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Abstract This paper establishes necessary and sufficient conditions for a bi-amalgamated
algebras along ideals to inherit the nil-clean (resp., weakly nil-clean) property. The new results
compare to previous works carried on various settings of duplications and amalgamations, and
capitalize on recent results on bi-amalgamations. All results are backed with new and illustrative
examples arising as bi-amalgamations.

1 Introduction

All rings considered in this paper are commutative with identity. For a ring R, U(R), Nil(R)
and Id(R) denotes the groupe of all units of R, the nil-radical of R and the set of all idempotents
of R respectively.
In [15], Nicholson introduced the notion of clean rings. A ring R is called clean if for all r ∈ R
there are u ∈ U(R) and e ∈ Id(R) such that r = u + e. If the presentation of r is unique, we
said that R is uniquely clean.
Later in [10], Diesl modified the preveous definition and introduced an interesing class of rings
called nil-clean rings. A ring R is called nil-clean if for all r ∈ R there are n ∈ Nil(R) and
e ∈ Id(R) such that r = n + e. If the representation of r is unique, we said that R is uniquely
nil-clean. He proved that every nil-clean ring is clean [10, Proposition 3.4].
In [5], Peter. V. Danchev and W. W. McGovern generalized the notion of nil-clean rings, they
introduced and studied a new class of rings called weakly nil-clean rings. A ring R is called a
weakly nil-clean if for all r ∈ R there are n ∈ Nil(R) and e ∈ Id(R) such that r = n + e or
r = n − e. If the representation of r is unique, we said that R is uniquely weakly nil-clean.
They proved that every commutative nil-clean ring is uniquely nil-clean [5, Remark 1.5]. It is
clear that every nil-clean ring is weakly nil-clean. In [5], the autors gave an example of a weakly
nil-clean ring which is not nil-clean. They proved that a weakly nil-clean ring R is nil-clean if
2 ∈ Nil(R) (cf. [5, Proposition 1.10]). They showed also that every weakly nil-clean ring is
clean[5, Proposition 1.9(iv)]. They gave an example of a clean ring which is not weakly nil-clean.

Let f : A → B and g : A → C be two ring homomorphisms and let J and J ′ be two ideals
of B and C respectively such that f−1(J) = g−1(J ′). The bi-amalgamated algebra of A with
(B,C) along (J, J ′) with respect to (f, g) is the subring of B × C given by:

A ./(f,g) (J, J ′) := {(f(a) + j, g(a) + j′/a ∈ A, (j, j′) ∈ J × J ′}

This construction is introduced and studied by Kabbaj, Louartiti and Tamekante in [13]. They
established numerous results on the transfer of ring properties from f(A) + J and g(A) + J ′ to
A ./(f,g) (J, J ′). This new construction cover some basic constructions in commutative rings
such as: pullback ([13, Section 3]) and amalgamated algebra along an ideal ([13, Example 2.1]).
Moreover, other classical constructions such as: f(A) + J ([13, Remark 2.2]) and the A + J
construction ([13, Example 2.4]) can be studied as particular case of bi-amalgamated algebra
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along an ideal.
In this chapter, we give a characterization for A ./(f,g) (J, J ′) to be nil-clean and weakly nil-
clean. In section 2 we establishes necessary and sufficient conditions for A ./(f,g) (J, J ′) to be
nil-clean. The new results generalize well know results in [3]. Section 3 is devoted to the transfer
of weakly nil-clean property in A ./(f,g) (J, J ′). Our aim is to provide examples of new classes
of commutative rings satisfying the above-mentioned properties.

In the rest of this paper unless otherwise stated, A, B, and C are rings, f : A → B and
g : A → C are rings homomorphism, J and J ′ are ideals of B and C respectively such that
f−1(J) = g−1(J ′) and A ./(f,g) (J, J ′) is the bi-amalgamated algebra of A with (B,C) along
(J, J ′) with respect to (f, g).

2 Nil-clean property in bi-amalgamated algebras along ideals

Recall that a ring R is called nil-clean if for all r ∈ R, there are n ∈ Nil(R) and e ∈ Id(R) such
that r = n+e. Our first main result gives necessary and sufficient conditions for A ./(f,g) (J, J ′)
to be nil-clean.

Theorem 2.1. The following statements are equivalent.

(1) A ./(f,g) (J, J ′) is a nil-clean ring.

(2) f(A) + J and g(A) + J ′ are nil-clean rings.

Proof. (1) ⇒ (2): If A ./(f,g) (J, J ′) is a nil-clean ring, then (2) holds by [13, Proposition
4.1(2)], since every homomorphic image of a nil-clean ring is a nil-clean ring.
(2)⇒ (1): Assume that f(A)+ J and g(A)+ J ′ are nil-clean rings. Let a ∈ A, (j, j′) ∈ J × J ′,
then by [3, Lemma 2.2], f(a) + j − (f(a) + j)2 and g(a) + j′ − (g(a) + j′)2 are nilpotents.
Therefore, it is easy now to show that again (f(a) + j, g(a) + j′) − ((f(a) + j, g(a) + j′))2 is
a nilpotent element of A ./(f,g) (J, J ′) . Thus, A ./(f,g) (J, J ′) is a nil-clean ring by [3, Lemma
2.2].

