
Palestine Journal of Mathematics

Vol. 11(2)(2022) , 542–550 © Palestine Polytechnic University-PPU 2022

Commutativity of prime rings with generalized derivations
involving Jordan involution

Omar AIT ZEMZAMI

Communicated by N. Mahdou

MSC 2010 Classifications: Primary 16N60; Secondary 16W25.

Keywords and phrases: Prime ring, Jordan involution, commutativity, derivation, generalized derivation.

Abstract Let R be a prime ring with characteristic different from two and F be a gener-
alized derivation associated with a derivation d of R. In the present paper we investigate the
commutativity of R with Jordan involution. Further, examples are given to demonstrate that the
restrictions imposed on the hypothesis of our results are not superfluous.

1 Introduction

Recently, a new line of research has been initiated by several authors. A great interest has
been given to the study of the structures of certain rings when their elements were subjected to
certain types of algebraic conditions. In 1983, J. Bergen, I. N. Herstein and C. Lanski in [5]
have studied the structure of a unit ring R having a non-trivial derivation d such that d(x) = 0
or d(x) is invertible in R for every x ∈ R. They showed that R is a division ring D or R is
of the form M2(D) or D[x]/x2 were D is a division ring. Several authors have investigated
the relationships between the commutativity of prime and semi-prime rings admitting suitably
constrained additive mappings, as automorphisms, derivations, skew derivations and generalized
derivations acting on appropriate subsets of the rings (see [1],[2],[7],[10] and [11] for further
details). In this paper we continue the line of investigation regarding the study of commutativity
for rings with Jordan involution satisfying certain differential identities involving generalized
derivations.

For completeness, we recall some preliminaries which are useful for the development of this
paper. Throughout this paper R will represent an associative ring with center Z(R). For any
x, y ∈ R, the symbol [x, y] will denote the commutator xy − yx; while the symbol x ◦ y will
stand for the anti-commutator xy + yx. R is prime if aRb = 0 implies a = 0 or b = 0. An
additive mapping d : R −→ R is a derivation on R if d(xy) = d(x)y + xd(y) for all x, y ∈ R.
Let a ∈ R be a fixed element. A map d : R −→ R defined by d(x) = [a, x] = ax − xa,
x ∈ R, is a derivation on R, which is called an inner derivation defined by a. In [6], Brešar
introduced the notion of generalized derivations in rings: an additive mapping F : R −→ R
is called generalized derivation if there exists a derivation d such that F (xy) = F (x)y + xd(y)
holds for all x, y ∈ R, and d is called the associated derivation of F . Obviously, the concept of
generalized derivations covers both the concepts of a derivation and of a left multiplier (i.e., an
additive mapping satisfying f(xy) = f(x)y for all x, y ∈ R). Basic examples of generalized
derivations are the following: (i) F (x) = ax+ xb for a, b ∈ R; (ii) F (x) = ax for some a ∈ R.

An additive map ∗ : R −→ R is called an involution if ∗ is an anti-automorphism of order 2;
that is (x∗)∗ = x for all x ∈ R. An element x in a ring with involution (R, ∗) is said to be her-
mitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of all hermitian and skew-hermitian
elements of R will be denote by H(R) and S(R), respectively. The involution is said to be of
the first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In the later case
S(R) ∩ Z(R) 6= (0). An element x is normal if xx∗ = x∗x. If all elements in R are normal,
then R is called a normal ring (or equivalently, ∗ is commuting). In the spirit of the definition
of involution, Yood [12] introduced Jordan involution as : An additive map \ : R → R is called
Jordan involution if for any x; y ∈ R, (x\)\ = x and (xy+yx)\ = x\y\+y\x\. Obviously, every
involution is a Jordan involution but the converse need not be true. For example:
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Example.

Let us consider R =

{(
a b

c d

)
| a, b, c, d ∈ C

}
and

(
a b

c d

)]

=

(
ā −b̄
−c̄ d̄

)
. It is

straightforward to check that ] is a Jordan involution but not involution.

2 Main results

We first fix the following facts which shall be used frequently throughout the paper.

Fact 1 : Let (R, \) be a ring with Jordan involution. If R is prime, and d(h) = 0 for all
h ∈ H(R) ∩ Z(R) then d(s) = 0 for all s ∈ S(R) ∩ Z(R).

Fact 2 : Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second kind.
Then the following assertions are equivalent:
(1) [x, x\] ∈ Z(R) for all x ∈ R;
(2) x ◦ x\ ∈ Z(R) for all x ∈ R;
(3) R is a commutative integral domain.

