\mathcal{Y})$) for each $A \in \mathcal{O}_{\theta}(\mathcal{X})$ (resp. $A \in \mathcal{C}_{\theta}(\mathcal{X})$).
- (5). $(a)^s$ -open (resp. $(a)^s$ -closed) if $\psi : (\mathcal{X}, \tau_k) \to (\mathcal{Y}, \sigma_k)$ is open (resp. closed) for all $k \in \mathbb{N}$.

Proposition 3.2. Let ψ : $(\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (a)- θ -continuous map. If $G \in \mathcal{O}_{\theta}(\mathcal{Y})$, then $\psi^{-1}(G) \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proof. Let $G \in \mathcal{O}_{\theta}(\mathcal{Y})$ and $g \in \psi^{-1}(G)$. Then $\psi(g) \in G$. So there exists $V_n \in \sigma_n$ (for each n) such that $\psi(g) \in V_n \subseteq \sigma_m$ -cl $(V_n) \subseteq G$ for all $m \neq n$. Since ψ is (a)- θ -continuous, there exists $U_n \in \tau_n$ (for each n) with $g \in U_n$ satisfying $\psi(\tau_m$ -cl $(U_n)) \subseteq \sigma_m$ -cl (V_n) for all $m \neq n$. It follows that $g \in U_n \subseteq \tau_m$ -cl $(U_n) \subseteq \psi^{-1}(\sigma_m$ -cl $(V_n)) \subseteq \psi^{-1}(G)$ for all $m \neq n$. Thus, $\psi^{-1}(G) \in \mathcal{O}_{\theta}(\mathcal{X})$.

From Definition 3.1, it is clear that every (a)-strongly- θ -continuous function is (a)- θ -continuous, so the following corollary is immediate.

Corollary 3.3. Let $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (*a*)-strongly- θ -continuous map. If $G \in \mathcal{O}_{\theta}(\mathcal{Y})$, then $\psi^{-1}(G) \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proposition 3.4. Let $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (*a*)-strongly- θ -continuous map. If $G \in \mathcal{O}(\mathcal{Y})$, then $\psi^{-1}(G) \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proof. Let $G \in \mathcal{O}(\mathcal{Y})$ and $g \in \psi^{-1}(G)$. Then $\psi(g) \in G$. Since $G \in \mathcal{O}(\mathcal{Y})$ and ψ is (*a*)-strongly- θ -continuous, there exists $U_n \in \tau_n$ (for each *n*) with $g \in U_n$ satisfying $\psi(\tau_m \text{-cl}(U_n)) \subseteq G$ for all $m \neq n$. Therefore, $g \in U_n \subseteq \tau_m \text{-cl}(U_n) \subseteq \psi^{-1}(G)$ for all $m \neq n$. Thus, $\psi^{-1}(G) \in \mathcal{O}_{\theta}(\mathcal{X})$. \Box

Proposition 3.5. Let $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (*a*)-strongly- θ -continuous map. If $G \in \mathcal{C}(\mathcal{Y})$, then $\psi^{-1}(G) \in \mathcal{C}_{\theta}(\mathcal{X})$.

Proof. It can be easily proved from the Proposition 3.4.

Theorem 3.6. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -open and $(a)^s$ -closed map. Then ψ preserve (a)- θ -open sets.

Proof. Let $G \in \mathcal{O}_{\theta}(\mathcal{X})$ and $y \in \psi(G)$. Then $y = \psi(x)$ for some $x \in G$. Since $G \in \mathcal{O}_{\theta}(m, n)(\mathcal{X})$ for all $m \neq n$, there exists $U_n \in \tau_n$ (for each n) satisfying $x \in U_n \subseteq \tau_m$ -cl $(U_n) \subseteq G$ for all $m \neq n$. Therefore, $y \in \psi(U_n) \subseteq \psi(\tau_m$ -cl $(U_n)) \subseteq \psi(G)$. Since ψ is $(a)^s$ -open and $(a)^s$ -closed, so $\psi(U_n) \in \sigma_n$ and σ_m -cl $(\psi(U_n)) \subseteq \psi(\tau_m$ -cl (U_n)). Therefore, $y \in \psi(U_n) \subseteq \sigma_m$ -cl $(\psi(U_n)) \subseteq \psi(\sigma_m$ -cl $(\psi(U_n)) \subseteq \psi(\sigma_m)$.

As an application of Theorem 3.6 we are able to characterize (a)- θ -open sets in (a)-clopen subspaces.

Theorem 3.7. Let $(B, \{\tau_{nB}\})$ be an (a)-clopen subspace of (a)space $(\mathcal{X}, \{\tau_n\})$. For $G \subseteq B$, $G \in \mathcal{O}_{\theta}(B)$ if and only if $G = O \cap B$, where $O \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proof. Let $(B, \{\tau_{nB}\})$ be an (a)-clopen subspace of $(\mathcal{X}, \{\tau_n\})$. Let $O \in \mathcal{O}_{\theta}(\mathcal{X})$. Since every (a)-clopen set is (a)- θ -open and finite intersection of (a)- θ -open sets is (a)- θ -open, so $O \cap B \in \mathcal{O}_{\theta}(\mathcal{X})$. But $O \cap B \subseteq B \subseteq \mathcal{X}$, so by Proposition 2.12, $O \cap B \in \mathcal{O}_{\theta}(B)$. Conversely, let $G \subseteq B$ such that $G \in \mathcal{O}_{\theta}(B)$. It is enough to show that $G \in \mathcal{O}_{\theta}(\mathcal{X})$. Consider the inclusion map $\psi \colon (B, \{\tau_{nB}\}) \to (\mathcal{X}, \{\tau_n\})$. Since B is both (a)-open and (a)-closed, ψ is $(a)^s$ -open and $(a)^s$ -closed. In view of Theorem 3.6, $\psi(G) = G \in \mathcal{O}_{\theta}(\mathcal{X})$.

Theorem 3.8. Let $(B, \{\tau_{nB}\})$ be an (a)-clopen subspace of (a)space $(\mathcal{X}, \{\tau_n\})$. For $G \subseteq B$, $G \in \mathcal{O}_{\theta}(B)$ if and only if $G \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proof. It can be easily proved from the Proposition 2.12 and the Theorem 3.7.

Theorem 3.9. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (*a*)-strongly- θ -continuous map and $\phi: (\mathcal{Y}, \{\sigma_k\}) \to (\mathcal{Z}, \{\gamma_k\})$ be an (*a*)^{*s*}-continuous map. Then $\phi \circ \psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Z}, \{\gamma_k\})$ is (*a*)-strongly- θ -continuous.