Remark 2.2. (1) If J = (0) (respectively. J ′ = (0)) then, A ./(f,g) (J, J ′) is a nil-clean ring if
and only if g(A) + J ′ (respectively. f(A) + J)) is a nil-clean ring.

(2) If J × J ′ = B × C then, A ./(f,g) (J, J ′) is a nil-clean ring if and only if B and C are
nil-clean rings.

Proof. (1) If J = (0) (respectively. J ′ = (0)), then A ./(f,g) (J, J ′) ∼= g(A) + J ′ (respectively.
A ./(f,g) (J, J ′) ∼= f(A) + J) by [13, Proposition 4.1(2)]. Thus, the conclusion is straightfor-
ward.
(2) If J × J ′ = B × C, then f(A) + J = B and g(A) + J ′ = C. Thus, the conclusion follow
directly from Theorem 2.1.

The following corollaries are immediate applications of Theorem 2.1.

Corollary 2.3. Let A be a nil-clean ring and let f : A → B and g : A → C be two surjective
ring homomorphisms. Let J and J ′ be two ideals of B and C respectively such that f−1(J) =
g−1(J ′). Then A ./(f,g) (J, J ′) is a nil-clean ring.

Proof. It is clear that B and C are nil-clean rings. So, since f(A) + J = B and g(A) + J ′ = C,
we conclude that A ./(f,g) (J, J ′) is a nil-clean ring by Theorem 2.1.

Recall that the amalgamation of A with B along an ideal J of B with respect the ring homo-
morphism f : A→ B, is given by

A ./f J :=
{
(a, f(a) + j) | a ∈ A, j ∈ J

}
.

Clearly, every amalgamation can be viewed as a special bi-amalgamation, since A ./f J =
A ./idA,f (f−1(J), J). The following result recovers [3, Theorem 2.2].
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Corollary 2.4. Let f : A → B be a ring homomorphism and let J be an ideal of B. Then, the
following are equivalent:

(1) A ./f J is nil-clean.

(2) A and f(A) + J are nil-clean.

Let I be an ideal of A. The amalgamated duplication of A along I is a special amalgamation
given by

A ./ I := A ./idA I =
{
(a, a+ i) | a ∈ A, i ∈ I

}
.

The next corollary is an immediate consequence of Corollary 2.4 on the transfer of nil-clean
property to duplications.

Corollary 2.5. Let A be a ring and I be an ideal of A. Then A ./ I is a nil-clean ring if and only
if A is a nil-clean ring.

Theorem 2.1 enriches the literature with new examples of nil-clean rings.

Example 2.6. Let A := Z4, B := Z4×Z4, J := 0×Z4 be an ideal of B, C := Z2 and J ′ := Z2.
Consider f : A→ B and g : A→ C defined by f(a) = (a, 0) for all a ∈ A and g(0) = g(2) = 0
and g(1) = g(3) = 1. It is well know that A and C are nil-clean rings, then by [10, Proposition
3.13], so is B = A×A. Therefore, f(A)+J = B and g(A)+J ′ = C are nil-clean rings. Then,
by Theorem 2.1, A ./(f,g) (J, J ′) is a nil-clean ring.

Example 2.7. Let A be a nil-clean ring, and I1, I2 and I be three ideals of A such that I1 ⊆ I and
I2 ⊆ I . Set B := A/I1, C := A/I2, J := I/I1 and J ′ = I/I2. Let f : A −→ B and g : A −→ C
be the canonical surjections. Thus A ./(f,g) (J, J ′) is a nil-clean ring by Corollary 2.3.

The next result is a partial result when a Bi-amalgamation is a nil-clean ring in case A is a
nil-clean ring.

Theorem 2.8. Assume that A is a nil-clean ring. Then, the following statements hold:

(1) If (J ⊆ Nil(B) or J ⊆ Id(B)) and (J ′ ⊆ Nil(C) or J ′ ⊆ Id(C)), then A ./(f,g) (J, J ′) is
a nil-clean ring.

(2) Assume that (J ∩ Id(B) = 0 or J ∩Nil(B) = 0) and (J ′ ∩ Id(C) = 0 or J ′ ∩Nil(C) = 0).
Then, A ./(f,g) (J, J ′) is a nil-clean ring if and only if (J ⊆ Nil(B) or J ⊆ Id(B)) and
(J ′ ⊆ Nil(C) or J ′ ⊆ Id(C)).

Before proving Theorem 2.8, we establish the following lemma.

Lemma 2.9. If A ./(f,g) (J, J ′) is a nil-clean ring, then for all j ∈ J and j′ ∈ J ′, there are
k ∈ J ∩Nil(B), t ∈ J ∩ Id(B), k′ ∈ J ′ ∩Nil(C) and t′ ∈ J ′ ∩ Id(C) such that j = k + t and
j′ = k′ + t′.

