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Abstract We introduced the concept of (a)-θ-compactness and (a)-θ-Mengerness in (a)top-
ological spaces. We discussed the relationship of the above notions with the other known cover-
ing properties. It is shown that the product of two (a)-θ-Menger (resp. (a)-θ-compact) spaces
is (a)-θ-Menger (resp. (a)-θ-compact) if one of them is (a)s-compact. If X i is (a)-θ-Menger
for each finite i, then (a)topological space X satisfies the selection principle Sfin(Θ-Ω(X ),
Θ-Ω(X )). Further, it is shown that the (a)-θ-Menger covering property is preserved under (a)-
θ-continuous and (a)-strongly-θ-continuous map.

1 Introduction

Many authors [9, 10, 16, 17, 29, 36, 38, 41] investigated several covering properties extensively
in topological spaces. All these covering properties are related with selection principles, in-
troduced by Scheepers [11, 37]. The theory of selection principles is further studied by many
authors. At first we recall one of the classical selection principle:

The selection principle Sfin(P,Q) is defined as :

For each sequence < Pn : n ∈ N > of elements of P , there exists a finite set Qn ⊆ Pn (for
each n ∈ N) such that ∪n∈NQn ∈ Q (see [17, 18]).

The property Sfin(G,G), where G is the family of all open covers of a topological space,
is known as the the Menger covering property [29] (or the Menger property). Various weaker
forms of the Menger property have been discussed in [1, 13, 14, 28, 31, 32, 35, 39]. Recently,
Kočinac et al. [21, 32] studied weak versions of the classical Menger covering property by
using several other forms of open sets. In selection principles theory, authors study mainly
in two directions : (1). The closure operator is used in the definition of selection principle
[1, 7, 13, 15, 16, 27, 28, 31, 34] and (2). Sequences of open covers are replaced by sequences of
covers by some weak or strong form of open sets [19, 20, 21, 32, 33]. Recently, Luthra et al. [26]
worked in first direction and studied various selective version of separability in (a)topological
spaces which is more general than bitopological spaces [12], (ω)topological spaces [2, 3, 5] and
(ℵ0)topological spaces [4]. (a)topological space, introduced by Choudhury et. al. [6], is a non
empty set on which a sequence of topologies are imposed. Here, we concerned in the second
direction by using the notion of (a)-θ-open sets in (a)topological spaces. We introduced (a)-θ-
open sets and studied various types of continuity. We investigated the classical Menger covering
property and the compactness property by using (a)-θ-open sets.

In 1966, Velicko [42] introduced θ-closed sets in topological spaces. In [24, 25, 30], the dif-
ferent types of continuity via θ-open sets are introduced and studied in detail. By using θ-open
sets, some covering properties are discussed by Kohli et. al. in [22]. In this paper, we define (a)-
θ-open sets in (a)topological spaces. We studied the notion of (a)-θ-open set in (a)subspaces,
product (a)spaces and discussed its relationship with (a)-open sets [26]. We discussed various
types of continuity and some covering properties in detail.
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In Section 2, we discussed various properties of (a)-θ-open sets. We characterize (a)-θ-open
sets in bi(a)spaces. Section 3 deals with different types of continuity in (a)topological spaces
and inter-relationships between them. We characterize (a)-θ-open sets in (a)subspaces. Further,
we characterize (a)-strongly-θ-map in product (a)topological spaces. In Section 4, we discussed
the classical Menger covering property and the compactness property via (a)-θ-open sets. We
construct many counterexamples that shows the inter-relationships between various covering
properties. It is shown that the property of (a)-θ-Menger is hereditary under (a)-clopen sub-
spaces. The product of two (a)-θ-Menger (resp. (a)-θ-compact) spaces is (a)-θ-Menger (resp.
(a)-θ-compact) if one of them is (a)s-compact. If X i (a)-θ-Menger for each finite i, then X
satisfies Sfin(Θ-Ω(X ),Θ-Ω(X )). Further, we show that the (a)-θ-Menger covering property is
preserved under (a)-θ-continuous and (a)-strongly-θ-continuous map.

Let (X , {τn}) be an (a)topological space and Y ⊆ X . Then we say (Y, {τnY}) is an
(a)subspace of X , where τnY is the induced subspace topology on Y inherited from τn for each
n ∈ N. If Y is (a)-open (resp. (a)-closed, (a)-clopen) in X , we say Y is an (a)-open (resp.
(a)-closed, (a)-clopen) subspace of X .

Throughout the paper, (X , {τn}) denotes an (a)topological space and if there is no scope of
confusion, we will write X instead of (X , {τn}). For A ⊆ X , the (τn)interior (resp. (τn)closure)
of A in X is denoted by τn-int(A) (resp. τn-cl(A)). In (a)subspace (Y, {τnY}) of (X , {τn}),
τn-intY(A) (resp. τn-clY(A)) denotes the τn-interior (resp. τn-closure) of A in Y . By X k, we
mean the cartesian product of k-copies of X . Following are the standard notions used in this
paper.

• τd - Discrete Topology

• τu - Usual Topology on R

• τc - Cocountable Topology

• τf - Cofinite Topology

• τl - Lower limit Topology on R

For general notion of topology, we follow [8] and one can see [17, 18, 35, 41] for other basic
notions regarding selection principles.

2 (a)-θ-open sets

Definition 2.1. [6] If < τn : n ∈ N > is a sequence of topologies on a non empty set X , then
(X , {τn}n∈N) is called an (a)topological space (in short, (a)space).

Definition 2.2. [26] A set G ⊆ X is said to be:

(1). τn-open if G ∈ τn.

(2). (a)-open if G is τn-open for all n ∈ N.

(3). (a)-closed if X −G is (a)-open.

We denote the family of all (a)-open sets and (a)-closed sets byO(X ) and C(X ), respectively.
If there is no scope of confusion, we will write O and C instead of O(X ) and C(X ), respectively.

Remark 2.3. O(X ) forms a topology on X .

