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Abstract: In the paper, we study the uniqueness of meromorphic functions when linear
differential polynomials of some power of two meromorphic functions share a set of roots of
unity ignoring multiplicities. Our results are inspired by a recent work of Lahiri and Sinha
[Commun. Korean Math. Soc. 35(2020), no. 3. 773-787].

1 Introduction, Definitions and Results

In this paper, by meromorphic functions we will always mean meromorphic functions in
the complex plane. We adopt the standard notations in the Nevanlinna theory of meromorphic
functions as explained in [6, 13]. Let E denote any set of positive real numbers of finite linear
measure, not necessarily the same at each occurrence. For a nonconstant meromorphic function
f , we denote by T (r, f) the Nevanlinna characteristic of f and by S(r, f) any quantity satisfying
S(r, f) = o{T (r, f)} as (r →∞, r 6∈ E).

A recent increment to uniqueness theory has to considering weighted sharing instead of shar-
ing IM or CM, this implies a gradual change from sharing IM to sharing CM. This notion of
weighted sharing has been introduced by I. Lahiri around 2000, which measure how close a
shared value is to being shared CM or to being shared IM. The definition is as follows.

Definition 1.1. [8, 9] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we denote
by Ek(a; f) the set of all a-points of f where an a-point of multiplicity m is counted m times if
m ≤ k and k+1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f , g share the value a with
weight k.

The definition implies that if f , g share a value a with weight k, then z0 is an a-point of f
with multiplicity m(≤ k) if and only if it is an a-point of g with multiplicity m(≤ k) and z0 is an
a-point of f with multiplicity m(> k) if and only if it is an a-point of g with multiplicity n(> k),
where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k. Clearly if f , g
share (a, k) then f , g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f , g share a
value a IM or CM if and only if f , g share (a, 0) or (a,∞) respectively.

Definition 1.2. [8] For S ⊂ C ∪ {∞} we define Ek(S; f) = ∪a∈SEk(a; f), where k is a non
negative integer or infinity. If Ek(S; f) = Ek(S; g), then we say that f and g share the set S
with weight k and we write f and g share (S, k).

In 1996-1997, Fang and Hua [5], Yang and Hua [12] proved the following uniqueness the-
orem for nonconstant entire functions when the first derivative of some power of those share a
nonzero value.

Theorem A. Let f and g be two nonconstant entire functions and n(≥ 6) be a positive integer. If(
fn+1

n+1

)′
and

(
gn+1

n+1

)′
share 1 CM, then either f(z) = c1exp(cz) and g(z) = c2exp(−cz), where

c1, c2 and c are three constants satisfying (c1c2)n+1c2 = −1 or f = ωg for a constant ω such that
ωn+1 = 1.
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In 2002, Fang [4] improved Theorem A by generalizing the order of the derivative. Here is
the result.

Theorem B. Let f and g be two nonconstant entire functions and let n, k be two positive integers
with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM, then either f(z) = c1exp(cz) and g(z) =
c2exp(−cz),where c1, c2 and c are three constants satisfying (−1)k(c1c2)n(nc)2k = 1 or f = ωg
for a constant ω such that ωn = 1.

Yang and Hua [12] also proved that Theorem A is valid for nonconstant meromorphic func-
tions f and g, provided n ≥ 11. In 2018, An and Khoai [1] improved that result of Yang and Hua
[12] and above theorem by considering some set sharing instead of value sharing. Their result is
as follows.

Theorem C. Let f and g be two nonconstant meromorphic functions. Suppose that n, d, k
be positive integers with n > 2k + 2k+8

d and d ≥ 2. If E(S, (fn)(k)) = E(S, (gn)(k)), where
S = {z ∈ C : zd = 1}, then one of the following holds:

(i) f(z) = c1exp(cz) and g(z) = c2exp(−cz), where c1, c2 and c are three constants satisfying
(−1)dk(c1c2)nd(nc)2dk = 1;

(ii) f = ωg for a constant ω such that ωnd = 1.

Recently, Lahiri and Sinha [11] found some gap in the proof of Theorem C (Theorem 1 of
[1]) and also in the proof of Theorem 2 of [2]. They also suggested some corrections for the
same. In [11] Lahiri and Sinha improved Theorem C by relaxing the nature of sharing and using
a particular type of linear differential polynomial defined as follows.