Proof. Assume that A ./(f,g) (J, J ′) is nil-clean. Let j ∈ J , without loss of generality, we
may assume that 0 6= j. Therefore, there are a nilpotent element and an idempotent element
(f(n) + k0, g(n) + k′0), (f(e) + k1, g(e) + k′1) of A ./(f,g) (J, J ′) respectively such that,

(j, 0) = (f(n) + k0, g(n) + k′0) + (f(e) + k1, g(e) + k′1), then
j = f(n) + k0 + f(e) + k1 and 0 = g(n) + k′0 + g(e) + k′1

The fact that (f(n) + k0, g(n) + k′0) is nilpotent and (f(e) + k1, g(e) + k′1) is an idempotent
element of A ./(f,g) (J, J ′) yields that

(f(n) + k0, f(e) + k1) ∈ Nil(f(A) + J)× Id(f(A) + J) and
(g(n) + k′0, g(e) + k′1) ∈ Nil(g(A) + J ′)× Id(g(A) + J ′)

On the other hand, since 0 = g(n) + k′0 + g(e) + k′1, then g(e) + k′1 = −(g(n) + k0). Therefore,
g(e) + k′1 ∈ Id(g(A) + J ′) ∩ Nil(g(A) + J ′) = 0, then g(e) + k′1 = g(n) + k′0 = 0. Then,
(n, e) ∈ g−1(J ′) × g−1(J ′) = f−1(J) × f−1(J) and so (f(n), f(e)) ∈ J × J . Which implies
that f(n)+k0 ∈ J ∩Nil(B) and f(e)+k1 ∈ J ∩ Id(B). Hence, j = k+ t where k = f(n)+k0
and t = f(e) + k1.
Similarly, let j′ ∈ J ′ and assume, without loss of generality, that 0 6= j′. Therefore, there are a
nilpotent element and an idempotent element (f(n) + k0, g(n) + k′0) (f(e) + k1, g(e) + k′1) of
A ./(f,g) (J, J ′) respectively such that,
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(0, j′) = (f(n) + k0, g(n) + k′0) + (f(e) + k1, g(e) + k′1)

For the same reasoning, we shows that,

j′ = k′ + t′ where k′ = g(n) + k′0 ∈ J ′ ∩Nil(C) and t′ = g(e) + k′1 ∈ J ′ ∩ Id(C), as desired.

Proof of Theorem 2.8. (1) Let a ∈ A, j ∈ J . Then, there are a nilpotent element n and
an idempotent element e of A such that a = n + e (since A is nil-clean). Therefore f(n) is a
nilpotent element and f(e) is an idempoten element of f(A)+J . Suppose that J ⊆ Nil(B) then
it is easy to show that f(n) + j ∈ Nil(f(A) + J). Hence, f(a) + j = (f(n) + j) + f(e) is a
sum of a nilpotent element f(n)+ j and an idempotent element f(e) of f(A)+ J . Now, assume
that J ⊆ Id(B). Since 2j = 0 and j2 = j, we can easily show that f(e) + j ∈ Id(f(A) + J).
Thus, f(a) + j = f(n) + (f(e) + j) is a sum of a nilpotent element f(n) and an idempotent
element f(e) + j of f(A) + J . In all cases, f(A) + J is a nil-clean ring. If J ′ ⊆ Nil(C) or
J ′ ⊆ Idem(C), by the same technique as the preveous part of proof by exchanging the role of
J by J ′, we can then prove that g(A) + J ′ is a nil-clean ring. Therefore A ./(f,g) (J, J ′) is a
nil-clean ring by Theorem 2.1.
(2) Suppose that A ./(f,g) (J, J ′) is a nil-clean ring and let j ∈ J . Hence, Lemma 2.9 implies
that j = k + t for some k ∈ J ∩ Nil(B) and t ∈ J ∩ Id(B). Clearly, if J ∩ Id(B) = 0 (or
J ∩ Nil(B) = 0) then we have J ⊆ Nil(B) (or J ⊆ Id(B)). Now, using the same technique
of the preveous by exchanging the role of J by J ′ and B by C, we can similarly show that
J ′ ⊆ Nil(C) (or J ′ ⊆ Id(C)). The converse follows directly by (1).

Theorem 2.8 recovers the special case of amalgamated algebra, as recorded in the following
corollary.

Corollary 2.10. Let f : A → B be a ring homomorphism and let J be an ideal of B. Then the
following statements hold:

(1) If J ⊆ Nil(B) or J ⊆ Id(B), then A ./f J is nil-clean if and only if A is a nil-clean ring.

(2) If J ∩ Id(B) = 0, then A ./f J is nil-clean if and only if A so is and J ⊆ Nil(B).

(3) If J ∩Nil(B) = 0, then A ./f J is nil-clean if and only if A so is and J ⊆ Id(B)

Theorem 2.8 enriches the literature with new original examples of nil-clean rings. Recall that
for a ring A and an A-module E, the trivial ring extension of A by E (also called idealization of
E over A) is the ring R := A n E whose underlying group is A × E with multiplication given
by (a, e)(a′, e′) = (aa′, ae′ + a′e) for all a, a′ ∈ A and e, e′ ∈ E (cf. [1, 11, 14]).