Definition 2.4. Let (X , {τn}) be an (a)space. A point g ∈ X is said to be (m,n)-θ-cluster
point of G ⊆ X if for every O ∈ τn containing g, τm-cl(O) ∩ G 6= ∅. The set {g ∈ X : g is
(m,n)-θ-cluster point of G}, denoted by τ(m,n)-clθ(G), is the (m,n)-θ-closure of G. If τ(m,n)-
clθ(G) = G, then G is called (m,n)-θ-closed. G is (m,n)-θ-open if X − G is (m,n)-θ-closed.
In case, G is (m,n)-θ-open (resp. (m,n)-θ-closed) for all m 6= n, we say G is (a)-θ-open (resp.
(a)-θ-closed).
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We denote the family of all (m,n)-θ-open sets, (a)-θ-open sets and (a)-θ-closed sets by
Oθ(m,n)(X ), Oθ(X ) and Cθ(X ), respectively. If there is no scope of confusion, we will write
Oθ(m,n), Oθ and Cθ instead of Oθ(m,n)(X ), Oθ(X ) and Cθ(X ), respectively.

Remark 2.5. Oθ(X ) forms a topology on X .

Proposition 2.6. Oθ(X ) ⊆ O(X ) for any (a)space X .

Proof. Let G ∈ Oθ. By definition, G is (m,n)-θ-open for all m 6= n. Then τ(m,n)-clθ(X −G) =
X −G for all m 6= n. But τn-cl(A) ⊆ τ(m,n)-clθ(A) for every set A, so τn-cl(X −G) = X −G.
Thus, G is τn-open for all n ∈ N.

The converse of the Proposition 2.6 is not true.

Example 2.7. Let τn be the digital topology on Z generated by {{2k−1, 2k, 2k+1} : k ∈ Z} for
each odd n and τn be the topology on Z generated by {..., {−8,−7,−6}, {−5,−4,−3}, {−2,−1,
0}, {1}, {2, 3, 4}, {5, 6, 7}, {8, 9, 10}, ...} for each even n. LetG = {1}. It is obvious thatG ∈ O.
We will show that G /∈ Oθ. Let U ∈ τ3 and 1 ∈ U . Then {0, 1, 2} ⊆ τ1-cl(U). This implies
that τ1-cl(U)) ∩ (Z − G) 6= ∅. So 1 ∈ τ(1,3)-clθ(Z − G) and thus, τ(1,3)-clθ(Z − G) 6= Z − G.
Therefore, G is not (1, 3)-θ-open and hence, G /∈ Oθ.

In following results, we characterize (m,n)-θ-open sets in (a)spaces.

Theorem 2.8. A set G ∈ Oθ(m,n)(X ) if and only if for each g ∈ G there exists O ∈ τn
satisfying g ∈ O ⊆ τm-cl(O) ⊆ G.

Proof. Let G ∈ Oθ(m,n)(X ). Then τ(m,n)-clθ(X − G) = X − G. So for each g ∈ G, there
exists O ∈ τn such that g ∈ O and τm-cl(O)∩ (X −G) = ∅. Therefore, g ∈ O ⊆ τm-cl(O) ⊆ G.
Conversely, let for each g ∈ G there exists O ∈ τn such that g ∈ O ⊆ τm-cl(O) ⊆ G. Therefore,
τm-cl(O) ∩ (X −G) = ∅. So τ(m,n)-clθ(X −G) = X −G and thus, G ∈ Oθ(m,n)(X ).

Corollary 2.9. A set G ∈ Oθ(X ) if and only if for each g ∈ G there exists On ∈ τn (for each
n ∈ N) such that g ∈ On ⊆ τm-cl(On) ⊆ G for all m 6= n.

Definition 2.10. A set G ⊆ X is (m,n)-regular-open if G = τn-int(τm-cl(G)).

Proposition 2.11. A set G ∈ Oθ(m,n)(X ) if and only if for each g ∈ G there exists an (m,n)-
regular-open set R such that g ∈ R ⊆ τm-cl(R) ⊆ G.

Proof. Let G ∈ Oθ(m,n)(X ). For each g ∈ G, there exists O ∈ τn satisfying g ∈ O ⊆ τm-
cl(O) ⊆ G. Let R = τn-int(τm-cl(O)). Since R is τn-open, R ⊆ τn-int(τm-cl(R)). Also
τn-int(τm-cl(R)) = τn-int(τm-cl(τn-int(τm-cl(O)))) ⊆ τn-int(τm-cl(O)) = R. Thus, R is an
(m,n)-regular-open set such that g ∈ R ⊆ τm-cl(R) ⊆ G. Conversely, every (m,n)-regular-
open set is τn-open, so the proof follows from Theorem 2.8.

Proposition 2.12. If A ⊆ B ⊆ X , then A ∈ Oθ(X ) imply that A ∈ Oθ(B).

Proof. Let A ∈ Oθ(X ) with A ⊆ B ⊆ X and a ∈ A. For each m 6= n, there exists O ∈ τn
such that a ∈ O and τm-cl(O) ⊆ A. Then a ∈ O ∩ B and O ∩ B ⊆ τm-clB(O ∩ B) = τm-
cl(O ∩ B) ∩ B ⊆ τm-cl(O). Therefore, G = O ∩ B ∈ τnB satisfying a ∈ G ⊆ τm-clB(G) ⊆ A
for all m 6= n. Thus, A ∈ Oθ(B).

Let {(Xα, {τnα}n∈N) : α ∈ ∧} be an arbitrary family of (a)spaces and X =
∏
α∈∧ Xα. We

define an (a)topology structure (X , {τn}) on X by considering τn as the product topology on X
generated by the continuous projections pnα : (X , τn)→ (Xα, τnα) for every α ∈ ∧. (X , {τn}) is
called the product (a)space. In particular, the product of two (a)spaces is called the bi(a)space.
In the following two results, we characterize (a)-θ-open sets in bi(a)spaces.