Proof. Let $g \in \mathcal{X}$ and $G \in \gamma_n$ with $(\phi \circ \psi)(g) \in G$. Since ϕ is $(a)^s$ -continuous, there exists $S \in \sigma_n$ with $\psi(g) \in S$ satisfying $\phi(S) \subseteq G$. Also ψ is (a)-strongly- θ -continuous, so there exists $O \in \tau_n$ with $g \in O$ satisfying $\psi(\tau_m \operatorname{-cl}(O)) \subseteq S$ for all $m \neq n$. It follows that $(\phi \circ \psi)(\tau_m \operatorname{-cl}(O)) \subseteq \phi(S) \subseteq G$ for all $m \neq n$. Hence, $\phi \circ \psi$ is (a)-strongly- θ -continuous.

Theorem 3.10. Let $\{(\mathcal{Y}_{\alpha}, \{\tau_{n\alpha}\}_{n\in\mathbb{N}}): \alpha \in \wedge\}$ be an arbitrary family of (a) spaces and consider the product (a) space $(\mathcal{Y}, \{\tau_n\})$ where $\mathcal{Y} = \prod_{\alpha \in \wedge} \mathcal{Y}_{\alpha}$. For each $\alpha \in \wedge$, let $q_{\alpha}: (\mathcal{Y}, \{\tau_n\}) \rightarrow (\mathcal{Y}_{\alpha}, \{\tau_{n\alpha}\})$ be defined by $q_{\alpha}(y) = y_{\alpha}$, where $y = (y_{\alpha})_{\alpha \in \wedge}$. A mapping $\psi: (\mathcal{X}, \{\sigma_k\}) \rightarrow (\mathcal{Y}, \{\tau_k\})$ is (a)-strongly- θ -continuous if and only if each composition $(q_{\alpha} \circ \psi): (\mathcal{X}, \{\sigma_k\}) \rightarrow (\mathcal{Y}_{\alpha}, \{\tau_{k\alpha}\})$ is (a)-strongly- θ -continuous for all $\alpha \in \wedge$.

Proof. Let $g \in \mathcal{X}$ and $O \in \tau_n$ with $\psi(g) \in O$. Then there exists a basic τ_n -open set G satisfying $\psi(g) \in G \subseteq O$. Let $G = p_{n\alpha_1}^{-1}(W_1) \cap p_{n\alpha_2}^{-1}(W_2) \cap \cdots \cap p_{n\alpha_k}^{-1}(W_k)$, where $W_i \in \tau_{n\alpha_i}$ for all $i = 1, 2, \ldots, k$. Clearly $G = q_{\alpha_1}^{-1}(W_1) \cap q_{\alpha_2}^{-1}(W_2) \cap \cdots \cap q_{\alpha_k}^{-1}(W_k)$. Since $(q_{\alpha_i} \circ \psi)$ is (*a*)-strongly- θ -continuous and $(q_{\alpha_i} \circ \psi)(g) \in W_i$ for all $i = 1, 2, \ldots, k$, there exist $A_i \in \sigma_n$ with $g \in A_i$ and $(q_{\alpha_i} \circ \psi)(\sigma_m\text{-cl}(A_i)) \subseteq W_i$ for all $m \neq n$. It follows that $\bigcap_{i=1}^k \psi(\sigma_m\text{-cl}(A_i)) \subseteq \bigcap_{i=1}^k q_{\alpha_i}^{-1}(W_i) = G \subseteq O$. It can be seen that $\psi[\sigma_m\text{-cl}(A_1 \cap A_2 \cap \cdots \cap A_k)] \subseteq O$. Thus, for each $g \in \mathcal{X}$ and $O \in \tau_n$ with $\psi(g) \in O$, there exists $A = A_1 \cap A_2 \cap \cdots \cap A_k \in \sigma_n$ with $g \in A$ satisfying $\psi(\sigma_m\text{-cl}(A)) \subseteq O$ for all $m \neq n$. Hence, ψ is (*a*)-strongly- θ -continuous. The converse follows from Theorem 3.9 as the map q_α is $(a)^s$ -continuous for all $\alpha \in \wedge$.

Proposition 3.11. Every $(a)^s$ -continuous function is (a)- θ -continuous.

Proof. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -continuous function. Let $g \in \mathcal{X}$ and $G \in \sigma_n$ with $\psi(g) \in G$. Since ψ is $(a)^s$ -continuous, there exists $O \in \tau_n$ with $g \in O$ satisfying $\psi(O) \subseteq G$. Then $O \subseteq \psi^{-1}(G)$ which readily follows that τ_m -cl $(O) \subseteq \tau_m$ -cl $(\psi^{-1}(G))$ for all $m \in \mathbb{N}$. Since ψ is $(a)^s$ -continuous, $\psi(\tau_m$ -cl $(O)) \subseteq \psi(\tau_m$ -cl $(\psi^{-1}(G))) \subseteq \sigma_m$ -cl $[\psi(\psi^{-1}(G))] \subseteq \sigma_m$ -cl(G). Thus, $\psi(\tau_m$ -cl $(O)) \subseteq \sigma_m$ -cl(G) for all $m \neq n$. Hence, ψ is (a)- θ -continuous.

Corollary 3.12. Let ψ : $(\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -continuous function. If $G \in \mathcal{O}_{\theta}(\mathcal{Y})$, then $\psi^{-1}(G) \in \mathcal{O}_{\theta}(\mathcal{X})$.

Proposition 3.13. Every $(a)^s$ -weakly-continuous function is $(a)^s$ -faintly-continuous.

Proof. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -weakly-continuous function. Let $g \in \mathcal{X}$ and $A \in \mathcal{O}_{\theta}(m, n)(\mathcal{Y})$ with $\psi(g) \in A$. Then there exists $G \in \sigma_n$ such that $\psi(g) \in G \subseteq \sigma_m$ cl $(G) \subseteq A$. Since ψ is $(a)^s$ -weakly-continuous, there exists $O \in \tau_n$ with $g \in O$ satisfying $\psi(O) \subseteq \sigma_m$ -cl(G). Thus, $\psi(O) \subseteq A$ and hence, ψ is $(a)^s$ -faintly-continuous.

Proposition 3.14. A mapping $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ is $(a)^s$ -faintly-continuous if and only if for every $G \in \mathcal{O}_{\theta}(m, n)(\mathcal{Y}), \psi^{-1}(G) \in \tau_n$.

Proof. Let $G \in \mathcal{O}_{\theta}(m, n)(\mathcal{Y})$ and $g \in \psi^{-1}(G)$. Then $\psi(g) \in G$. Since ψ is $(a)^s$ -faintlycontinuous, there exists $U_n \in \tau_n$ with $g \in U_n$ satisfying $\psi(U_n) \subseteq G$. Therefore, $g \in U_n \subseteq \psi^{-1}(G)$. Thus, $\psi^{-1}(G) \in \tau_n$. Conversely, let $g \in \mathcal{X}$ and $G \in \mathcal{O}_{\theta}(m, n)(\mathcal{Y})$ with $\psi(g) \in G$. Then $O = \psi^{-1}(G) \in \tau_n$ such that $\psi(O) \subseteq G$. Therefore, ψ is $(a)^s$ -faintly-continuous.