Example 2.11. Let (A,m) := (A1nE1,m1nE1) be the trivial ring extension of a nil-clean ring
A1 by anA1-moduleE1, (for instance (A1,m1) := (Z4, 2Z4)) andE1 is a nonzero (A1/m1)−vector
space (for instance E1 = Z4/2Z4). Let B := A1. Consider

f : A → B

(a, e) → f((a, e)) = a;

Set J = m1 the maximal ideal of B. Let C := A n E be the trivial ring extension of A by a
nonzero A/m−vector space E and let

g : A ↪→ C

(a, e) ↪→ g((a, e)) = ((a, e), 0);

Set J ′ := m n E = (m1 n E1) n E the maximal ideal of C. Clearly, f−1(J) = g−1(J ′) =
m1 n E1. Then :
1) By Theorem 2.8 A ./f,g (J, J ′) is a nil-clean ring since J ⊆ Nil(B), J ′ ⊆ Nil(C) and A is
nil-clean by [3, Corollary 2.12].
2) A ./f,g (J, J ′) is not a Von Neumann Regular ring since it is not reduced by [13, Proposition
4.7].
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Proof. (1) [3, Corollary 2.6]. (2) [3, Corollary 2.7].

Peter V. Danchev and W. W. McGowen proved that a ring R is nil-clean if and only if
R/Nil(R) is a Boolean ring [5, Proposition 1.3]. That leads to the following result.

Proposition 2.12. Let f : A → B and g : A → C be two ring homomorphisms and let J and
J ′ be two ideals of B and C respectively such that f−1(J) = g−1(J ′). Set A = A/Nil(A),
B = B/Nil(B), C = C/Nil(C), πB : B → B, πC : C → C be the canonical projection,
J = πB(J) and J ′ = πC(J ′). Consider these two ring homomorphisms f : A → B and
g : A → C defined by: f(a) = f(a) and g(a) = g(a). Then, A ./(f,g) (J, J ′) is nil-clean if and
only if A ./(f,g) (J, J ′) is Boolean.

Proof. Consider the map:

φ : A ./(f,g) (J, J ′)/Nil(A ./(f,g) (J, J ′) → A ./(f,g) (J, J ′)

(f(a) + j, g(a) + j′) 7→ (f(a) + j, g(a) + j′)

It is easy to show that φ is well defined and is a ring homomorphism. By construction φ is
surjective. Let a ∈ A and (j, j′) ∈ J × J ′ and assume that (f(a) + j, g(a) + j′) = 0. Then
(f(a) + j, g(a) + j′) = 0 and so (f(a) + j, g(a) + j′) ∈ Nil(A ./(f,g) (J, J ′). Which implies
that (f(a) + j, g(a) + j′) = 0 and hence φ is injective. Consequently, φ is a ring isomorphism.
Assume that A ./(f,g) (J, J ′) is nil-clean. Then, A ./(f,g) (J, J ′)/Nil(A ./(f,g) (J, J ′)) is
Boolean by [5, Proposition 1.3]. Therefore so is A ./(f,g) (J, J ′). Conversely, assume that
A ./(f,g) (J, J ′) is a Boolean ring, then so is A ./(f,g) (J, J ′)/Nil(A ./(f,g) (J, J ′)). Thus, by
[5, Proposition 1.3], A ./(f,g) (J, J ′) is a nil-clean ring.

Proposition 2.12 recovers the special case of amalgamated algebra, as recorded in the follow-
ing corollary.

Corollary 2.13. [3, Theorem 2.9] Let f : A→ B be a ring homomorphism and let J be an ideal
of B. Set A = A/Nil(A), B = B/Nil(B), π : B → B, be the canonical projection, J = π(J).
Consider the ring homomorphism f : A → B such that: x → f(x) = f(x). Then A ./f J is
nil-clean if and only if A ./f J is Boolean.

3 Weakly nil-clean property in a bi-amalgamated algebras along ideals

We recall that a ring R is called weakly nil-clean if for all r ∈ R there are n ∈ Nil(R) and
e ∈ Id(R) such that r = n + e or r = n − e. If this representation is unique, we say that R is
uniquely weakly nil-clean. In [5], the autors proved that the class of weakly nil-clean rings is
closed under homomorphic image but not closed under finite product (cf. [5, Proposition 1.9 (i),
(ii)]).
In this section we study the transfer of weakly nil-clean property to the bi-amalgamated algebra
of a ring along ideals A ./(f,g) (J, J ′). We establishes necessary and sufficient conditions for
A ./(f,g) (J, J ′) to be weakly nil-clean.

The following studies the transfer of the weakly nil-clean property to A ./(f,g) (J, J ′).

Theorem 3.1. If A ./(f,g) (J, J ′) is weakly nil-clean, then so are f(A) + J and g(A) + J ′. The
converse is true provided that J ⊆ Nil(B) or J ′ ⊆ Nil(C).

Proof. We recall that the weakly nil-clean property is closed under homomorphic image by [5,
Proposition 1.9(i)]. Assume that A ./(f,g) (J, J ′) is a weakly nil-clean ring, then so are f(A)+J
and g(A) + J ′ by [13, Proposition 4.1(2)]). Conversely, suppose,without loss of generality, that
J ⊆ Nil(B). Thus, J × {0} ⊆ Nil(A ./(f,g) (J, J ′). Then [5, Proposition 1.9(i)] implies that
A ./(f,g) (J, J ′) is weakly nil-clean if and only if A ./(f,g) (J, J ′)/(J ×{0}) is weakly nil-clean.
Now the conclusion follows directly from [13, Proposition 4.1(2)].