Theorem 2.13. Let (X , {τn}) and (Y, {σn}) be two (a)spaces. If A ∈ Oθ(X ) and B ∈ Oθ(Y),
then A×B ∈ Oθ(X × Y), where (X × Y, {γn}) is a bi(a)space.
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Proof. Let A ∈ Oθ(X ), B ∈ Oθ(Y) and (a, b) ∈ A× B. For each m 6= n, there exists An ∈ τn
and Bn ∈ σn such that a ∈ An ⊆ τm-cl(An) ⊆ A and b ∈ Bn ⊆ τm-cl(Bn) ⊆ B. It follows
that (a, b) ∈ An ×Bn ⊆ τm-cl(An)× σm-cl(Bn) ⊆ A×B. But τm-cl(An)× σm-cl(Bn) = γm-
cl(An×Bn). Thus,A×B ∈ Oθ(m,n)(X×Y) for allm 6= n and hence,A×B ∈ Oθ(X×Y).

Theorem 2.14. Let (X , {τn}) and (Y, {σn}) be two (a)spaces. Let pX : (X × Y, {γn}) →
(X , {τn}) be a map defined by pX (x, y) = x. If A ∈ Oθ(X × Y), then pX (A) ∈ Oθ(X ).

Proof. Let A ∈ Oθ(X × Y) and a ∈ pX (A). Then there exists b ∈ Y such that (a, b) ∈ A.
Since A ∈ Oθ(m,n)(X × Y) for all m 6= n, there exists Un ∈ γn (for each n) such that
(a, b) ∈ Un ⊆ γm-cl(Un) ⊆ A for all m 6= n. But Un = An × Bn where An ∈ τn and
Bn ∈ σn, so (a, b) ∈ An × Bn ⊆ τm-cl(An) × σm-cl(Bn) = γm-cl(An × Bn) ⊆ A. Thus,
a ∈ An ⊆ τm-cl(An) ⊆ pX (A) and hence, pX (A) ∈ Oθ(X ).

We conclude from Theorem 2.13 and Theorem 2.14 that A ∈ Oθ(X × Y) if and only if
A = G×H , where G ∈ Oθ(X ) and H ∈ Oθ(Y).

Theorem 2.15. Let (X , {τn}) and (Y, {σn}) be two (a)spaces. A set A ∈ Oθ(X × Y) if and
only if A = G×H , where G ∈ Oθ(X ) and H ∈ Oθ(Y).

Proposition 2.16. If a point x ∈ τ(m,n)-clθ(G) for G ⊆ X , then every (m,n)-θ-open set contain-
ing x intersects G.

Proof. Let G ⊆ X and x ∈ τ(m,n)-clθ(G). Let O ∈ Oθ(m,n) with x ∈ O. Then there exists
U ∈ τn such that x ∈ U ⊆ τm-cl(U) ⊆ O. Since x ∈ τ(m,n)-clθ(G), τm-cl(U) ∩ G 6= ∅. It
follows that O ∩G 6= ∅.

3 Mappings and (a)-θ-open sets

Definition 3.1. A function ψ : (X , {τk})→ (Y, {σk}) is said to be:

(1). (a)s-continuous (resp. (a)s-weakly-continuous) if for each x ∈ X and each O ∈ σn with
ψ(x) ∈ O, there exists V ∈ τn with x ∈ V satisfying ψ(V ) ⊆ O (resp. ψ(V ) ⊆ σm-cl(O))
for all m 6= n.

(2). (a)s-faintly-continuous if for each x ∈ X and each O ∈ Oθ(m,n)(Y) with ψ(x) ∈ O, there
exists V ∈ τn with x ∈ V satisfying ψ(V ) ⊆ O for all m 6= n.

(3). (a)-θ-continuous (resp. (a)-strongly-θ-continuous) if for each x ∈ X and each O ∈ σn
with ψ(x) ∈ O, there exists V ∈ τn with x ∈ V satisfying ψ(τm-cl(V )) ⊆ σm-cl(O) (resp.
ψ(τm-cl(V )) ⊆ O) for all m 6= n.

(4). (a)-θ-open (resp. (a)-θ-closed) if ψ(A) ∈ Oθ(Y) (resp. ψ(A) ∈ Cθ(Y)) for each A ∈
Oθ(X ) (resp. A ∈ Cθ(X )).

(5). (a)s-open (resp. (a)s-closed) if ψ : (X , τk)→ (Y, σk) is open (resp. closed) for all k ∈ N.

Proposition 3.2. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-θ-continuous map. If G ∈ Oθ(Y),
then ψ−1(G) ∈ Oθ(X ).

Proof. Let G ∈ Oθ(Y) and g ∈ ψ−1(G). Then ψ(g) ∈ G. So there exists Vn ∈ σn (for each
n) such that ψ(g) ∈ Vn ⊆ σm-cl(Vn) ⊆ G for all m 6= n. Since ψ is (a)-θ-continuous, there
exists Un ∈ τn (for each n) with g ∈ Un satisfying ψ(τm-cl(Un)) ⊆ σm-cl(Vn) for all m 6= n.
It follows that g ∈ Un ⊆ τm-cl(Un) ⊆ ψ−1(σm-cl(Vn)) ⊆ ψ−1(G) for all m 6= n. Thus,
ψ−1(G) ∈ Oθ(X ).

From Definition 3.1, it is clear that every (a)-strongly-θ-continuous function is (a)-θ-continu-
ous, so the following corollary is immediate.

Corollary 3.3. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-strongly-θ-continuous map. If G ∈
Oθ(Y), then ψ−1(G) ∈ Oθ(X ).
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Proposition 3.4. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-strongly-θ-continuous map. If G ∈
O(Y), then ψ−1(G) ∈ Oθ(X ).

Proof. Let G ∈ O(Y) and g ∈ ψ−1(G). Then ψ(g) ∈ G. Since G ∈ O(Y) and ψ is (a)-strongly-
θ-continuous, there exists Un ∈ τn (for each n) with g ∈ Un satisfying ψ(τm-cl(Un)) ⊆ G for all
m 6= n. Therefore, g ∈ Un ⊆ τm-cl(Un) ⊆ ψ−1(G) for all m 6= n. Thus, ψ−1(G) ∈ Oθ(X ).

Proposition 3.5. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-strongly-θ-continuous map. If G ∈
C(Y), then ψ−1(G) ∈ Cθ(X ).