Theorem 3.15. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -faintly-continuous map. Then the following results hold:

1. $\psi^{-1}(O) \in \mathcal{O}(\mathcal{X})$ for every $O \in \mathcal{O}_{\theta}(\mathcal{Y})$.

2. $\psi^{-1}(F) \in \mathcal{C}(\mathcal{X})$ for every $F \in \mathcal{C}_{\theta}(\mathcal{Y})$.

Proof. It can be easily proved from the Proposition 3.14.

4 (a)- θ -Menger and (a)- θ -compact covering properties

In this section, we disussed and studied various covering properties. We say \mathcal{X} is (a)-P if $(\mathcal{X}, \mathcal{O})$ satisfies property P. Like, if $(\mathcal{X}, \mathcal{O})$ is compact (resp. Lindelöf, Menger), we say \mathcal{X} is (a)-compact (resp. (a)-Lindelöf, (a)-Menger). If $(\mathcal{X}, \mathcal{O})$ satisfies T_0 (resp. T_1, T_2, T_3) separation axiom, we say \mathcal{X} is (a)- T_0 (resp. (a)- $T_1, (a)$ - $T_2, (a)$ - T_3) space. In case, (\mathcal{X}, τ_n) is compact (resp. Lindelöf, Menger) for all $n \in \mathbb{N}$, \mathcal{X} is $(a)^s$ -compact (resp. $(a)^s$ -Lindelöf, $(a)^s$ -Menger). A cover \mathcal{G} of \mathcal{X} is called an (a)- θ -cover (resp. (a)-cover, (m, n)- θ -cover, τ_n -cover) if each $G \in \mathcal{G}$ belongs to \mathcal{O}_{θ} (resp. $\mathcal{O}, \mathcal{O}_{\theta}(m, n), \tau_n$). Call \mathcal{G} an (a)- θ - ω -cover of \mathcal{X} if $\mathcal{X} \notin \mathcal{G}$ and for each finite set $F \subseteq \mathcal{X}$ there is a $G \in \mathcal{G}$ such that $F \subseteq G$. We denote the family of all (a)- θ - ω -covers (resp. (a)- θ -covers, (m, n)- θ -covers) of \mathcal{X} by Θ - $\Omega(\mathcal{X})$ (resp. $\Theta(\mathcal{X}), \Theta(m, n)(\mathcal{X})$). We begin this section with some definitions we will do with.

Definition 4.1. An (a)space $(\mathcal{X}, \{\tau_n\})$ is said to be:

- 1. (a)- θ -compact if for every $\mathcal{P} \in \Theta(\mathcal{X})$ there exists finite $\mathcal{Q} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{Q} = \mathcal{X}$.
- 2. (a)- θ -Menger if for every sequence $\langle \mathcal{P}_k : k \in \mathbb{N} \rangle$ of elements of $\Theta(\mathcal{X})$ there exists finite $\mathcal{Q}_k \subseteq \mathcal{P}_k$ (for each $k \in \mathbb{N}$) such that $\bigcup (\bigcup_{k \in \mathbb{N}} \mathcal{Q}_k) = \mathcal{X}$, or equivalently, \mathcal{X} satisfies the property $S_{fin}(\Theta(\mathcal{X}), \Theta(\mathcal{X}))$.
- 3. (m,n)- θ -compact if for every $\mathcal{P} \in \Theta(m,n)(\mathcal{X})$ there exists finite $\mathcal{Q} \subseteq \mathcal{P}$ such that $\bigcup \mathcal{Q} = \mathcal{X}$.
- (m,n)-θ-Menger if for every sequence < P_k: k ∈ N > of elements of Θ(m,n)(X) there exists finite Q_k ⊆ P_k (for each k ∈ N) such that U(U_{k∈N} Q_k) = X, or equivalently, X satisfies the property S_{fin}(Θ(m,n)(X), Θ(m,n)(X)).

5. $(a)^s$ - θ -compact (resp. $(a)^s$ - θ -Menger) if \mathcal{X} is (m, n)- θ -compact (resp. (m, n)- θ -Menger) for all $m \neq n$.

Every (a)-compact (resp. (a)-Menger) space is (a)- θ -compact (resp. (a)- θ -Menger) but the converse need not be true.

Example 4.2. Let $\mathcal{X} = \mathbb{R}$ and $\tau_m = \tau_c$ if m is odd and $\tau_m = \{A \subseteq \mathcal{X} : A = \emptyset \text{ or } 2 \in A\}$ if m is even. Let $F \in \tau_c$ be such that $\mathcal{X} - F$ is not finite. It is observed that $\mathcal{G} = \{F \cup \{2\} \cup \{g\} : g \in \mathcal{X} - F\}$ is an (a)-cover of \mathcal{X} which does not satisfy the condition of (a)-compactness. Also \emptyset and \mathcal{X} are only (a)- θ -open sets, so \mathcal{X} is (a)- θ -compact.

Example 4.3. Let $\mathcal{X} = \mathbb{R}$ and $\tau_m = \{A \subseteq \mathcal{X} : A = \emptyset \text{ or } 2 \in A\}$ if m is odd and $\tau_m = \{A \subseteq \mathcal{X} : A = \emptyset \text{ or } 3 \in A\}$ if m is even. It is observed that $\mathcal{G} = \{\{2,3\} \cup \{g\} : g \in \mathcal{X} - \{2,3\}\}$ is an (a)-cover of \mathcal{X} which is not reducible to a countable subcover. Therefore, \mathcal{X} is not (a)-Lindelöf and hence, not (a)-Menger. But \mathcal{X} is (a)- θ -Menger as \emptyset and \mathcal{X} are only (a)- θ -open sets. Thus, \mathcal{X} is (a)- θ -Menger but not (a)-Menger.

Note that

 $\begin{array}{cccc} (a)^s\text{-compact} & \Rightarrow & (a)\text{-compact} & \Rightarrow & (a)\text{-}\theta\text{-compact} \\ & & & \downarrow & & \downarrow \\ (a)^s\text{-Menger} & \Rightarrow & (a)\text{-}Menger & \Rightarrow & (a)\text{-}\theta\text{-Menger} \end{array}$

Diagram 1.

Example 4.4. Let $\mathcal{X} = \mathbb{R}$ and $\tau_m = \tau_f$ if m is odd and $\tau_m = \{A \subseteq \mathcal{X} : A = \emptyset \text{ or } 2 \in A\}$ if m is even. \mathcal{X} is (a)-compact as (\mathcal{X}, τ_f) is compact. But \mathcal{X} is not $(a)^s$ -compact as (\mathcal{X}, τ_2) is not compact.