Remark 3.2. The following statements are true:
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(1) If J = (0) (respectively. J ′ = (0)). Then, A ./(f,g) (J, J ′) is a weakly nil-clean ring if and
only if g(A) + J ′ is a weakly nil-clean ring (respectively. f(A) + J is a weakly nil-clean
ring).

(2) If J = B and J ′ = C. Then, if A ./(f,g) (J, J ′) is weakly nil-clean, then so are B and C.
The converse is true provided that B or C is nil-clean.

Proof. (1) If J = 0 (respectively. J’=0). Then, the conclusion follows directly from [13, Propo-
sition 4.1(2)].
(2) Assume that J = B and J ′ = C. In this case f(A) + J = B and g(A) + J ′ = C and so
A ./(f,g) (J, J ′) = B × C. Therefore, if A ./(f,g) (J, J ′) is a weakly nil-clean ring, then so are
B and C by Theorem 3.1. For the converse, suppose for example that B is nil-clean and C is
weakly nil-clean. We will show that that A ./(f,g) (J, J ′) is weakly nil-clean. Let (b, c) ∈ B×C,
then there are n ∈ Nil(C) and e ∈ Id(C) such that c = n + e or c = n − e. If c = n + e,
set b = n1 + e1 where (n1, e1) ∈ Nil(B) × Id(B). Then, (b, c) = (n, n1) + (e, e1) where
(n, n1) ∈ Nil(B) × Nil(C) ⊆ Nil(B × C) and (e, e1) ∈ Id(B) × Id(C) ⊆ Id(B × C). If
c = n− e, set b = n1− e1 with (n1, e1) ∈ Nil(B)× Id(B). Therefore, (b, c) = (n, n1)− (e, e1).
Hence, (b, c) = (n, n1) + (e, e1) or (b, c) = (n, n1) − (e, e1) where (n, n1) ∈ Nil(B × C) and
(e, e1) ∈ Id(B × C), as desired.

Theorem 3.1 recovers the special case of amalgamated algebra, as recorded in the following
corollary.

Corollary 3.3. Let f : A → B be a ring homomorphism and let J be an ideal of B such that
J ⊆ Nil(B). Then, A ./f J is weakly nil-clean if and only if A is weakly nil-clean.

Proof. This follows from the proof of Theorem 3.1 and [13, Example 2.1].

In the special case of amalgamated duplication of a ring along an ideal, we obtain the follow-
ing result which is a direct consequence of Corollary 3.3.

Corollary 3.4. Let A be a ring and I be an ideal of A such that I ⊆ Nil(A). Then A ./ I is
weakly nil-clean if and only if A is weakly nil-clean.

The next corollary studies when the trivial ring extension is a weakly nil-clean ring.

Corollary 3.5. Let A be a ring and E an A-module. Then A n E is a weakly nil-clean ring if
and only if A is a weakly nil-clean ring.

Proof. Consider a ring homomorphism

f : A ↪→ An E

a 7→ f(a) = (a, 0)

and an ideal J := 0nE of AnE. Then, we have A ./f J ∼= AnE and J ⊆ Nil(AnE) since
J2 = 0. Thus, the conclusion follows directly by Corollary 3.3.

The following result is a partial result when a bi-amalgamation is a weakly nil-clean ring.

Proposition 3.6. With the notation of Theorem 3.1. Assume that J ∩ Id(B) = 0 (respectively.
J ′ ∩ Id(C) = 0). Then, the following statements are equivalent:

(1) A ./(f,g) (J, J ′) is weakly nil-clean.

(2) g(A) + J ′ is weakly nil-clean and J ⊆ Nil(B) (respectively. f(A) + J is weakly nil-clean
and J ′ ⊆ Nil(C)).

Proof. (1) ⇒ (2): By Theorem 3.1, we only need prove that J ⊆ Nil(B) (respectively. J ′ ⊆
Nil(C)) if J ∩ Id(B) = 0 (respectively. J ′ ∩ Id(C) = 0). Suppose that J ∩ Id(B) = 0 and let
j ∈ J . Without loss of generality we may assume that 0 6= j. Then, there are a nilpotent element
(f(n)+ j1, g(n)+ j′1) and an idempotent element (f(e)+ j2, g(e)+ j′2) of A ./(f,g) (J, J ′) such
that (j, 0) = (f(n) + j1, g(n) + j′1) + (f(e) + j2, g(e) + j′2) or (j, 0) = (f(n) + j1, g(n) + j′1)−
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(f(e)+j2, g(e)+j′2). Therefore, j = (f(n)+j1)+(f(e)+j2) or j = (f(n)+j1)−(f(e)+j2) and
0 = (g(n)+j′1)+(g(e)+j′2) or 0 = (g(n)+j′1)−(g(e)+j′2). The fact that (f(n)+j1, g(n)+j′1)