Theorem 2.1. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second kind.
IfR admits a generalized derivation F associated with a nonzero derivation d, then the following
assertions are equivalent:
(1) [F (x), d(x\)] = [x, x\] for all x ∈ R.
(2) [F (x), d(x\)] = −[x, x\] for all x ∈ R.
(3) [F (x), d(x\)] = 0 for all x ∈ R.
(4) R is a commutative integral domain.

Proof. We need only prove (1) =⇒ (4), (2) =⇒ (4) and (3) =⇒ (4).

(1) =⇒ (4) Assume that

[F (x), d(x\)] = [x, x\] for all x ∈ R. (2.1)

Linearization of (2.1) yields

[F (x), d(y\)] + [F (y), d(x\)] = [x, y\] + [y, x\] for all x, y ∈ R.

Substituting y for y\, we obtain

[F (x), d(y)] + [F (y\), d(x\)] = [x, y] + [y\, x\] for all x, y ∈ R. (2.2)

Taking y = yh for y in (2.2), where h ∈ Z(R) ∩H(R)\{0} and using (2.2), we get(
[F (x), y] + [y\, d(x\)]

)
d(h) = 0 for all x, y ∈ R. (2.3)

In view of the primeness, the last equation assures that [F (x), y] + [y\, d(x\)] = 0 or d(h) = 0.
In the first case suppose that,

[F (x), y] + [y\, d(x\)] = 0 for all x, y ∈ R. (2.4)

Taking ys instead of y, where 0 6= s ∈ Z(R) ∩ S(R) we find that

[F (x), y]− [y\, d(x\)] = 0 for all x, y ∈ R. (2.5)

By adding the relations (2.4) and (2.5), we have

[F (x), y] = 0 for all x, y ∈ R



544 Omar AIT ZEMZAMI

and therefore
[F (x), x] = 0 for all x ∈ R

hence [9, Theorem 3] assures that R is commutative

If d(h) = 0, then by Fact 1 we find that d(Z(R) ∩ S(R)) = {0}.
Replacing y by ys in (2.2), with s ∈ Z(R) ∩ S(R)\{0}, we arrive at

[F (x), d(y)]− [F (y\), d(x\)] = [x, y]− [y\, x\] for all x, y ∈ R. (2.6)

Using (2.2) together with (2.6) we conclude that

[F (x), d(y)] = [x, y] for all x, y ∈ R (2.7)

and [3, Theorem 2.11] gives that R is commutative ring.

(2) =⇒ (4) Arguing as above, with slight modifications, it is obvious to show that
[F (x), d(x\)] = −[x, x\] for all x ∈ R implies that R is commutative.

(3) =⇒ (4) We are assuming that

[F (x), d(x\)] = 0 for all x ∈ R. (2.8)

A linearization of (2.8) implies that

[F (x), d(y)] + [F (y\), d(x\)] = 0 for all x, y ∈ R. (2.9)

Replacing y with yh in the above equation with 0 6= h ∈ Z(R) ∩H(R) and using (2.9) we may
write (

[F (x), y] + [y\, d(x\)]
)
d(h) = 0 for all x, y ∈ R. (2.10)

Using the primeness of R, we get either [F (x), y] + [y\, d(x\)] = 0 or d(h) = 0.
If

[F (x), y] + [y\, d(x\)] = 0 for all x, y ∈ R. (2.11)

Taking ys instead of y in (2.11), where 0 6= s ∈ Z(R) ∩ S(R), one can see that

[F (x), y]− [y\, d(x\)] = 0 for all x, y ∈ R. (2.12)

Adding (2.11) and (2.12) we conclude that

[F (x), y] = 0 for all x, y ∈ R

thereby obtaining
[F (x), x] = 0 for all x ∈ R

and R is commutative by [9, Theorem 3].
Now suppose that d(h) = 0 for all h ∈ Z(R) ∩ H(R). From Fact 1, we get d(s) = 0 for all
s ∈ Z(R) ∩ S(R). Putting y = ys in (2.9), we arrive at

[F (x), d(y)]− [F (y\), d(x\)] = 0 for all x, y ∈ R. (2.13)

From the last relation and (2.9) it follows that

[F (x), d(y)] = 0 for all x, y ∈ R (2.14)

hence R is commutative by [3, Theorem 2.6].