Definition 1.3. [11] Let f be a nonconstant meromorphic function. Then L(f) a differential
polynomial of the following form: L(f) = f (l) for l = 1, 2, 3 and L(f) =

∑l−3
j=1 ajf

(j) + f (l)

for l ≥ 4, where a1, a2, · · · , al−3 are constants.

The following are the results of Lahiri and Sinha [11].

Theorem D. Let f and g be two nonconstant meromorphic functions sharing (∞, 0) and n, d, l
be positive integers with n > 2l + 2l+8

d and d ≥ 2. Let S = {a ∈ C : ad = 1}. If L(fn) and
L(gn) share (S, 2), then one of the following holds:

(i) L(fn) = ωL(gn), where ωd = 1;

(ii) f(z) = c1exp(cz) and g(z) = c2exp(−cz), where c1, c2 and c are three constants satisfying
(c1c2)n{A

∑l−3
j=1 aj(nc)

j+(nc)l}{A
∑l−3

j=1 aj(−nc)j+(−nc)l} = ω and ωd = 1 andA = 0
if l = 1, 2, 3 and A = 1 if l ≥ 4.

Theorem E. Let f and g be two nonconstant meromorphic functions sharing (∞, 0) and n, d, l
be positive integers with n > max{3, 2l+ 2l+8

d } and d ≥ 2. Let S = {a ∈ C : ad = 1}. If (fn)(l)

and (gn)(l) share (S, 2), then one of the following holds:

(i) f = ωg for a constant ω such that ωnd = 1.

(ii) f(z) = c1exp(cz) and g(z) = c2exp(−cz), where c1, c2 and c are three constants satisfying
(−1)l(c1c2)n(nc)2l = ω and ωd = 1.

Regarding Theorems D and E it is natural to ask the following question.

Question 1.1. What will happen if we relax the nature of sharing of the set in Theorems D and
E?

We concentrate our attention to the above question and provide possible answers in this di-
rection. We now state our main results of the paper.

Theorem 1.4. Let f and g be two nonconstant meromorphic functions sharing (∞, 0) and n, d, l
be positive integers with n > 2l + 8l+14

d and d ≥ 2. Let S = {z ∈ C : zd = 1}. If L(fn) and
L(gn) share (S, 0), then one of the following holds :
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(i) L(fn) = ωL(gn) where ωd = 1,

(ii) f(z) = c1exp(cz) and g(z) = c2exp(−cz), where c1, c2 and c are three constants satisfying
(c1c2)n{A

∑l−3
j=1 aj(nc)

j+(nc)l}{A
∑l−3

j=1 aj(−nc)j+(−nc)l} = ω and ωd = 1 andA = 0
if l = 1, 2, 3 and A = 1 if l ≥ 4.

Theorem 1.5. Let f and g be two nonconstant meromorphic functions sharing (∞, 0) and n, d, l
be positive integers with n > max{3, 2l+ 8l+14

d } and d ≥ 2. Let S = {z ∈ C : zd = 1}. If (fn)(l)

and (gn)(l) share (S, 0), then one of the following holds :

(i) f = ωg for a constant ω such that ωnd = 1,

(ii) f(z) = c1exp(cz) and g(z) = c2exp(−cz), where c1, c2 and c are three constants
satisfying (−1)l(c1c2)n(nc)2l = ω and ωd = 1.

Though the standard definitions and notations of the value distribution theory are available in
[6, 13], we give following definitions and notations used in this paper.

Definition 1.6. [7] Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting function of
simple a-points of f . For a positive integer p,we denote byN(r, a; f |≤ p) the counting function
of those a-points of f (counted with proper multiplicities) whose multiplicities are not greater
than p. By N(r, a; f |≤ p) we denote the corresponding reduced counting function.

Analogously we can define N(r, a; f |≥ p) and N(r, a; f |≥ p).

Definition 1.7. [10] Let k be a positive integer or infinity. We denote by Nk(r, a; f) the counting
function of a-points of f , where an a-point of multiplicity m is counted m times if m ≤ k and k
times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

Definition 1.8. [15] Let f and g be two nonconstant meromorphic functions sharing a value
a ∈ C ∪ {∞}. Let z0 be an a-point of f of order p and an a-point of g of order q. We denote
by NL(r, a; f) (NL(r, a; g)) the counting function of those common a-points of f and g where
p > q (q > p), each a-point being counted once only.