is nilpotent and (f(e) + j2, g(e) + j′2) is idempotent of A ./(f,g) (J, J ′) respectively implies
that (f(n) + j1, f(e) + j2) ∈ Nil(f(A) + J) × Id(f(A) + J) and (g(n) + j′1, g(e) + j′2) ∈
Nil(g(A) + J ′) × Id(g(A) + J ′). Moreover, since 0 = (g(n) + j′1) + (g(e) + j′2) or 0 =
(g(n) + j′1) − (g(e) + j′2), we get that g(e) + j′2 = −(g(n) + j′1) or g(e) + j′2 = g(n) + j′1.
Thus, g(e) + j′2 ∈ Nil(g(A) + J ′) ∩ Id(g(A) + J ′) = 0 and so g(e) + j′2 = g(n) + j′1 = 0.
Then (n, e) ∈ g−1(J ′) × g−1(J ′) = f−1(J) × f−1(J) which implies that (f(n), f(e)) ∈ J2.
Consequently, f(e) + j2 ∈ J ∩ Id(f(A) + J) ⊆ J ∩ Id(B) = 0 and thus f(e) + j2 = 0. Hence,
j = f(n) + j1 ∈ Nil(f(A) + J) ⊆ Nil(B). Respectively, if J ′ ∩ Id(C) = 0, with the same
technique with the preveous by exchanging the role of J by J ′ and the role of B by C, we can
easily proves that J ′ ⊆ Nil(C), as wanted.
(2)⇒ (1): Assume that g(A) + J ′ is weakly nil-clean and J ⊆ Nil(B) (respectively, f(A) + J
is weakly nil-clean and J ′ ⊆ Nil(C)). Then, J × {0} ⊆ Nil(A ./(f,g) (J, J ′) (respectively.
{0} × J ′ ⊆ Nil(A ./(f,g) (J, J ′)). Thus, by [5, Proposition 1.9(i)], A ./(f,g) (J, J ′) is weakly
nil-clean if and only if A ./(f,g) (J, J ′)/(J × {0}) (respectively. A ./(f,g) (J, J ′)/{0} × J ′) is
weakly nil-clean. Therefore, the conclusion follows easily from [13, Proposition 4.1(2)].

Proposition 3.6 recovers the special case of amalgamated algebra, as recorded in the follow-
ing corollary.

Corollary 3.7. Let f : A→ B be a ring homomorphism and let J be an ideal of B. Assume that
J ∩ Id(B) = 0. Then, the following are equivalent:

(1) A ./f J is weakly nil-clean.

(2) A is weakly nil-clean and J ⊆ Nil(B).

Proof. Follows directely from Proposition 3.6 and [13, Example 2.1].

Example 3.8. Let A := Z2, B := Z4 and let J := 2Z4 := {0, 2} be an ideal of B. Let
C := Z2×Z3 and let J ′ := 0×Z3 be an ideal ofC. Consider, the following ring homomorphisms
f : A → B defined by f(a) = a for all a ∈ A and g : A → C given by: g(a) = (a, 0) for all
a ∈ A. It is well know that A and B are weakly nil-clean. Moreover, g(A) + J ′ = C is weakly
nil-clean since Z2 is nil-clean by Remark 3.2(2). It is easy to show that J ∩ Id(B) = 0 and that
J ⊆ Nil(B). Then, A ./(f,g) (J, J ′) is weakly nil-clean by Proposition 3.6.

In the special case of amalgamated duplication of a ring along an ideal, we obtain the follow-
ing result which is a direct consequence of Corollary 3.7.

Corollary 3.9. Let A be a ring and I be an ideal of A such that I ∩ Id(A) = 0. Then A ./ I is
weakly nil-clean if and only if A is weakly nil-clean and I ⊆ Nil(A).

In what follows, we studies the transfer of weakly nil-clean property from A to A ./(f,g)

(J, J ′).

Proposition 3.10. Assume that J × J ′ ⊆ Nil(B) × Nil(C). If A is weakly nil-clean, then
A ./(f,g) (J, J ′) is weakly nil-clean.

Proof. Assume that A is weakly nil-clean. Let a ∈ A and (j, j′) ∈ J × J ′. Then, there are
a nilpotent element n and an idempotent element e of A such that a = n + e or a = n − e.
Then, (f(a) + j, g(a) + j′) = (f(n) + j, g(n) + j′) + (f(e), g(e)) or (f(a) + j, g(a) + j′) =
(f(n)+ j, g(n)+ j′)− (f(e), g(e)). Since, by the assumption (f(n)+ j, g(n)+ j′) is a nilpotent
of A ./(f,g) (J, J ′) and (f(e), g(e)) ∈ Id(A ./(f,g) (J, J ′)) because e ∈ Id(A). Thus, (f(a) +
j, g(a) + j′) is a sum of a nilpotent with an idempotent or a difference of a nilpotent with an
idempotent of A ./(f,g) (J, J ′), as desired.

The next result is a partial result when a bi-amalgamation is a weakly nil-clean ring in case
J and J ′ are not necessary nil ideals of f(A) + J and g(A) + J ′ respectively.