Example 4.5. Consider Example 4.4, since (\mathcal{X}, τ_f) is Menger, \mathcal{X} is (a)-Menger. But (\mathcal{X}, τ_2) is not Menger as (\mathcal{X}, τ_2) is not Lindelöf. Thus, \mathcal{X} is not $(a)^s$ -Menger.

Example 4.6. Let $\mathcal{X} = \mathbb{R}$ and $\tau_m = \tau_u$ if m is odd and $\tau_m = \tau_d$ if m is even. It is observed that $\mathcal{O}_{\theta} = \mathcal{O} = \tau_u$. Also (\mathcal{X}, τ_u) is Menger, so \mathcal{X} is (a)-Menger as well as (a)- θ -Menger but neither (a)-compact nor (a)- θ -compact.

Example 4.7. Let $\mathcal{X} = \mathbb{R}$ and $\tau_m = \tau_u$ if m is odd and $\tau_m = \tau_f$ if m is even. Since (\mathcal{X}, τ_u) and (\mathcal{X}, τ_f) are Menger, \mathcal{X} is $(a)^s$ -Menger. But (\mathcal{X}, τ_u) is not compact, therefore \mathcal{X} is not $(a)^s$ -compact.

We conclude that all the implications in the Diagram 1. are not reversible in general.

Definition 4.8. A set $\mathcal{Y} \subseteq \mathcal{X}$ is called:

- 1. (a)- θ -compact if \mathcal{Y} is (a)- θ -compact under (a)subspace topology.
- (a)-θ-compact with respect to X if for every cover P of Y by (a)-θ-open subsets of X there exists finite Q ⊆ P such that U Q = Y.

By the following example it is shown that the property of (a)- θ -Menger is not heriditary.

Example 4.9. Let (\mathcal{X}, τ^*) be as in [40, Example 78] and $\tau_m = \tau^*$ if m is odd and $\tau_m = \tau_d$ if m is even. It is known that (\mathcal{X}, τ_1) is θ -Menger (see [21]). Therefore, \mathcal{X} is (a)- θ -Menger. But the real axis L is an uncountable subspace of $(\mathcal{X}, \{\tau_n\})$ with subspace topology $\sigma_n = \tau_d$ for all $n \in \mathbb{N}$. Thus, $(L, \{\sigma_n\})$ is not (a)- θ -Menger.

In fact, the previous example shows that the property of (a)- θ -Menger is not hereditary under (a)closed subspaces. But this is not the case with (a)-clopen subspaces.

Theorem 4.10. Every (a)-clopen subspace of an (a)- θ -Menger space is (a)- θ -Menger.

Proof. Let \mathcal{Y} be an (a)-clopen subspace of an (a)- θ -Menger space $(\mathcal{X}, \{\tau_n\})$. Let $< \mathcal{A}_k : k \in \mathbb{N} >$ be a sequence of covers of \mathcal{Y} by (a)- θ -open subsets of \mathcal{Y} . By Theorem 3.8, each $A \in \mathcal{A}_k$ is (a)- θ -open in \mathcal{X} for all $k \in \mathbb{N}$, so each $\mathcal{P}_k = \{A : A \in \mathcal{A}_k\} \cup \{\mathcal{X} - \mathcal{Y}\}$ is an (a)- θ -cover of \mathcal{X} . By given hypothesis, there exists finite $\mathcal{Q}_k \subseteq \mathcal{P}_k$ such that $\mathcal{X} = \bigcup(\bigcup_{k \in \mathbb{N}} \mathcal{Q}_k)$. Let $\mathcal{W}_k = \{A : A \in \mathcal{Q}_k, A \neq \mathcal{X} - \mathcal{Y}\}$. Then $\mathcal{Y} = \bigcup(\bigcup_{k \in \mathbb{N}} \mathcal{W}_k)$ which witnesses for $< \mathcal{A}_k : k \in \mathbb{N} >$ that \mathcal{Y} is (a)- θ -Menger.

Theorem 4.11. Every (a)-clopen subspace of an (a)- θ -compact space is (a)- θ -compact.

It is to be noted that the class of all (a)- θ -Menger spaces is not closed under finite product. In fact, we show that the square of an (a)- θ -Menger space need not be (a)- θ -Menger.

Example 4.12. Let $\psi : (\mathbb{R}, \tau_l) \to (\mathbb{R}, \tau_u)$ be the identity map. It is known that if L is a Lusin set in \mathbb{R} , then $\psi^{-1}(L) = \mathcal{L}$ is Menger (see [23]). It is observed that every open set in \mathcal{L} is θ -open in \mathcal{L} . Indeed, for any open set A in \mathcal{L} , there is some $G \in \tau_l$ such that $A = G \cap \mathcal{L}$. For each $a \in A$, there is a basic open set [u, v) such that $a \in [u, v) \subseteq \tau_l$ -cl $([u, v)) \subseteq G$. Therefore, $a \in [u, v) \cap \mathcal{L} \subseteq \tau_l$ -cl $([u, v) \cap \mathcal{L})$. But τ_l -cl $_{\mathcal{L}}([u, v) \cap \mathcal{L}) = \tau_l$ -cl $([u, v) \cap \mathcal{L}) \cap \mathcal{L} \subseteq \tau_l$ -cl $([u, v)) \cap \mathcal{L} \subseteq G \cap \mathcal{L} = A$. Thus, A is θ -open in \mathcal{L} . Now, let $\mathcal{X} = \mathcal{L}$ and τ_m be the subspace topology on \mathcal{X} induced by τ_l if m is odd and $\tau_m = \tau_d$ if m is even. It is observed that $\mathcal{O}_{\theta} = \mathcal{O} = \tau_1$. Kocev showed in [14] that \mathcal{X} with topology τ_1 is Menger but its square is not Menger. Thus, (a)space \mathcal{X} is (a)- θ -Menger but the bi(a)space \mathcal{X}^2 is not (a)- θ -Menger.

Theorem 4.13. A mapping $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ is (a)- θ -closed if and only if for each $H \subseteq \mathcal{Y}$ and each $G \in \mathcal{O}_{\theta}(\mathcal{X})$ with $\psi^{-1}(H) \subseteq G$, there exists $U \in \mathcal{O}_{\theta}(\mathcal{Y})$ with $H \subseteq U$ such that $\psi^{-1}(U) \subseteq G$.