Remark 2.2. To prove (1) ⇐⇒ (4) and (2) ⇐⇒ (4) the condition d 6= 0 is not necessary.
Indeed, if d = 0 then R is normal and the required result follows from Fact 2.
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Corollary 2.3. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. If R admits a generalized derivation F associated with a nonzero derivation d, then the
following assertions are equivalent:
(1) [F (x), d(y)] = [x, y] for all x, y ∈ R.
(2) [F (x), d(y)] = −[x, y] for all x, y ∈ R.
(3) [F (x), d(y)] = 0 for all x, y ∈ R.
(4) R is a commutative integral domain.

A natural question is what can we say about the commutativity of R if the commutator in the
preceding theorem is replaced by anti-commutator. We have studied this problem and proved
that the commutativity cannot be characterized by the same conditions on anti-commutator.

Theorem 2.4. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. There is no generalized derivation F associated with a derivation d satisfying one of the
following assertions :
(1) F (x) ◦ d(x\) = x ◦ x\ for all x ∈ R.
(2) F (x) ◦ d(x\) = −x ◦ x\ for all x ∈ R.

Proof. For all x ∈ R, assume there exists a generalized derivation (F, d) such that

F (x) ◦ d(x\) = x ◦ x\. (2.15)

If d = 0, the last expression leads to

x ◦ x\ = 0 for all x ∈ R

which reduces to
x ◦ y\ + y ◦ x\ = 0 for all x, y ∈ R.

Substituting h for y, where h ∈ Z(R) ∩H(R)\{0}, we find that x+ x\ = 0.
Replacing y by s, where s ∈ Z(R) ∩ S(R)\{0}, we get x− x\ = 0.
The last two expressions forces us to conclude that R = 0, a contradiction.
Therefore, we can assume that d 6= 0.
By linearization of (2.15) gives

F (x) ◦ d(y) + F (y\) ◦ d(x\) = x ◦ y + y\ ◦ x\ for all x, y ∈ R. (2.16)

Substituting yh for y in the last expression, where h ∈ Z(R) ∩H(R)\{0}, it follows that(
F (x) ◦ y + y\ ◦ d(x\)

)
d(h) = 0 for all x, y ∈ R. (2.17)

By primeness, we conclude that either d(h) = 0 or F (x) ◦ y + y\ ◦ d(x\) = 0.
Assume that

F (x) ◦ y + y\ ◦ d(x\) = 0 for all x, y ∈ R. (2.18)

Setting y = h, with h ∈ Z(R) ∩H(R)\{0}, we obviously get

F (x) + d(x\) = 0 for all x ∈ R.

Writing s instead of y in (2.18), where s ∈ Z(R) ∩ S(R)\{0}, we find that

F (x)− d(x\) = 0 for all x ∈ R

and thus d(x) = 0 for all x ∈ R, a contradiction.
Now assume that d(h) = 0 for all h ∈ Z(R) ∩H(R). Hence Fact 1 assures that d(s) = 0 for all
s ∈ Z(R) ∩ S(R).
Replacing y by ys in (2.16), where 0 6= s ∈ Z(R) ∩ S(R) we obtain

F (x) ◦ d(y)− F (y\) ◦ d(x\) = x ◦ y − y\ ◦ x\ for all x, y ∈ R. (2.19)

Adding (2.19) and (2.16), we find that

F (x) ◦ d(y) = x ◦ y for all x, y ∈ R (2.20)
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and R is commutative by [3, Theorem 2.7]. Then the last expression leads to

F (x)d(y) = xy for all x, y ∈ R.

Putting y = yt in the previous relation, we arrive at F (x)yd(t) = 0 which leads to

F (x)Rd(t) = {0} for all x, t ∈ R

then d = 0, a contradiction.

Arguing as above, with similar arguments, it is obvious to show that there is no generalized
derivation F associated with a derivation d satisfying F (x)◦d(x\) = −(x◦x\) for all x ∈ R.

Corollary 2.5. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. There is no generalized derivation F associated with a derivation d satisfying one of the
following assertions :
(1) F (x) ◦ d(y) = x ◦ y for all x, y ∈ R.
(2) F (x) ◦ d(y) = −x ◦ y for all x, y ∈ R.

Now if we replace the commutator by anti-commutator in (3) of Theorem 2.1 then it does not
constitute a commutativity criterion. However, we can classify generalized derivations satisfying
the hypothesis F (x) ◦ d(x\) = 0 for all x ∈ R.

Theorem 2.6. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second kind
and F a generalized derivation associated with a derivation d. Then the following assertions
are equivalent:
(1) F (x) ◦ d(x\) = 0 for all x ∈ R.
(2) F is a left multiplier.