Theorem 3.11. Assume that the following conditions hold:
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(1) A is weakly nil-clean and A/I0 is uniquely weakly nil-clean.

(2) f(A)+ J and g(A)+ J ′ are weakly nil-clean rings and at most one of them is not nil-clean.

Then A ./(f,g) (J, J ′) is a weakly nil-clean ring.

Proof. Without loss of generality, we may assume that f(A)+J is weakly nil-clean and g(A)+J ′
is nil-clean. Let a ∈ A and (j, j′) ∈ J × J ′, then there are nilpotents n and f(n1) + j1 of A
and f(A) + J respectively and idempotents e and f(e1) + j2 of A and f(A) + J respectively
such that a = n + e or a = n − e and f(a) + j = (f(n1) + j1) + (f(e1) + j2) or f(a) + j =
(f(n1)+j1)−(f(e1)+j2). Therefore, f(a) = f(n)+f(e) or f(a) = f(n)−f(e) and f(a)+j =
(f(n1) + j1) + (f(e1) + j2) or f(a) + j = (f(n1) + j1)− (f(e1) + j2). Then, in (f(A) + J)/J

we have: f(a) = f(n) + f(e) or f(a) = f(n) − f(e) and f(a) + j = f(a) = f(n1) + f(e1)

or f(a) + j = f(a) = f(n1) − f(e1). It is clear that f(n1) (respectively. f(n)) and f(e1)

(respectively. f(e)) are respectively nilpotent and idempotent elements of (f(A) + J)/J . On
the other hand, since (f(A) + J)/J ∼= A/I0 is uniquely weakly nil-clean, then it is clear that
f(n1) = f(n) and f(e1) = f(e) in f(A) + J/J . Therefore, there is (k1, k2) ∈ J × J such that
f(n1) = f(n)+k1 and f(e1) = f(e)+k2. Hence, f(a)+j = (f(n)+k1+j1)+(f(e)+k2+j2) or
f(a)+j = (f(n)+k1+j1)−(f(e)+k2+j2). If f(a)+j = (f(n)+k1+j1)+(f(e)+k2+j2), write
g(a)+j′ = (g(n2)+j′1)+(g(e2)+j′2), where g(n2)+j′1 is nilpotent and g(e2)+j′2 is idempotent of
g(A)+J ′. Thus, using the same technique of the preveous g(a)+j′ = (g(n)+k′1+j

′
1)+(g(e)+

k′2 + j′2) for some (k′1, k
′
2) ∈ J ′ × J ′ since (g(A) + J ′)/J ′ ∼= A/I0 is uniquely weakly nil-clean.

Which implies that (f(a)+j, g(a)+j′) = (f(n)+k1+j1, g(n)+k′1+j
′
1)+(f(e)+k2+j2, g(e)+

k′2+j
′
2) where, (f(n)+k1, g(n)+k′1+j

′
1) = (f(n1)+j1, g(n2)+j′1) ∈ Nil(A ./(f,g) (J, J ′)) and

(f(e)+k2+j2, g(e)+k′2+j
′
2) = (f(e1)+j2, g(e2)+j′2) ∈ Id(A ./(f,g) (J, J ′)). In the remaining

case, f(a)+ j = (f(n)+k1 + j1)− (f(e)+k2 + j2). Let g(a)+ j′ = (g(n2)+ j′1)− (g(e2)+ j′2).
Thus, g(a) + j′ = (g(n) + k′1 + j′1)− (g(e) + k′2 + j′2) and so (f(a) + j, g(a) + j′) = (f(n) +
k1 + j1, g(n) + k′1 + j′1) − (f(e) + k2 + j2, g(e) + k′2 + j′2). In all cases, (f(a) + j, g(a) + j′)
is a sum of a nilpotent with an idempotent or a difference of a nilpotent with an idempotent of
A ./(f,g) (J, J ′), that completes our proof.

Theorem 3.12. Set A = A/Nil(A), B = B/Nil(B), C = C/Nil(C), πB : B → B, πC : C →
C be the canonical projections, set J = πB(J) and J ′ = πC(J ′). Consider f : A → B and
g : A→ C defined by: f(a) = f(a) and g(a) = g(a). Then, A ./(f,g) (J, J ′) is weakly nil-clean
if and only if A ./(f,g) (J, J ′) is weakly nil-clean.

Proof. We saw preveously that the map:

φ : A ./(f,g) (J, J ′)/Nil(A ./(f,g) (J, J ′) → A ./(f,g) (J, J ′)

(f(a) + j, g(a) + j′) 7→ (f(a) + j, g(a) + j′)

is a ring isomorphism (see the proof of Theorem 2.12). Therefore, according to [5, Proposition
1.9(i)], we haveA ./(f,g) (J, J ′) is weakly nil-clean if and only if so isA ./(f,g) (J, J ′)/Nil(A ./(f,g)

(J, J ′) if and only if A ./(f,g) (J, J ′) so is, as wanted.

Theorem 3.12 recovers the special case of amalgamated algebra, as recorded in the following
corollary.