Definition 1.9. [6, 8] Let f and g share a value a IM. We denote by N∗(r, a; f, g) the reduced
counting function of those common a-points of f and g whose multiplicities are not the same.
Clearly N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2 Lemmas

Now we give some lemmas which will be needed to prove the results of this paper.

Lemma 2.1. [6, p. 43] Let f be a transcendental meromorphic function and let a1, a2, · · · , aq
be q distinct points in C ∪ {∞}. Then

(q − 2)T (r, f) ≤
q∑

j=1

N(r, aj ; f) + S(r, f).

Lemma 2.2. [3] Let f and g be two nonconstant meromorphic functions sharing (1, 0). Then
one of the following cases holds.

(i) T (r, f) + T (r, g) ≤ 2{N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g)}

+3N∗(r, 1; f, g) + S(r, f) + S(r, g),

(ii) f = (B+1)g+(A−B−1)
Bg+(A−B) , for some constants A, B.

Lemma 2.3. Let f and g be two nonconstant meromorphic functions sharing (1, 0). Then

N∗(r, 1; f, g) ≤ N(r, 0; f) +N(r, 0; g) +N(r,∞; f) +N(r,∞; g) + S(r, f) + S(r, g).
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Proof. The results follows from Lemma 8 of [14] and Definition 1.9.

Lemma 2.4. [6, p. 55] Let h be a nonconstant meromorphic function. Then

T (r, L(h)) = (l+ 1)T (r, h) + S(r, h).

Lemma 2.5. [11] Let f be a nonconstant meromorphic function and n, l be two positive integers
with n > 2l. Then

(i) (n− 2l)T (r, f) + lN(r,∞; f) +N
(
r, fn−l

L(fn)

)
≤ T (r, L(fn)) + S(r, f),

(ii) N
(
r, fn−l

L(fn)

)
≤ lN(r, 0; f) + lN(r,∞; f) + S(r, f).

Lemma 2.6. [11] Let f be a nonconstant meromorphic function and n, l be two positive integers
with n ≥ l+ 1. Then

T (r, f) ≤ T (r, L(fn)) + S(r, f).

Lemma 2.7. [11] Let f and g be two nonconstant meromorphgic functions sharing (∞, 0) and
such that L(fn)L(gn) = ω, where ω is a nonzero constant and n ≥ l+ 1. Then

f(z) = c1 exp(cz) and g(z) = c2 exp(−cz),

where c1, c2 and c are three constants satisfying

(c1c2)
n{A

l−3∑
j=1

aj(nc)
j + (nc)l}{A

l−3∑
j=1

aj(−nc)j + (−nc)l} = ω,

with A = 0 if l = 1, 2, 3 and A = 1 if l ≥ 4.

Lemma 2.8. [11] Let f be a nonconstant meromorphic function and n, l be two positive integers
with n ≥ l+ 2. If a ∈ C− {0}, then

n− l − 2
n+ l

T (r, f) ≤ N
(
r,

1
L(fn)− a

)
+ S(r, f).

3 PROOF OF THE THEOREMS

Proof of Theorem 1.4. Let F = {L(fn)}d and G = {L(gn)}d. Also let S be the set given by
{z ∈ C : zd = 1} and µi, i = 1, 2, · · · , d are roots of zd = 1. We define

E0({L(fn)}d, 1) = ∪di=1E0(L(f
n), µi) and E0({L(gn)}d, 1) = ∪di=1E0(L(g

n), µi).

From Lemma 2.8 we can see thatE0({L(fn)}d, 1) andE0({L(gn)}d, 1) are non empty. Since
L(fn) and L(gn) share (S, 0), we get F and G share (1, 0). From Lemma 2.2 we now consider
the following two cases:

Case 1. Let

T (r, F ) + T (r,G) ≤ 2{N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G)}
+ 3N∗(r, 1;F,G) + S(r, F ) + S(r,G) (3.1)

Since d ≥ 2, we get

N2(r,∞;F ) = 2N(r,∞;F ) = 2N(r,∞; f)

and N2(r,∞;G) = 2N(r,∞;G) = 2N(r,∞; g); (3.2)

N2(r, 0;F ) = 2N(r, 0;F ) and N2(r, 0;G) = 2N(r, 0;G). (3.3)
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From Lemma 2.3 we get,

N∗(r, 1;F,G) ≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

+ S(r, F ) + S(r,G). (3.4)

Now

N(r, 0;F ) = N(r, 0;L(fn)) ≤ N

(
r,
fn−l

L(fn)

)
+N(r, 0; fn−l)