Proof. It can be easily proved from the Proposition 3.4.

Theorem 3.6. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-open and (a)s-closed map. Then ψ
preserve (a)-θ-open sets.

Proof. LetG ∈ Oθ(X ) and y ∈ ψ(G). Then y = ψ(x) for some x ∈ G. SinceG ∈ Oθ(m,n)(X )
for all m 6= n, there exists Un ∈ τn (for each n) satisfying x ∈ Un ⊆ τm-cl(Un) ⊆ G for all
m 6= n. Therefore, y ∈ ψ(Un) ⊆ ψ(τm-cl(Un)) ⊆ ψ(G). Since ψ is (a)s-open and (a)s-
closed, so ψ(Un) ∈ σn and σm-cl(ψ(Un)) ⊆ ψ(τm-cl(Un)). Therefore, y ∈ ψ(Un) ⊆ σm-
cl(ψ(Un)) ⊆ ψ(τm-cl(Un)) ⊆ ψ(G) for all m 6= n. Thus, ψ(G) ∈ Oθ(Y).

As an application of Theorem 3.6 we are able to characterize (a)-θ-open sets in (a)-clopen
subspaces.

Theorem 3.7. Let (B, {τnB}) be an (a)-clopen subspace of (a)space (X , {τn}). For G ⊆ B,
G ∈ Oθ(B) if and only if G = O ∩B, where O ∈ Oθ(X ).

Proof. Let (B, {τnB}) be an (a)-clopen subspace of (X , {τn}). Let O ∈ Oθ(X ). Since every
(a)-clopen set is (a)-θ-open and finite intersection of (a)-θ-open sets is (a)-θ-open, so O ∩B ∈
Oθ(X ). But O ∩ B ⊆ B ⊆ X , so by Proposition 2.12, O ∩ B ∈ Oθ(B). Conversely, let
G ⊆ B such that G ∈ Oθ(B). It is enough to show that G ∈ Oθ(X ). Consider the inclusion
map ψ : (B, {τnB}) → (X , {τn}). Since B is both (a)-open and (a)-closed, ψ is (a)s-open and
(a)s-closed. In view of Theorem 3.6, ψ(G) = G ∈ Oθ(X ).

Theorem 3.8. Let (B, {τnB}) be an (a)-clopen subspace of (a)space (X , {τn}). For G ⊆ B,
G ∈ Oθ(B) if and only if G ∈ Oθ(X ).

Proof. It can be easily proved from the Proposition 2.12 and the Theorem 3.7.

Theorem 3.9. Let ψ : (X , {τk})→ (Y, {σk}) be an (a)-strongly-θ-continuous map and φ : (Y,
{σk}) → (Z, {γk}) be an (a)s-continuous map. Then φ ◦ ψ : (X , {τk}) → (Z, {γk}) is (a)-
strongly-θ-continuous.

Proof. Let g ∈ X and G ∈ γn with (φ ◦ ψ)(g) ∈ G. Since φ is (a)s-continuous, there exists
S ∈ σn with ψ(g) ∈ S satisfying φ(S) ⊆ G. Also ψ is (a)-strongly-θ-continuous, so there exists
O ∈ τn with g ∈ O satisfying ψ(τm-cl(O)) ⊆ S for all m 6= n. It follows that (φ ◦ ψ)(τm-
cl(O)) ⊆ φ(S) ⊆ G for all m 6= n. Hence, φ ◦ ψ is (a)-strongly-θ-continuous.

Theorem 3.10. Let {(Yα, {τnα}n∈N) : α ∈ ∧} be an arbitrary family of (a)spaces and consider
the product (a)space (Y, {τn}) where Y =

∏
α∈∧ Yα. For each α ∈ ∧, let qα : (Y, {τn}) →

(Yα, {τnα}) be defined by qα(y) = yα, where y = (yα)α∈∧. A mapping ψ : (X , {σk}) →
(Y, {τk}) is (a)-strongly-θ-continuous if and only if each composition (qα ◦ ψ) : (X , {σk}) →
(Yα, {τkα}) is (a)-strongly-θ-continuous for all α ∈ ∧.

Proof. Let g ∈ X and O ∈ τn with ψ(g) ∈ O. Then there exists a basic τn-open set G satisfying
ψ(g) ∈ G ⊆ O. Let G = p−1

nα1
(W1) ∩ p−1

nα2
(W2) ∩ · · · ∩ p−1

nαk
(Wk), where Wi ∈ τnαi

for
all i = 1, 2, . . . , k. Clearly G = q−1

α1
(W1) ∩ q−1

α2
(W2) ∩ · · · ∩ q−1

αk
(Wk). Since (qαi

◦ ψ) is
(a)-strongly-θ-continuous and (qαi ◦ ψ)(g) ∈ Wi for all i = 1, 2, . . . , k, there exist Ai ∈ σn
with g ∈ Ai and (qαi

◦ ψ)(σm-cl(Ai)) ⊆ Wi for all m 6= n. It follows that ∩ki=1 ψ(σm-
cl(Ai)) ⊆ ∩ki=1 q

−1
αi

(Wi) = G ⊆ O. It can be seen that ψ[σm-cl(A1 ∩ A2 ∩ · · · ∩ Ak)] ⊆ O.
Thus, for each g ∈ X and O ∈ τn with ψ(g) ∈ O, there exists A = A1 ∩ A2 ∩ · · · ∩ Ak ∈ σn
with g ∈ A satisfying ψ(σm-cl(A)) ⊆ O for all m 6= n. Hence, ψ is (a)-strongly-θ-continuous.
The converse follows from Theorem 3.9 as the map qα is (a)s-continuous for all α ∈ ∧.



536 Sheetal Luthra, Harsh V. S. Chauhan, B. K. Tyagi and Cemil Tunc

Proposition 3.11. Every (a)s-continuous function is (a)-θ-continuous.