Corollary 3.13. We preserve the notation of Corollary 3.7, set A = A/Nil(A), B = B/Nil(B),
π : B → B be the canonical projection and set J = π(J). Consider f : A → B defined by:
f(a) = f(a). Then, A ./f J is weakly nil-clean if and only if A ./f J is weakly nil-clean.

In the special case of amalgamated duplication of a ring along an ideal, we obtain the follow-
ing result which is a direct consequence of Corollary 3.13.

Corollary 3.14. Let A be a ring and I be an ideal of A, set A = A/Nil(A), π : A → A be the
canonical projection and set I = π(I). Then A ./ I is weakly nil-clean if and only if A ./ I is
weakly nil-clean.
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It is clear that every nil-clean ring is a weakly nil-clean ring but the converse is not true in
general. In [5, Proposition 1.10], the autors proved that a ring R is nil-clean if and only if R is
weakly nil-clean and 2 ∈ Nil(R). In what follows, we generalize this result in bi-amalgamated
algebra along an ideal.

Proposition 3.15. The following statements are equivalent:

(1) A ./(f,g) (J, J ′) is nil-clean.

(2) A ./(f,g) (J, J ′) is weakly nil-clean, 2 ∈ Nil(f(A) + J) and 2 ∈ Nil(g(A) + J ′).

(3) 2 ∈ Nil(f(A)+ J), 2 ∈ Nil(g(A)+ J ′) and f(A)+ J and g(A)+ J ′ are weakly nil-clean.

Proof. (1) ⇒ (2): Assume that A ./(f,g) (J, J ′) is nil-clean. Then, Theorem 2.1 implies that
f(A) + J and g(A) + J ′ are nil clean and thus 2 ∈ Nil(f(A) + J) and 2 ∈ Nil(g(A) + J ′) by
[5, Proposition 1.10]. It is clear that A ./(f,g) (J, J ′) is weakly nil-clean, as desired.
(2)⇒ (3) This is clear by Theorem 3.1.
(3)⇒ (1) This implication follows easily from Theorem 2.1 and [5, Proposition 1.10].

In the special case of amalgamation we obtain the following result:

Corollary 3.16. The following are equivalent:

(1) A ./f J is nil-clean.

(2) A ./f J is weakly nil-clean, 2 ∈ Nil(A) and 2 ∈ Nil(f(A) + J).

(3) A and f(A) + J are weakly nil-clean, 2 ∈ Nil(A) and 2 ∈ Nil(f(A) + J).

In the special case of amalgamated duplication of a ring along an ideal, we obtain the follow-
ing result which is a direct consequence of Corollary 3.16.

Corollary 3.17. Let A be a ring and I be an ideal of A. The following are equivalent:

(1) A ./ I is nil-clean.

(2) A ./ I is weakly nil-clean and 2 ∈ Nil(A).
(3) 2 ∈ Nil(A) and A is weakly nil-clean.

Our results of the transfer enriche the literature with new examples of weakly nil-clean rings
which are not nil-clean rings issued from bi-amalgamated algebras along an ideal.

Example 3.18. LetA := Z2,B := Z2×Z3, J := 0×Z3,C := Z2×Z4 and J ′ := 0×Z4. Consider
these following ring homomorphisms f : A → B and g : A → C defined by: f(a) = (a, 0)
and g(a) = (a, 0) for all a ∈ A. Then, A ./(f,g) (J, J ′) is a weakly nil-clean ring that is not a
nil-clean ring.

Proof. It is easy to show that f(A) + J = Z2 × Z3 = B is weakly nil-clean by Remark 3.2(2),
since Z2 is nil-clean and Z3 is weakly nil-clean. Also, g(A) + J ′ = Z2 × Z4 = C is nil-clean
because that is a finite product of nil-clean rings. Moreover, f−1(J) = 0 and A = A/f−1(J) is
a uniquely weakly nil-clean ring. Then, Theorem 3.11 implies that A ./(f,g) (J, J ′) is a weakly
nil-clean ring. Now, A ./(f,g) (J, J ′) is not nil-clean by Theorem 2.1 since f(A) + J is not a
nil-clean ring.

Example 3.19. Let A be a weakly nil-clean ring that is not a nil-clean ring and E an A-module.
Set B := A n E, J := 0 n E and let f : A → B be a ring homomorphism defined by:
f(a) = (a, 0) for all a ∈ A. Let C := A ./ Nil(A), J ′ := 0 ./ I and let g : A → B be a ring
homomorphism defined by: g(a) = (a, a) for all a ∈ A. Then:

(1) A ./(f,g) (J, J ′) is a weakly nil-clean ring.

(2) A ./(f,g) (J, J ′) is not a nil-clean ring.

Proof. (1) It is easy to show that f(A) + J = B and g(A) + J ′ = C are weakly nil-clean by
Corollaries 3.5 and 3.3. Moreover, we can see that J ⊆ Nil(B) and J ′ ⊆ Nil(C). Then, by
Theorem 3.1, A ./(f,g) (J, J ′) is a weakly nil-clean ring.
(2) By Corollary 2.5 g(A)+J ′ is not a nil-clean ring sinceA is not nil-clean. Therefore, Theorem
2.1 implies that A ./(f,g) (J, J ′) is not a nil-clean ring.
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