Proof. Let $H \subseteq \mathcal{Y}$ and $G \in \mathcal{O}_{\theta}(\mathcal{X})$ such that $\psi^{-1}(H) \subseteq G$. Since ψ is (a)- θ -closed, $\psi(\mathcal{X} - G) \in \mathcal{C}_{\theta}(\mathcal{Y})$. Put $\mathcal{Y} - \psi(\mathcal{X} - G) = U$. Clearly $U \in \mathcal{O}_{\theta}(\mathcal{Y})$ with $H \subseteq U$. Now $\psi^{-1}(U) = \psi^{-1}(\mathcal{Y} - \psi(\mathcal{X} - G)) \subseteq \mathcal{X} - (\mathcal{X} - G) = G$. Conversely, let $G \in \mathcal{C}_{\theta}(\mathcal{X})$ and $y \in \mathcal{Y} - \psi(G)$. Then $\psi^{-1}(y) \subseteq \mathcal{X} - \psi^{-1}(\psi(G)) \subseteq \mathcal{X} - G$, which is (a)- θ -open in \mathcal{X} . So by given hypothesis, there exists $V_y \in \mathcal{O}_{\theta}(\mathcal{Y})$ with $y \in V_y$ such that $\psi^{-1}(V_y) \subseteq \mathcal{X} - G$. Then $G \subseteq \mathcal{X} - \psi^{-1}(V_y) = \psi^{-1}(\mathcal{Y}) - \psi^{-1}(V_y) = \psi^{-1}(\mathcal{Y} - V_y)$ and therefore $\psi(G) \subseteq \mathcal{Y} - V_y$. Thus, $V_y \subseteq \mathcal{Y} - \psi(G)$ and hence, $\mathcal{Y} - \psi(G) = \bigcup_{y \in \mathcal{Y} - \psi(G)} V_y$. By Remark 2.5, $\mathcal{Y} - \psi(G)$ is (a)- θ -open.

Theorem 4.14. Let $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (a)- θ -closed and onto map. If \mathcal{Y} is (a)- θ -compact and $\psi^{-1}(t)$ is (a)- θ -compact with respect to \mathcal{X} for each $t \in \mathcal{Y}$, then \mathcal{X} is (a)- θ -compact.

Proof. Let $\mathcal{P} = \{P_{\alpha} : \alpha \in I\} \in \Theta(\mathcal{X})$. For each $t \in \mathcal{Y}, \psi^{-1}(t) \subseteq \mathcal{X} = \bigcup_{\alpha \in I} P_{\alpha}$. Since for each $t \in \mathcal{Y}, \psi^{-1}(t)$ is (a)- θ -compact with respect to \mathcal{X} , there is a finite set $I_t \subseteq I$ (depending upon t) such that $\psi^{-1}(t) \subseteq \bigcup_{\alpha \in I_t} P_{\alpha}$. Since each $P_{\alpha} \in \mathcal{O}_{\theta}(\mathcal{X})$ and $\mathcal{O}_{\theta}(\mathcal{X})$ is a topology, so by Theorem 4.13, there exists $V_t \in \mathcal{O}_{\theta}(\mathcal{Y})$ with $t \in V_t$ satisfying $\psi^{-1}(V_t) \subseteq \bigcup_{\alpha \in I_t} P_{\alpha}$. Also $\mathcal{Y} = \bigcup_{t \in \mathcal{Y}} V_t$ and \mathcal{Y} is (a)- θ -compact, so $\mathcal{Y} = \bigcup_{i=1}^m V_{t_i}, m \in \mathbb{N}$. Therefore $\mathcal{X} = \psi^{-1}(\mathcal{Y}) = \bigcup_{i=1}^m \psi^{-1}(V_{t_i}) \subseteq \bigcup_{i=1}^m (\bigcup_{\alpha \in I_t} P_{\alpha})$. Hence, \mathcal{X} is (a)- θ -compact.

Theorem 4.15. Let $(\mathcal{X}, \{\tau_k\})$ and $(\mathcal{Y}, \{\sigma_k\})$ be two (*a*)spaces. If \mathcal{X} is $(a)^s$ -compact, then $p_{\mathcal{Y}}: (\mathcal{X} \times \mathcal{Y}, \{\gamma_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ is an (a)- θ -closed surjection.

Proof. Let $G \in C_{\theta}(\mathcal{X} \times \mathcal{Y})$ and $y \in \mathcal{Y} - p_{\mathcal{Y}}(G)$. Then for all $x \in \mathcal{X}$, $(x, y) \notin G$ and therefore, $\mathcal{X} \times \{y\} \subseteq (\mathcal{X} \times \mathcal{Y}) - G$. But $(\mathcal{X} \times \mathcal{Y}) - G \in \mathcal{O}_{\theta}(\mathcal{X} \times \mathcal{Y})$, so for each $n \in \mathbb{N}$, there exists a set $O(x) \in \gamma_n$ such that $(x, y) \in O(x) \subseteq \gamma_m$ -cl $(O(x)) \subseteq (\mathcal{X} \times \mathcal{Y}) - G$. Let $O(x) = O_1(x) \times O_2(x)$, where $O_1(x) \in \tau_n$ and $O_2(x) \in \sigma_n$. It follows that $\{O_1(x) \times O_2(x) : x \in \mathcal{X}\}$ is a γ_n -cover of $\mathcal{X} \times \{y\}$ such that $O_1(x) \times O_2(x) \subseteq \tau_m$ -cl $(O_1(x)) \times \sigma_m$ -cl $(O_2(x)) = \gamma_m$ cl $(O(x)) \subseteq (\mathcal{X} \times \mathcal{Y}) - G$. Also $\mathcal{X} \times \{y\}$ is $(a)^s$ -compact as \mathcal{X} is $(a)^s$ -compact. Therefore, $\mathcal{X} \times \{y\} \subseteq \cup_{i=1}^l \{O_1(x_i) \times O_2(x_i) : x_i \in \mathcal{X}\}$ for some $l \in \mathbb{N}$. Put $\cap_{i=1}^l O_2(x_i) = W$. Then $W \in \sigma_n$ such that $y \in W \subseteq \sigma_m$ -cl $(W) \subseteq \mathcal{Y} - p_{\mathcal{Y}}(G)$ for all $m \neq n$. Thus, $\mathcal{Y} - p_{\mathcal{Y}}(G)$ is (a)- θ -open. \Box

Theorem 4.16. Let $(\mathcal{X}, \{\tau_k\})$ and $(\mathcal{Y}, \{\sigma_k\})$ be two (a)spaces. If \mathcal{X} is $(a)^s$ -compact and \mathcal{Y} is (a)- θ -compact, then $\mathcal{X} \times \mathcal{Y}$ is (a)- θ -compact.