Proof. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-continuous function. Let g ∈ X and G ∈ σn
with ψ(g) ∈ G. Since ψ is (a)s-continuous, there existsO ∈ τn with g ∈ O satisfying ψ(O) ⊆ G.
Then O ⊆ ψ−1(G) which readily follows that τm-cl(O) ⊆ τm-cl(ψ−1(G)) for all m ∈ N. Since
ψ is (a)s-continuous, ψ(τm-cl(O)) ⊆ ψ(τm-cl(ψ−1(G))) ⊆ σm-cl[ψ(ψ−1(G))] ⊆ σm-cl(G).
Thus, ψ(τm-cl(O)) ⊆ σm-cl(G) for all m 6= n. Hence, ψ is (a)-θ-continuous.

Corollary 3.12. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-continuous function. If G ∈ Oθ(Y),
then ψ−1(G) ∈ Oθ(X ).

Proposition 3.13. Every (a)s-weakly-continuous function is (a)s-faintly-continuous.

Proof. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-weakly-continuous function. Let g ∈ X and
A ∈ Oθ(m,n)(Y) with ψ(g) ∈ A. Then there exists G ∈ σn such that ψ(g) ∈ G ⊆ σm-
cl(G) ⊆ A. Since ψ is (a)s-weakly-continuous, there exists O ∈ τn with g ∈ O satisfying
ψ(O) ⊆ σm-cl(G). Thus, ψ(O) ⊆ A and hence, ψ is (a)s-faintly-continuous.

Proposition 3.14. A mapping ψ : (X , {τk}) → (Y, {σk}) is (a)s-faintly-continuous if and only
if for every G ∈ Oθ(m,n)(Y), ψ−1(G) ∈ τn .

Proof. Let G ∈ Oθ(m,n)(Y) and g ∈ ψ−1(G). Then ψ(g) ∈ G. Since ψ is (a)s-faintly-
continuous, there exists Un ∈ τn with g ∈ Un satisfying ψ(Un) ⊆ G. Therefore, g ∈ Un ⊆
ψ−1(G). Thus, ψ−1(G) ∈ τn. Conversely, let g ∈ X and G ∈ Oθ(m,n)(Y) with ψ(g) ∈ G.
Then O = ψ−1(G) ∈ τn such that ψ(O) ⊆ G. Therefore, ψ is (a)s-faintly-continuous.

Theorem 3.15. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-faintly-continuous map. Then the
following results hold:

1. ψ−1(O) ∈ O(X ) for every O ∈ Oθ(Y).

2. ψ−1(F ) ∈ C(X ) for every F ∈ Cθ(Y).

Proof. It can be easily proved from the Proposition 3.14.

4 (a)-θ-Menger and (a)-θ-compact covering properties

In this section, we disussed and studied various covering properties. We say X is (a)-P if
(X ,O) satisfies property P . Like, if (X ,O) is compact (resp. Lindelöf, Menger), we say X is
(a)-compact (resp. (a)-Lindelöf, (a)-Menger). If (X ,O) satisfies T0 (resp. T1, T2, T3) separa-
tion axiom, we say X is (a)-T0 (resp. (a)-T1, (a)-T2, (a)-T3) space. In case, (X , τn) is compact
(resp. Lindelöf, Menger) for all n ∈ N , X is (a)s-compact (resp. (a)s-Lindelöf, (a)s-Menger).
A cover G ofX is called an (a)-θ-cover (resp. (a)-cover, (m,n)-θ-cover, τn-cover) if eachG ∈ G
belongs to Oθ (resp. O, Oθ(m,n), τn). Call G an (a)-θ-ω-cover of X if X /∈ G and for each
finite set F ⊆ X there is a G ∈ G such that F ⊆ G. We denote the family of all (a)-θ-ω-covers
(resp. (a)-θ-covers, (m,n)-θ-covers) of X by Θ-Ω(X ) (resp. Θ(X ), Θ(m,n)(X )). We begin
this section with some definitions we will do with.

Definition 4.1. An (a)space (X , {τn}) is said to be:

1. (a)-θ-compact if for every P ∈ Θ(X ) there exists finite Q ⊆ P such that
⋃
Q = X .

2. (a)-θ-Menger if for every sequence < Pk : k ∈ N > of elements of Θ(X ) there exists
finite Qk ⊆ Pk (for each k ∈ N) such that

⋃
(
⋃
k∈NQk) = X , or equivalently, X

satisfies the property Sfin(Θ(X ),Θ(X )).

3. (m,n)-θ-compact if for every P ∈ Θ(m,n)(X ) there exists finite Q ⊆ P such that⋃
Q = X .

4. (m,n)-θ-Menger if for every sequence < Pk : k ∈ N > of elements of Θ(m,n)(X )
there exists finite Qk ⊆ Pk (for each k ∈ N) such that

⋃
(
⋃
k∈NQk) = X , or equiva-

lently, X satisfies the property Sfin(Θ(m,n)(X ),Θ(m,n)(X )).
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5. (a)s-θ-compact (resp. (a)s-θ-Menger) if X is (m,n)-θ-compact (resp. (m,n)-θ-
Menger) for all m 6= n.

Every (a)-compact (resp. (a)-Menger) space is (a)-θ-compact (resp. (a)-θ-Menger) but the
converse need not be true.

Example 4.2. Let X = R and τm = τc if m is odd and τm = {A ⊆ X : A = ∅ or 2 ∈ A} if m is
even. Let F ∈ τc be such that X − F is not finite. It is observed that G = {F ∪ {2} ∪ {g} : g ∈
X − F} is an (a)-cover of X which does not satisfy the condition of (a)-compactness. Also ∅
and X are only (a)-θ-open sets, so X is (a)-θ-compact.

Example 4.3. Let X = R and τm = {A ⊆ X : A = ∅ or 2 ∈ A} if m is odd and τm = {A ⊆
X : A = ∅ or 3 ∈ A} if m is even. It is observed that G = {{2, 3} ∪ {g} : g ∈ X − {2, 3}} is an
(a)-cover of X which is not reducible to a countable subcover. Therefore, X is not (a)-Lindelöf
and hence, not (a)-Menger. But X is (a)-θ-Menger as ∅ and X are only (a)-θ-open sets. Thus,
X is (a)-θ-Menger but not (a)-Menger.