Proof. For the nontrivial implication, assume that

F (x) ◦ d(x\) = 0 for all x ∈ R. (2.21)

A linearization of the last expression yields that

F (x) ◦ d(y\) + F (y) ◦ d(x\) = 0 for all x, y ∈ R,

that is
F (x) ◦ d(y) + F (y\) ◦ d(x\) = 0 for all x, y ∈ R. (2.22)

Substituting yh for y, where h ∈ Z(R) ∩H(R)\{0}, we get(
F (x) ◦ y + y\ ◦ d(x\)

)
d(h) = 0 for all x, y ∈ R. (2.23)

By primeness we conclude that either F (x) ◦ y + y\ ◦ d(x\) = 0 or d(h) = 0.
If

F (x) ◦ y + y\ ◦ d(x\) = 0 for all x, y ∈ R. (2.24)

Putting y = h where h ∈ Z(R) ∩H(R)\{0}, then we have 2
(
F (x) + d(x\)

)
h = 0 therefore

F (x) + d(x\) = 0 for all x ∈ R.

Now substituting s for y in (2.24), where s ∈ Z(R) ∩ S(R)\{0}, we find that

F (x)− d(x\) = 0 for all x ∈ R.

Combining the two previous relations, we obtain F = d = 0.
Then d(h) = 0 for all h ∈ Z(R) ∩H(R) using Fact 1, we get d(Z(R) ∩ S(R)) = {0}.
Replacing y by ys, in (2.22) where 0 6= s ∈ Z(R) ∩ S(R), we arrive at

F (x) ◦ d(y)− F (y\) ◦ d(x\) = 0 for all x, y ∈ R. (2.25)
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This equation, when combined with (2.22) shows that

F (x) ◦ d(y) = 0 for all x, y ∈ R. (2.26)

and [3, Theorem 2.5] gives that R is commutative ring.
The last relation leads to

F (x)d(y) = 0 for all x, y ∈ R
which reduces to d = 0.
Finally F (xy) = F (x)y for all x, y ∈ R.

Corollary 2.7. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second kind
and F a generalized derivation associated with a derivation d. Then the following assertions are
equivalent:
(1) F (x) ◦ d(y) = 0 for all x, y ∈ R.
(2) F is a left multiplier.

Theorem 2.8. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. There is no generalized derivation F associated with a derivation d satisfying one of the
following assertions :
(1) [F (x), d(x\)] = x ◦ x\ for all x ∈ R.
(2) [F (x), d(x\)] = −x ◦ x\ for all x ∈ R.

Proof. We assume that R is noncommutative ring and d 6= 0, otherwise we get x ◦ x\ = 0 for all
x ∈ R. Then arguing as above, we get R = {0}.
Suppose that

[F (x), d(x\)] = x ◦ x\ for all x ∈ R. (2.27)

A linearization of the last equation, implies that

[F (x), d(y\)] + [F (y), d(x\)] = x ◦ y\ + y ◦ x\

thereby
[F (x), d(y)] + [F (y\), d(x\)] = x ◦ y + y\ ◦ x\ for all x, y ∈ R. (2.28)

Taking yh instead of y, where 0 6= h ∈ Z(R) ∩H(R), we get(
[F (x), y] + [y\, d(x\)]

)
d(h) = 0 for all x, y ∈ R. (2.29)

In view of the primeness, the last equation assures that d(h) = 0 or [F (x), y] + [y\, d(x\)] = 0.
Suppose that

[F (x), y] + [y\, d(x\)] = 0 for all x, y ∈ R. (2.30)

Since this equation is exactly (2.4) in the proof of Theorem (2.1), then we haveR is commutative,
a contradiction.
Now suppose that d(h) = 0 for all h ∈ Z(R)∩H(R), then by virtue of Fact 1 we get d(Z(R)∩
S(R)) = {0}.
Substituting ys for y in (2.28), we find that

[F (x), d(y)]− [F (y\), d(x\)] = x ◦ y − y\ ◦ x\ for all x, y ∈ R. (2.31)

Adding equations (2.28) and (2.31) we easily get

[F (x), d(y)] = x ◦ y for all x, y ∈ R. (2.32)

Applying [4, Theorem 2.2] we show that R is commutative, a contradiction.

Using a similar proof, with slight modifications, one can easily prove the case :
[F (x), d(x\)] = −x ◦ x\ .