Proof. Let $(\mathcal{X}, \{\tau_k\})$ be an $(a)^s$ -compact space and $(\mathcal{Y}, \{\sigma_k\})$ be an (a)- θ -compact space. By Theorem 4.15, $p_{\mathcal{Y}}: \mathcal{X} \times \mathcal{Y} \to \mathcal{Y}$ is an (a)- θ -closed surjection. For each $t \in \mathcal{Y}, p_{\mathcal{Y}}^{-1}(t) = \mathcal{X} \times \{t\}$. We claim that each $\mathcal{X} \times \{t\}$ is (a)- θ -compact with respect to $\mathcal{X} \times \mathcal{Y}$. Let $\mathcal{P} = \{P_\alpha : \alpha \in I\}$ be any cover of $\mathcal{X} \times \{t\}$ by (a)- θ -open subsets of $\mathcal{X} \times \mathcal{Y}$. For each $\alpha \in I$, let $P_\alpha = Q_\alpha \times R_\alpha$, where $Q_\alpha \in \mathcal{O}_\theta(\mathcal{X})$ and $R_\alpha \in \mathcal{O}_\theta(\mathcal{Y})$. But \mathcal{X} is $(a)^s$ -compact and hence, (a)- θ -compact, So there exists a finite set $J \subseteq I$ such that $\mathcal{X} = \bigcup_{\alpha \in J} Q_\alpha$. Let $t \in R_\beta$ for some $\beta \in I$. Then $\mathcal{X} \times \{t\} \subseteq \bigcup_{\alpha \in J} (Q_\alpha \times R_\beta)$. Thus, $p_{\mathcal{Y}}^{-1}(t)$ is (a)- θ -compact with respect to $\mathcal{X} \times \mathcal{Y}$ for each $t \in Y$. By Theorem 4.14, the proof follows.

Theorem 4.17. Let $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (a)- θ -closed and onto map. If \mathcal{Y} is (a)- θ -Menger and $\psi^{-1}(t)$ is (a)- θ -compact with respect to \mathcal{X} for each $t \in \mathcal{Y}$, then \mathcal{X} is (a)- θ -Menger.

Proof. Let $\langle \mathcal{G}_k : k \in \mathbb{N} \rangle$ be a sequence of elements of $\Theta(\mathcal{X})$. For each $t \in \mathcal{Y}$ and for each $k \in \mathbb{N}, \psi^{-1}(t) \subseteq \mathcal{X} = \bigcup \{G : G \in \mathcal{G}_k\}$. Since $\psi^{-1}(t)$ is (a)- θ -compact with respect to \mathcal{X} , there is a finite subcovering, say \mathcal{U}_k^t (depending on $t \in \mathcal{Y}$), for each covering \mathcal{G}_k of $\psi^{-1}(t)$ such that $\psi^{-1}(t) \subseteq \bigcup \{G : G \in \mathcal{U}_k^t\}$ for each $k \in \mathbb{N}$. Since $\bigcup \{G : G \in \mathcal{U}_k^t\} \in \mathcal{O}_\theta(\mathcal{X})$, by Theorem 4.13, there exists $V_t^k \in \mathcal{O}_\theta(\mathcal{Y})$ with $t \in V_t^k$ satisfying $\psi^{-1}(V_t^k) \subseteq \bigcup \{G : G \in \mathcal{U}_k^t\}$ for each $k \in \mathbb{N}$. Clearly $\mathcal{Y} = \bigcup Y_k$ for each $k \in \mathbb{N}$, where $Y_k = \{V_t^k : t \in Y\}$. Since \mathcal{Y} is (a)- θ -Menger, there exists finite $\mathcal{V}_k \subseteq \mathcal{Y}_k$ such that $\mathcal{Y} = \bigcup (\bigcup_{k \in \mathbb{N}} \mathcal{V}_k)$. For each $k \in \mathbb{N}$, there exists finite set $A_k \subseteq \mathcal{Y}$ such that $\mathcal{Y} = \bigcup (\bigcup_{k \in \mathbb{N}} \mathcal{V}_k)$. For each $k \in \mathbb{N}$, there exists finite set $A_k \subseteq \mathcal{Y}$ such that $\mathcal{Y} = \bigcup (\bigcup_{k \in \mathbb{N}} \mathcal{V}_k)$. Indeed, $\psi(x) \in \mathcal{Y} = \bigcup (\bigcup_{k \in \mathbb{N}} \mathcal{V}_k)$ for $x \in \mathcal{X}$ which implies that $\psi(x) \in V_t^k$ for some $k \in \mathbb{N}$ and for some $t \in A_k$. Thus, $x \in \bigcup \{G : G \in \mathcal{U}_k^t\}$ for some $k \in \mathbb{N}$ and for some $t \in A_k$. Hence, $x \in G$ for some $G \in \mathcal{U}_k$ and for some $k \in \mathbb{N}$.

Theorem 4.18. Let $(\mathcal{X}, \{\tau_k\})$ and $(\mathcal{Y}, \{\sigma_k\})$ be two (*a*)spaces. If \mathcal{X} is $(a)^s$ -compact and \mathcal{Y} is (a)- θ -Menger, then $\mathcal{X} \times \mathcal{Y}$ is (a)- θ -Menger.

Proof. Let $(\mathcal{X}, \{\tau_k\})$ be an $(a)^s$ -compact space and $(\mathcal{Y}, \{\sigma_k\})$ be an (a)- θ -Menger space. By Theorem 4.15, $p_{\mathcal{Y}}: \mathcal{X} \times \mathcal{Y} \to \mathcal{Y}$ is an (a)- θ -closed surjection. For each $t \in \mathcal{Y}, p_{\mathcal{Y}}^{-1}(t) = \mathcal{X} \times \{t\}$ and \mathcal{X} is $(a)^s$ -compact, so $p_{\mathcal{Y}}^{-1}(t)$ is (a)- θ -compact with respect to $\mathcal{X} \times \mathcal{Y}$ for each $t \in \mathcal{Y}$ (see Theorem 4.16). From Theorem 4.17, $\mathcal{X} \times \mathcal{Y}$ is (a)- θ -Menger.

Theorem 4.19. If \mathcal{X}^k is (a)- θ -Menger for each finite natural k, then \mathcal{X} satisfies $S_{fin}(\Theta \cdot \Omega(\mathcal{X}), \Theta \cdot \Omega(\mathcal{X}))$.