Note that

(a)s-compact ⇒ (a)-compact ⇒ (a)-θ-compact
⇓ ⇓ ⇓

(a)s-Menger ⇒ (a)-Menger ⇒ (a)-θ-Menger

Diagram 1.

Example 4.4. Let X = R and τm = τf if m is odd and τm = {A ⊆ X : A = ∅ or 2 ∈ A} if
m is even. X is (a)-compact as (X , τf ) is compact. But X is not (a)s-compact as (X , τ2) is not
compact.

Example 4.5. Consider Example 4.4, since (X , τf ) is Menger, X is (a)-Menger. But (X , τ2) is
not Menger as (X , τ2) is not Lindelöf. Thus, X is not (a)s-Menger.

Example 4.6. Let X = R and τm = τu if m is odd and τm = τd if m is even. It is observed that
Oθ = O = τu. Also (X , τu) is Menger, so X is (a)-Menger as well as (a)-θ-Menger but neither
(a)-compact nor (a)-θ-compact.

Example 4.7. Let X = R and τm = τu if m is odd and τm = τf if m is even. Since (X , τu)
and (X , τf ) are Menger, X is (a)s-Menger. But (X , τu) is not compact, therefore X is not
(a)s-compact.

We conclude that all the implications in the Diagram 1. are not reversible in general.

Definition 4.8. A set Y ⊆ X is called:

1. (a)-θ-compact if Y is (a)-θ-compact under (a)subspace topology.

2. (a)-θ-compact with respect to X if for every cover P of Y by (a)-θ-open subsets of X
there exists finite Q ⊆ P such that

⋃
Q = Y .

By the following example it is shown that the property of (a)-θ-Menger is not heriditary.

Example 4.9. Let (X , τ∗) be as in [40, Example 78] and τm = τ∗ if m is odd and τm = τd if
m is even. It is known that (X , τ1) is θ-Menger (see [21]). Therefore, X is (a)-θ-Menger. But
the real axis L is an uncountable subspace of (X , {τn}) with subspace topology σn = τd for all
n ∈ N. Thus, (L, {σn}) is not (a)-θ-Menger.

In fact, the previous example shows that the property of (a)-θ-Menger is not hereditary under
(a)closed subspaces. But this is not the case with (a)-clopen subspaces.

Theorem 4.10. Every (a)-clopen subspace of an (a)-θ-Menger space is (a)-θ-Menger.
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Proof. Let Y be an (a)-clopen subspace of an (a)-θ-Menger space (X , {τn}). Let < Ak : k ∈
N > be a sequence of covers of Y by (a)-θ-open subsets of Y . By Theorem 3.8, each A ∈ Ak
is (a)-θ-open in X for all k ∈ N, so each Pk = {A : A ∈ Ak} ∪ {X − Y} is an (a)-θ-cover
of X . By given hypothesis, there exists finite Qk ⊆ Pk such that X =

⋃
(
⋃
k∈NQk). Let

Wk = {A : A ∈ Qk, A 6= X−Y}. Then Y =
⋃
(
⋃
k∈NWk) which witnesses for< Ak : k ∈ N >

that Y is (a)-θ-Menger.

Theorem 4.11. Every (a)-clopen subspace of an (a)-θ-compact space is (a)-θ-compact.

It is to be noted that the class of all (a)-θ-Menger spaces is not closed under finite product.
In fact, we show that the square of an (a)-θ-Menger space need not be (a)-θ-Menger.

Example 4.12. Let ψ : (R, τl)→ (R, τu) be the identity map. It is known that ifL is a Lusin set in
R, then ψ−1(L) = L is Menger (see [23]). It is observed that every open set in L is θ-open in L.
Indeed, for any open set A in L, there is some G ∈ τl such that A = G∩L. For each a ∈ A, there
is a basic open set [u, v) such that a ∈ [u, v) ⊆ τl-cl([u, v)) ⊆ G. Therefore, a ∈ [u, v)∩L ⊆ τl-
clL([u, v) ∩ L). But τl-clL([u, v) ∩ L) = τl-cl([u, v) ∩ L) ∩ L ⊆ τl-cl([u, v)) ∩ L ⊆ G ∩ L = A.
Thus, A is θ-open in L. Now, let X = L and τm be the subspace topology on X induced by τl if
m is odd and τm = τd if m is even. It is observed that Oθ = O = τ1. Kocev showed in [14] that
X with topology τ1 is Menger but its square is not Menger. Thus, (a)space X is (a)-θ-Menger
but the bi(a)space X 2 is not (a)-θ-Menger.

Theorem 4.13. A mapping ψ : (X , {τk}) → (Y, {σk}) is (a)-θ-closed if and only if for each
H ⊆ Y and each G ∈ Oθ(X ) with ψ−1(H) ⊆ G, there exists U ∈ Oθ(Y) with H ⊆ U such that
ψ−1(U) ⊆ G.

Proof. Let H ⊆ Y and G ∈ Oθ(X ) such that ψ−1(H) ⊆ G. Since ψ is (a)-θ-closed, ψ(X −
G) ∈ Cθ(Y). Put Y − ψ(X − G) = U . Clearly U ∈ Oθ(Y) with H ⊆ U . Now ψ−1(U) =
ψ−1(Y − ψ(X − G)) ⊆ X − (X − G) = G. Conversely, let G ∈ Cθ(X ) and y ∈ Y − ψ(G).
Then ψ−1(y) ⊆ X − ψ−1(ψ(G)) ⊆ X − G, which is (a)-θ-open in X . So by given hypothesis,
there exists Vy ∈ Oθ(Y) with y ∈ Vy such that ψ−1(Vy) ⊆ X − G. Then G ⊆ X − ψ−1(Vy) =
ψ−1(Y) − ψ−1(Vy) = ψ−1(Y − Vy) and therefore ψ(G) ⊆ Y − Vy. Thus, Vy ⊆ Y − ψ(G) and
hence, Y − ψ(G) = ∪y∈Y−ψ(G) Vy. By Remark 2.5, Y − ψ(G) is (a)-θ-open.