= N

(
r,
fn−l

L(fn)

)
+N(r, 0; f) (3.5)

Similarly,

N(r, 0;G) ≤ N
(
r,
gn−l

L(gn)

)
+N(r, 0; g). (3.6)

From Lemmas 2.4 and 2.6 we get,

S(r, F ) = S(r, L(fn)) = S(r, f) and S(r,G) = S(r, L(gn)) = S(r, g). (3.7)

Combining (3.1) - (3.7) we get,

T (r, F ) + T (r,G) ≤ 7{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}

+ 7

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}
+ S(r, f) + S(r, g). (3.8)

For n > 2l and d ≥ 2, using (1) of Lemma 2.5, we get from (3.8)

d(n− 2l){T (r, f) + T (r, g)} ≤ 7{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}

+ 7

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}

− d

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}
− dl{N(r,∞; f) +N(r,∞; g)}+ S(r, f) + S(r.g)

≤ 7{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}

+ 5

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}
− dl{N(r,∞; f) +N(r,∞; g)}+ S(r, f) + S(r.g) (3.9)

Now using (2) of Lemma 2.5, from (3.9) we get,

d(n− 2l){T (r, f) + T (r, g)} ≤ 7{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}
+ 5l{N(r,∞; f) +N(r,∞; g) +N(r, 0; f) +N(r, 0; g)}
− dl{N(r,∞; f) +N(r,∞; g)}+ S(r, f) + S(r.g)

≤ (7 + 3l){N(r,∞; f) +N(r,∞; g)}
+ (7 + 5l){N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r.g)

≤ (14 + 8l){T (r, f) + T (r, g)}+ S(r, f) + S(r.g).

Therefore n ≤ 2l+ 8l+14
d . This is a contradiction with the assumption that n > 2l+ 8l+14

d .

Case 2. Let

F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
. (3.10)
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Now we consider the following two subcases.

Subcase 2.1. Let A = B (6= 0). Then from (3.10) we get,

1
F − 1

=
BG

G− 1
. (3.11)

If B = −1, then from (3.11) we get F.G = 1, i.e., L(fn)L(gn) = α, where α is a constant
such that αd = 1. Then for n ≥ l + 1 from Lemma 2.7 we get f(z) = c1exp(cz) and g(z) =
c2exp(−cz), where c1, c2 and c are three constants satisfying

(c1c2)
n{A

l−3∑
j=1

aj(nc)
j + (nc)l}{A

l−3∑
j=1

aj(−nc)j + (−nc)l} = ω

where ωd = 1, A = 0 if l = 1, 2, 3 and A = 1 if l ≥ 4.

If B 6= −1, then from (3.11) we get

1
F

=
BG

(B + 1)G− 1
and G =

−1
BF − (B + 1)

.

Therefore,

N(r, 0;F ) = N

(
r,

1
B + 1

;G
)

and N(r,∞;G) = N

(
r,
B + 1
B

;F
)
. (3.12)

Using (3.12) and from the second fundamental theorem of Nevanlinna we get,

T (r, F ) ≤ N(r, 0;F ) +N

(
r,
B + 1
B

;F
)
+N(r,∞;F ) + S(r, F )

= N(r, 0;F ) +N(r,∞;G) +N(r,∞;F ) + S(r, F ) (3.13)

and

T (r,G) ≤ N(r, 0;G) +N

(
r,

1
B + 1

;G
)
+N(r,∞;G) + S(r,G)

= N(r, 0;G) +N(r, 0;F ) +N(r,∞;G) + S(r,G). (3.14)

Combining (3.13) and (3.14), we obtain

T (r, F ) + T (r,G) ≤ 2N(r, 0;F ) +N(r, 0;G) +N(r,∞;F ) + 2N(r,∞;G)

+ S(r, F ) + S(r,G). (3.15)

Now since N(r,∞;F ) = N(r,∞; f) and N(r,∞;G) = N(r,∞; g), using (3.5), (3.6), (3.7) and
(3.15) we get,

T (r, F ) + T (r,G) ≤

{
2N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}
+ {2N(r, 0; f) +N(r, 0; g)}

+ {N(r,∞; f) + 2N(r,∞; g)}+ S(r, f) + S(r, g). (3.16)

For n > 2l and d ≥ 2, using (1) of Lemma 2.5 we get from (3.16)

d(n− 2l){T (r, f) + T (r, g)} ≤ {N(r,∞; f) + 2N(r,∞; g)} − dl{N(r,∞; f) +N(r,∞; g)}

+

{
2N

(
r,
fn−l

L(fn)

)
− dN

(
r,
fn−l

L(fn)

)}

+

{
N

(
r,
gn−l

L(gn)

)
− dN

(
r,
gn−l

L(gn)

)}
+ {2N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g)

≤ 2N(r, 0; f) +N(r, 0; g) + S(r, f) + S(r, g)

≤ 2T (r, f) + T (r, g) + S(r, f) + S(r, g).
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Therefore n ≤ 2l+ 2
d . This is a contradiction with the assumption that n > 2l+ 8l+14

d .