Proof. Let < *G_k*: *k* ∈ ℕ > be a sequence of elements of Θ-Ω(*X*). Assume that each *G_k* is closed under finite union. Let ℕ = *N*₁ ∪ *N*₂ ∪ · · · ∪ *N_k* ∪ . . . where each *N_i* is infinite and *N_i* ∩ *N_j* ≠ ∅ for all *i* ≠ *j*. For each *m* ∈ ℕ and for each *k* ∈ *N_m*, let *U_k* = {*G^m*: *G* ∈ *G_k*}. Since finite product of (*a*)-*θ*-open sets is again (*a*)-*θ*-open (see Theorem 2.13), *U_k* ∈ Θ(*X^m*) for all *k* ∈ *N_m*. In fact, *U_k* ∈ Θ-Ω(*X^m*) for all *k* ∈ *N_m*. Let *A* = {*a*₁, *a*₂, . . . , *a*_{*i*}} ⊆ *X^m* be finite. For each *i* ∈ {1, 2, . . . , *r*}, *a_i* = (*a*_{i1}, *a*_{i2}, . . . , *a_{im}*) where *a_{ij}* ∈ *X* for all *j* = 1, 2, . . . , *m*. Since *B* = {*a_{ij}*: 1 ≤ *i* ≤ *r* and 1 ≤ *j* ≤ *m*} ⊆ *X* is finite, so *B* ⊆ *G* for some *G* ∈ *G_k*. Thus, *A* ⊆ *G^m*. Also it is clear that *X^m* ∉ *U_k* as *X* ∉ *G_k*. Thus, < *U_k*: *k* ∈ *N_m* > is a sequence of elements of Θ-Ω(*X^m*). As *X^m* is (*a*)-*θ*-Menger, so there exists finite *V_k* ⊆ *U_k* (for each *k* ∈ *N_m*) such that $\mathcal{X}^m = \bigcup(\bigcup_{k \in N_m} \mathcal{V}_k)$. For each *k* ∈ *N_m*, let $\mathcal{H}_k = \{G_V : G_V^m = V, V \in \mathcal{V}_k\}$. It follows that $\bigcup(\bigcup_{k \in N_m} \mathcal{H}_k) = \mathcal{X}$. Thus, $\bigcup_{k \in \mathbb{N}} \mathcal{H}_k \in \Theta(\mathcal{X})$. Moreover, $\bigcup_{k \in \mathbb{N}} \mathcal{H}_k \in \Theta-\Omega(\mathcal{X})$. Indeed, for any finite set *D* = {*d*₁, *d*₂, . . . , *d_l*} ⊆ *X*, (*d*₁, *d*₂, . . . , *d_l*) ∈ \mathcal{H} . So there exists a *t* ∈ *N_l* such that (*d*₁, *d*₂, . . . , *d_l*) ∈ *H^l* for some *H* ∈ $\bigcup_{k \in \mathbb{N}} \mathcal{H}_k$ as $\mathcal{X}^m \notin \mathcal{U}_k$ for any *k* ∈ ℕ. Hence, \mathcal{X} satisfies *S_{fin}*(Θ-Ω($\mathcal{X})$, $\Theta-\Omega(\mathcal{X})$).

In the following couple of theorems, we shall discuss only the (a)- θ -Menger property; (a)- θ -compactness can be studied in a similar way.

Theorem 4.20. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (a)- θ -continuous and onto map. If \mathcal{X} is (a)- θ -Menger, then \mathcal{Y} is (a)- θ -Menger.

Proof. Let \mathcal{X} be an (a)- θ -Menger space and $\langle \mathcal{G}_k : k \in \mathbb{N} \rangle$ be a sequence of elements of $\Theta(\mathcal{Y})$. Since ψ is (a)- θ -continuous, by Proposition 3.2, each $\mathcal{H}_k = \{\psi^{-1}(G) : G \in \mathcal{G}_k\} \in \Theta(\mathcal{X})$. Since \mathcal{X} is (a)- θ -Menger, there exists finite $\mathcal{V}_k \subseteq \mathcal{H}_k$ such that $\mathcal{X} = \bigcup(\bigcup_{k \in \mathbb{N}} \mathcal{V}_k)$. For each $k \in \mathbb{N}$, let $\mathcal{W}_k = \{G_V : V = \psi^{-1}(G_V), V \in \mathcal{V}_k\}$. It is easy to see that each $\mathcal{W}_k \subseteq \mathcal{G}_k$ is finite. Also, $\mathcal{X} = \bigcup(\bigcup_{k \in \mathbb{N}} \{V : V \in \mathcal{V}_k\})$. Therefore, $\mathcal{Y} = \psi[\bigcup(\bigcup_{k \in \mathbb{N}} \{V : V \in \mathcal{V}_k\})] = \bigcup(\bigcup_{k \in \mathbb{N}} \{\psi(V) : V \in \mathcal{V}_k\}) = \bigcup(\bigcup_{k \in \mathbb{N}} \{G_V : G_V \in \mathcal{W}_k\})$. Hence, \mathcal{Y} is (a)- θ -Menger. \Box

Theorem 4.21. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -continuous and onto map. If \mathcal{X} is (a)- θ -Menger, then \mathcal{Y} is (a)- θ -Menger.

Proof. The proof follows by Proposition 3.11 and Theorem 4.20.

Theorem 4.22. Let $\psi : (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an (*a*)-stongly- θ -continuous and onto map. If \mathcal{X} is (*a*)- θ -Menger, then \mathcal{Y} is (*a*)-Menger.

Proof. Let \mathcal{X} be an (a)- θ -Menger space and $\langle \mathcal{G}_k : k \in \mathbb{N} \rangle$ be a sequence of (a)-covers of \mathcal{Y} . Since ψ is (a)-strongly- θ -continuous, so by Proposition 3.4, $\psi^{-1}(G) \in \mathcal{O}_{\theta}(X)$ for each $G \in \mathcal{G}_k$. Therefore, $\mathcal{U}_k = \{\psi^{-1}(G) : G \in \mathcal{G}_k\} \in \Theta(X)$ for all $k \in \mathbb{N}$. Since \mathcal{X} is (a)- θ -Menger, there exists finite $\mathcal{V}_k \subseteq \mathcal{U}_k$ such that $\bigcup(\bigcup_{k\in\mathbb{N}}\mathcal{V}_k) = \mathcal{X}$. For each $V \in \mathcal{V}_k$ there exists $G_V \in \mathcal{G}_k$ such that $V = \psi^{-1}(G_V)$. Let $\mathcal{W}_k = \{G_V : V = \psi^{-1}(G_V), V \in \mathcal{V}_k\}$. It is clear that each $\mathcal{W}_k \subseteq \mathcal{G}_k$ is finite and $\mathcal{Y} = \psi[\bigcup(\bigcup_{k\in\mathbb{N}}\{V : V \in \mathcal{V}_k\})] = \bigcup(\bigcup_{k\in\mathbb{N}}\{\psi(V) : V \in \mathcal{V}_k\}) = \bigcup(\bigcup_{k\in\mathbb{N}}\{G_V : G_V \in \mathcal{W}_k\})$. Hence, \mathcal{Y} is (a)-Menger.

Theorem 4.23. Let $\psi: (\mathcal{X}, \{\tau_k\}) \to (\mathcal{Y}, \{\sigma_k\})$ be an $(a)^s$ -faintly-continuous and onto map. If \mathcal{X} is (a)-Menger, then \mathcal{Y} is (a)- θ -Menger.

Proof. It can be easily proved with the help of Theorem 3.15.