Theorem 4.14. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-θ-closed and onto map. If Y is (a)-θ-
compact and ψ−1(t) is (a)-θ-compact with respect to X for each t ∈ Y , then X is (a)-θ-compact.

Proof. Let P = {Pα : α ∈ I} ∈ Θ(X ) . For each t ∈ Y , ψ−1(t) ⊆ X = ∪α∈I Pα. Since for each
t ∈ Y , ψ−1(t) is (a)-θ-compact with respect to X , there is a finite set It ⊆ I (depending upon t)
such that ψ−1(t) ⊆ ∪α∈It Pα. Since each Pα ∈ Oθ(X ) and Oθ(X ) is a topology, so by Theorem
4.13, there exists Vt ∈ Oθ(Y) with t ∈ Vt satisfying ψ−1(Vt) ⊆ ∪α∈It Pα. Also Y = ∪t∈YVt
and Y is (a)-θ-compact, so Y = ∪mi=1Vti , m ∈ N. Therefore X = ψ−1(Y) = ∪mi=1 ψ

−1(Vti) ⊆
∪mi=1(∪α∈ItiPα). Hence, X is (a)-θ-compact.

Theorem 4.15. Let (X , {τk}) and (Y, {σk}) be two (a)spaces. If X is (a)s-compact, then
pY : (X × Y, {γk})→ (Y, {σk}) is an (a)-θ-closed surjection.

Proof. Let G ∈ Cθ(X × Y) and y ∈ Y − pY(G). Then for all x ∈ X , (x, y) /∈ G and therefore,
X × {y} ⊆ (X × Y) − G. But (X × Y) − G ∈ Oθ(X × Y), so for each n ∈ N, there exists
a set O(x) ∈ γn such that (x, y) ∈ O(x) ⊆ γm-cl(O(x)) ⊆ (X × Y) − G. Let O(x) =
O1(x) × O2(x), where O1(x) ∈ τn and O2(x) ∈ σn. It follows that {O1(x) × O2(x) : x ∈ X}
is a γn-cover of X × {y} such that O1(x) × O2(x) ⊆ τm-cl(O1(x)) × σm-cl(O2(x)) = γm-
cl(O(x)) ⊆ (X × Y) − G. Also X × {y} is (a)s-compact as X is (a)s-compact. Therefore,
X × {y} ⊆ ∪li=1 {O1(xi) × O2(xi) : xi ∈ X} for some l ∈ N. Put ∩li=1 O2(xi) = W . Then
W ∈ σn such that y ∈ W ⊆ σm-cl(W ) ⊆ Y − pY(G) for all m 6= n. Thus, Y − pY(G) is
(a)-θ-open.

Theorem 4.16. Let (X , {τk}) and (Y, {σk}) be two (a)spaces. If X is (a)s-compact and Y is
(a)-θ-compact, then X × Y is (a)-θ-compact.
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Proof. Let (X , {τk}) be an (a)s-compact space and (Y, {σk}) be an (a)-θ-compact space. By
Theorem 4.15, pY : X ×Y → Y is an (a)-θ-closed surjection. For each t ∈ Y , p−1

Y (t) = X ×{t}.
We claim that each X × {t} is (a)-θ-compact with respect to X × Y . Let P = {Pα : α ∈ I}
be any cover of X × {t} by (a)-θ-open subsets of X × Y . For each α ∈ I , let Pα = Qα × Rα,
where Qα ∈ Oθ(X ) and Rα ∈ Oθ(Y). But X is (a)s-compact and hence, (a)-θ-compact, So
there exists a finite set J ⊆ I such that X =

⋃
α∈J Qα. Let t ∈ Rβ for some β ∈ I . Then

X × {t} ⊆
⋃
α∈J(Qα × Rβ). Thus, p−1

Y (t) is (a)-θ-compact with respect to X × Y for each
t ∈ Y . By Theorem 4.14, the proof follows.

Theorem 4.17. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-θ-closed and onto map. If Y is (a)-θ-
Menger and ψ−1(t) is (a)-θ-compact with respect to X for each t ∈ Y , then X is (a)-θ-Menger.

Proof. Let < Gk : k ∈ N > be a sequence of elements of Θ(X ). For each t ∈ Y and for each
k ∈ N, ψ−1(t) ⊆ X = ∪{G : G ∈ Gk}. Since ψ−1(t) is (a)-θ-compact with respect to X , there
is a finite subcovering, say U tk (depending on t ∈ Y), for each covering Gk of ψ−1(t) such that
ψ−1(t) ⊆ ∪{G : G ∈ U tk} for each k ∈ N. Since ∪{G : G ∈ U tk} ∈ Oθ(X ), by Theorem 4.13,
there exists V kt ∈ Oθ(Y) with t ∈ V kt satisfying ψ−1(V kt ) ⊆ ∪{G : G ∈ U tk} for each k ∈ N.
Clearly Y = ∪ Yk for each k ∈ N, where Yk = {V kt : t ∈ Y }. Since Y is (a)-θ-Menger, there
exists finite Vk ⊆ Yk such that Y = ∪(∪k∈NVk). For each k ∈ N, there exists finite set Ak ⊆ Y
such that Vk = {V kt : t ∈ Ak} with the condition that ψ−1(V kt ) ⊆ ∪{G : G ∈ U tk} for each
t ∈ Ak. Put ∪t∈Ak

U tk = Uk. It follows that X = ∪(∪k∈N Uk). Indeed, ψ(x) ∈ Y = ∪(∪k∈N Vk)
for x ∈ X which implies that ψ(x) ∈ V kt for some k ∈ N and for some t ∈ Ak. Therefore,
x ∈ ψ−1(V kt ) for some k ∈ N and for some t ∈ Ak. Thus, x ∈ ∪{G : G ∈ U tk} for some k ∈ N
and for some t ∈ Ak. Hence, x ∈ G for some G ∈ Uk and for some k ∈ N.

Theorem 4.18. Let (X , {τk}) and (Y, {σk}) be two (a)spaces. If X is (a)s-compact and Y is
(a)-θ-Menger, then X × Y is (a)-θ-Menger.