Corollary 2.9. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. There is no generalized derivation F associated with a derivation d satisfying one of the
following assertions :
(1) [F (x), d(y)] = x ◦ y for all x, y ∈ R.
(2) [F (x), d(y)] = −x ◦ y for all x, y ∈ R.
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Theorem 2.10. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. If R admits a generalized derivation F associated with a derivation d such that either
F (x) ◦ d(x\) = [x, x\] for all x ∈ R or F (x) ◦ d(x\) = −[x, x\] for all x ∈ R, then R is a
commutative integral domain. Furthermore, F is a left multiplier.

Proof. Suppose that
F (x) ◦ d(x\) = [x, x\] for all x ∈ R. (2.33)

If F = 0 then the last relation leads to [x, x\] = 0 for all x ∈ R.
Then R is commutative by Fact 2. Thus, we may assume that F 6= 0.
A linearization of (2.33), implies that

F (x) ◦ d(y) + F (y\) ◦ d(x\) = [x, y] + [y\, x\] for all x, y ∈ R. (2.34)

Substituting yh for y in the previous equation, where h ∈ Z(R) ∩H(R)\{0}, and using (2.34),
we get (

F (x) ◦ y + y\ ◦ d(x\)
)
d(h) = 0 for all x, y ∈ R. (2.35)

In light of primeness, it follows that F (x) ◦ y + y\ ◦ d(x\) = 0 or d(h) = 0.
Assume that

F (x) ◦ y + y\ ◦ d(x\) = 0 for all x, y ∈ R. (2.36)

Taking h instead of y in (2.36), where 0 6= h ∈ Z(R) ∩H(R), we get

F (x) + d(x\) = 0 for all x ∈ R.

Now, replacing y by s in (2.36) where 0 6= s ∈ Z(R) ∩ S(R), one obtains

F (x)− d(x\) = 0 for all x ∈ R.

Combining the two previous relations we get F = 0, a contradiction.
Then we need only consider the case d(h) = 0 for all h ∈ Z(R) ∩ H(R). Putting y = ys in
(2.34), where 0 6= s ∈ Z(R) ∩ S(R), because of d(s) = 0 it follows that(

F (x) ◦ d(y)− F (y\) ◦ d(x\)
)
s =

(
[x, y] + [y\, x\]

)
s for all x, y ∈ R. (2.37)

By primeness we conclude that

F (x) ◦ d(y)− F (y\) ◦ d(x\) = [x, y]− [y\, x\] for all x, y ∈ R. (2.38)

Combining equations (2.34) and (2.38), we have

F (x) ◦ d(y) = [x, y] for all x, y ∈ R. (2.39)

Then R is commutative by [4, Theorem 2.5]. In consequence of which, equation (2.39) becomes
F (x)d(y) = 0 then we have d = 0, implies that F is a left multiplier.

The case when F (x) ◦ d(x\) = −[x, x\] for all x ∈ R, we arguing as above.

Corollary 2.11. Let (R, \) be a 2-torsion free prime ring with Jordan involution of the second
kind. If R admits a generalized derivation F associated with a derivation d such that either
F (x) ◦ d(y) = [x, y] for all x, y ∈ R or F (x) ◦ d(y) = −[x, y] for all x, y ∈ R, then R is a
commutative integral domain. Furthermore, F is a left multiplier.

The following example proves that the primeness hypothesis in Theorems 2.1 and 2.6 is not
superfluous.

Example 1.

Let us consider R = M2(Z) and define

(
a b

c d

)\

=

(
d −b
−c a

)
and F

(
a b

c d

)
=
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(
a b

0 0

)
. Then F is a left multiplier and (R, \) is a prime ring with involution of the first kind

such that [x, x\] = 0 for all x ∈ R.
Set R = R × C, then it is obvious to verify that (R, σ) is a semi-prime ring with involution of
the second kind where σ(r, z) = (r\, z̄).
Moreover, if we put

F(r, z) = (F (r), 0)

then F is a left multiplier satisfying the condition (1) of Theorem 1 but R is not commutative.

The following example proves that the condition ”\ is of the second kind” is necessary in Theo-
rems 2.1, and 2.10.

Example 2.

Let us consider R =

{(
a b

c d

)
| a, b, c, d ∈ Z

}
and

(
a b

c d

)\

=

(
d −b
−c a

)
. It is

straightforward to check that (R, \) is a prime ring with involution of the first kind such that

[x, x\] = 0 for all x ∈ R.

Furthermore, the mapping F : R −→ R defined by

F

(
a b

c d

)
=

(
a b

0 0

)

is a left multiplier that satisfies conditions of Theorems 2.1 and 2.10 however R is not commu-
tative.
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