References

- L. Babinkostova, B. A. Pansera and M. Scheepers, Weak covering properties and selection principles, Topol. Appl. 160 (2013), 2251–2271.
- [2] M. K. Bose and R. Tiwari, On increasing sequences of topologies on a set, Riv. Mat. Univ. Parma. 7 (2007), 173–183.
- [3] M. K. Bose and R. Tiwari, On (ω) topological spaces, Riv. Mat. Univ. Parma. 9 (2008), 125–132.
- [4] M. K. Bose and A. Mukharjee, On countable families of topologies on a set, Novi Sad J. Math. 40 (2010), 7–16.
- [5] M. K. Bose and R. Tiwari, (ω)topological connectedness and hyperconnectedness, Note Mat. 31 (2011), 93–101.
- [6] A. Roy Choudhury, A. Mukharjee and M. K. Bose, Hyperconnectedness and extremal disconnectedness in (a)topological spaces, Hacet. J. Math. Stat. 44 (2015), no. 2, 289–294.
- [7] P. Daniels, Pixley-Roy spaces over subsets of the reals, Topol. Appl. 29 (1988), 93-106.
- [8] R. Engelking, General Topology, Heldermann Verlag, Berlin: Sigma Series in Pure Mathematics 6 (1989).
- [9] W. Hurewicz, Über die Verallgemeinerung des Borelshen Theorems, Math. Z. 24 (1925), 401-425.
- [10] W. Hurewicz, Über Folgen stetiger Functionen, Fund. Math. 9 (1927), 193-204.
- [11] W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki, The combinatorics of open covers (II), Topol. Appl. 73 (1996), 241–266.
- [12] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71–89.
- [13] D. Kocev, Almost Menger and related spaces, Mat. Vesnik 61 (2009), 173-180.
- [14] D. Kocev, Menger-type covering properties of topological spaces, Filomat 29 (2015), no. 1, 99-106.
- [15] Lj. D. R. Kočinac, Star-Menger and related spaces II, Filomat 13 (1999), 129-140.
- [16] Lj. D. R. Kočinac, The Pixley-Roy topology and selection principles, Quest. Answers Gen. Topology 19 (2001), 219–225.
- [17] Lj. D. R. Kočinac, Selected results on selection principles, In: Proc. Third Sem. Geometry and Topology; Tabriz, Iran (2004), 71–104.
- [18] Lj. D. R. Kočinac, Some covering properties in topological and uniform spaces, Proc. Steklov Inst. Math. 252 (2006), 122–137.
- [19] Lj. D. R. Kočinac, On mildly Hurewicz spaces, Internat. Math. Forum 11 (2016), 573–582.

- [20] Lj. D. R. Kočinac, A. Sabah, M. ud Din Khan and D. Seba, Semi-Hurewicz spaces, Hacettepe J. Math. Stat. 46 (2017), 53–66.
- [21] Lj. D. R. Kočinac, Generalized open sets and selection properties, Filomat 33 (2019), no. 5, 1485–1493.
- [22] J. K. Kohli and A. K. Das, A class of spaces containing all generalized absolutely closed (almost compact) spaces, Applied General Topology 7 (2006), no. 2, 233–244.
- [23] A. Lelek, Some cover properties of spaces, Fundamenta Mathematicae 64 (1969), 209–218.
- [24] Paul E. Long and Larry L. Herrington, Strongly θ-continuous functions, J. Korean Math. Soc. 18 (1981), no. 1, 21–28.
- [25] Paul E. Long and Larry L. Herrington, The T_{θ} -topology and faintly continuous functions, Kyungpook Math. J. **22** (1982), no. 1, 7–14.
- [26] S. Luthra, Harsh V. S. Chauhan and B. K. Tyagi, Selective separability in (a)topological spaces, Filomat 35 (2021), no. 11, 3745–3758.
- [27] G. Di Maio and Lj. D. R. Kočinac, Some covering properties of hyperspaces, Topol. Appl. 155 (2008), 1959–1969.
- [28] G. Di Maio and Lj. D. R. Kočinac, A note on quasi-Menger and similar spaces, Topol. Appl. 179 (2015), 148–155.
- [29] K. Menger, Einige Überdeckungssätze der punktmengenlehre, Stzungsb. Abt. 3a, Math. Astron. Phys. Metor. Mech. 133 (1924), 421–444.
- [30] T. Noiri, On δ -continuous functions, J. Korean Math. Soc. **16** (1980), no. 2, 161–166.
- [31] B. A. Pansera, Weaker forms of the Menger property, Quaest. Math. 35 (2012), 161-169.
- [32] A. Sabah, M. ud Din Khan and Lj. D. R. Kočinac, Covering properties defined by semi-open sets, J. Nonlinear Sci. Appl. 9 (2016), 4388–4398.
- [33] A. Sabah and M. ud Din Khan, Semi-Rothberger and related spaces, Bull. Iranian Math. Soc. 43 (2017), 1969–1987.
- [34] M. Sakai, The weak Hurewicz property of Pixley-Roy hyperspaces, Topol. Appl. 160 (2013), 2531–2537.
- [35] M. Sakai, Some weak covering properties and infinite games, Cent. Eur. J. Math. 12 (2014), no. 2, 322– 329.
- [36] M. Sakai and M. Scheepers, The combinatorics of open covers, In: K.P. Hart, J. van Mill, P. Simon (Eds.), Recent Progress in General Topology III, Atlantis Press (2012), 751–800.
- [37] M. Scheepers, Combinatorics of open covers I: Ramsey Theory, Topol. Appl. 69 (1996), 31-62.
- [38] M. Scheepers, Selection principles and covering properties in topology, Note Mat. 22 (2003), 3-41.
- [39] Y. K. Song, Some remarks on almost Menger spaces and weakly Menger spaces, Publ. Inst. Math. 98 (2015), no. 112, 193–198.
- [40] L. A. Steen and J. A. Seebach, Counterexamples in Topology, Holt, Rinehart and Winston; New York (1970).
- [41] B. Tsaban, Some new directions in infinite-combinatorial topology, In: J. Bagaria, S. Todorčević (Eds.), Set Theory, In: Trends in Mathematics, Birkhäuser (2006), 225–255.
- [42] N. Velichko, H-closed topological spaces, Mat. Sb. (N.S.) 70 (1966), 98-112.

Author information

Sheetal Luthra, Department of Mathematics, University of Delhi, New Delhi-110007, India. E-mail: premarora550@gmail.com

Harsh V. S. Chauhan, Department of Mathematics, Chandigarh University, Mohali, Punjab, India. E-mail: harsh.chauhan111@gmail.com

B. K. Tyagi, Department of Mathematics, Atmaram Sanatan Dharma College, University of Delhi, New Delhi-110021, India.

E-mail: brijkishore.tyagi@gmail.com

Cemil Tunc, Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, Turkey. E-mail: cemtunc@yahoo.com

Received: February 23, 2021 Accepted: April 14, 2021