Proof. Let (X , {τk}) be an (a)s-compact space and (Y, {σk}) be an (a)-θ-Menger space. By
Theorem 4.15, pY : X ×Y → Y is an (a)-θ-closed surjection. For each t ∈ Y , p−1

Y (t) = X ×{t}
and X is (a)s-compact, so p−1

Y (t) is (a)-θ-compact with respect to X × Y for each t ∈ Y (see
Theorem 4.16). From Theorem 4.17, X × Y is (a)-θ-Menger.

Theorem 4.19. If X k is (a)-θ-Menger for each finite natural k, then X satisfies Sfin(Θ-Ω(X ),
Θ-Ω(X )).

Proof. Let < Gk : k ∈ N > be a sequence of elements of Θ-Ω(X ). Assume that each Gk is
closed under finite union. Let N = N1 ∪ N2 ∪ · · · ∪ Nk ∪ . . . where each Ni is infinite and
Ni ∩ Nj 6= ∅ for all i 6= j. For each m ∈ N and for each k ∈ Nm, let Uk = {Gm : G ∈ Gk}.
Since finite product of (a)-θ-open sets is again (a)-θ-open (see Theorem 2.13), Uk ∈ Θ(Xm)
for all k ∈ Nm. In fact, Uk ∈ Θ-Ω(Xm) for all k ∈ Nm. Let A = {a1, a2, . . . , ar} ⊆ Xm be
finite. For each i ∈ {1, 2, . . . , r}, ai = (ai1, ai2, . . . , aim) where aij ∈ X for all j = 1, 2, . . . ,m.
Since B = {aij : 1 ≤ i ≤ r and 1 ≤ j ≤ m} ⊆ X is finite, so B ⊆ G for some G ∈ Gk. Thus,
A ⊆ Gm. Also it is clear that Xm /∈ Uk as X /∈ Gk. Thus, < Uk : k ∈ Nm > is a sequence
of elements of Θ-Ω(Xm). As Xm is (a)-θ-Menger, so there exists finite Vk ⊆ Uk (for each
k ∈ Nm) such that Xm =

⋃
(
⋃
k∈Nm

Vk). For each k ∈ Nm, letHk = {GV : GmV = V, V ∈ Vk}.
It follows that

⋃
(
⋃
k∈Nm

Hk) = X . Thus,
⋃
k∈NHk ∈ Θ(X ). Moreover,

⋃
k∈NHk ∈ Θ-Ω(X ).

Indeed, for any finite set D = {d1, d2, . . . , dl} ⊆ X , (d1, d2, . . . , dl) ∈ X l. So there exists a
t ∈ Nl such that (d1, d2, . . . , dl) ∈ H l for some H ∈ Ht. Thus, D ⊆ H for some H ∈

⋃
k∈NHk.

It is clear that X /∈
⋃
k∈NHk as Xm /∈ Uk for any k ∈ N. Hence, X satisfies Sfin(Θ-Ω(X ),

Θ-Ω(X )).

In the following couple of theorems, we shall discuss only the (a)-θ-Menger property; (a)-
θ-compactness can be studied in a similar way.

Theorem 4.20. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)-θ-continuous and onto map. If X is
(a)-θ-Menger, then Y is (a)-θ-Menger.

Proof. Let X be an (a)-θ-Menger space and < Gk : k ∈ N > be a sequence of elements of Θ(Y).
Since ψ is (a)-θ-continuous, by Proposition 3.2, each Hk = {ψ−1(G) : G ∈ Gk} ∈ Θ(X ).
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Since X is (a)-θ-Menger, there exists finite Vk ⊆ Hk such that X =
⋃
(
⋃
k∈N Vk). For each

k ∈ N, let Wk = {GV : V = ψ−1(GV ), V ∈ Vk}. It is easy to see that each Wk ⊆ Gk is
finite. Also, X =

⋃
(
⋃
k∈N{V : V ∈ Vk}). Therefore, Y = ψ[

⋃
(
⋃
k∈N{V : V ∈ Vk})] =⋃

(
⋃
k∈N{ψ(V ) : V ∈ Vk}) =

⋃
(
⋃
k∈N{GV : GV ∈ Wk}). Hence, Y is (a)-θ-Menger.

Theorem 4.21. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-continuous and onto map. If X is
(a)-θ-Menger, then Y is (a)-θ-Menger.

Proof. The proof follows by Proposition 3.11 and Theorem 4.20.

Theorem 4.22. Let ψ : (X , {τk})→ (Y, {σk}) be an (a)-stongly-θ-continuous and onto map. If
X is (a)-θ-Menger, then Y is (a)-Menger.

Proof. Let X be an (a)-θ-Menger space and < Gk : k ∈ N > be a sequence of (a)-covers of Y .
Since ψ is (a)-strongly-θ-continuous, so by Proposition 3.4, ψ−1(G) ∈ Oθ(X) for each G ∈ Gk.
Therefore, Uk = {ψ−1(G) : G ∈ Gk} ∈ Θ(X) for all k ∈ N. Since X is (a)-θ-Menger, there
exists finite Vk ⊆ Uk such that

⋃
(
⋃
k∈N Vk) = X . For each V ∈ Vk there exists GV ∈ Gk such

that V = ψ−1(GV ). LetWk = {GV : V = ψ−1(GV ), V ∈ Vk}. It is clear that eachWk ⊆ Gk is
finite and Y = ψ[

⋃
(
⋃
k∈N{V : V ∈ Vk})] =

⋃
(
⋃
k∈N{ψ(V ) : V ∈ Vk}) =

⋃
(
⋃
k∈N{GV : GV ∈

Wk}). Hence, Y is (a)-Menger.

Theorem 4.23. Let ψ : (X , {τk}) → (Y, {σk}) be an (a)s-faintly-continuous and onto map. If
X is (a)-Menger, then Y is (a)-θ-Menger.

Proof. It can be easily proved with the help of Theorem 3.15.
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[27] G. Di Maio and Lj. D. R. Kočinac, Some covering properties of hyperspaces, Topol. Appl. 155 (2008),
1959–1969.
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