Subcase 2.2. Let A 6= B.

If B 6= 0, then from (3.10) we get N(r,∞;F ) = N(r, B−AB ;G). Also from (3.10) we can
write

G =
(B −A)F + (A−B − 1)

BF − (B + 1)
.

From this it follows that N(r,∞;G) = N(r, B+1
B ;F ).

Therefore from the second fundamental theorem of Nevanlinna we get,

T (r, F ) ≤ N(r, 0, F ) +N

(
r,
B + 1
B

;F
)
+N(r,∞;F ) + S(r, F )

= N(r, 0, F ) +N(r,∞;G) +N(r,∞;F ) + S(r, F ) (3.17)

and

T (r,G) ≤ N(r, 0, G) +N

(
r,
B −A
B

;G
)
+N(r,∞;G) + S(r,G)

= N(r, 0, G) +N(r,∞;F ) +N(r,∞;G) + S(r,G). (3.18)

Combining (3.17) and (3.18) we get,

T (r, F ) + T (r,G) ≤ {N(r, 0, F ) +N(r, 0, G)}+ 2{N(r,∞;F ) +N(r,∞;G)}
+ S(r, F ) + S(r,G). (3.19)

Since N(r,∞;F ) = N(r,∞; f) and N(r,∞;G) = N(r,∞; g), using (3.5), (3.6), (3.7) and
(3.19) we get,

T (r, F ) + T (r,G) ≤

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}
+ {N(r, 0; f) +N(r, 0; g)}

+ 2{N(r,∞; f) +N(r,∞; g)}+ S(r, f) + S(r, g). (3.20)

For n > 2l and d ≥ 2, using (1) of Lemma 2.5, we get from (3.20)

d(n− 2l){T (r, f) + T (r, g)} ≤ 2{N(r,∞; f) +N(r,∞; g)} − dl{N(r,∞; f) +N(r,∞; g)}

+

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}

− d

{
N

(
r,
fn−l

L(fn)

)
+N

(
r,
gn−l

L(gn)

)}
+ {N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g)

≤ N(r, 0; f) +N(r, 0; g) + S(r, f) + S(r, g)

≤ T (r, f) + T (r, g) + S(r, f) + S(r, g).

Therefore n ≤ 2l+ 1
d . This is a contradiction with the assumption n > 2l+ 8l+14

d .

If B = 0, then from (3.10) we get,

AF = G+ (A− 1) and G = AF − (A− 1). (3.21)

If A 6= 1, then N(r, 0;F ) = N(r, 1−A;G) and N(r, 0;G) = N
(
r, A−1

A ;F
)
. Proceeding as

above and using Nevanlinna second fundamental theorem we get,

T (r, F ) + T (r,G) ≤ 2{N(r, 0, F ) +N(r, 0, G)}+ {N(r,∞;F ) +N(r,∞;G)}
+ S(r, F ) + S(r,G). (3.22)



574 Pulak Sahoo and Anjan Sarkar

Since N(r,∞;F ) = N(r,∞; f) and N(r,∞;G) = N(r,∞; g), using (3.5), (3.6), (3.7), (3.22)
and (1) of Lemma 2.5 we get,

d(n− 2l){T (r, f) + T (r, g)} ≤ 2{N(r, 0; f) +N(r, 0; g)}+ S(r, f) + S(r, g)

≤ 2{T (r, f) + T (r, g)}+ S(r, f) + S(r, g).

Therefore n ≤ 2l+ 2
d , which is again a contradiction.

If A = 1, then from (3.21) we get F = G, i.e., L(fn) = ωL(gn), where ω is a constant such
that ωd = 1. This completes the proof of Theorem 1.4.

Proof of Theorem 1.5. The proof of this theorem is similar to the proof of Theorem 1.2 of [11].
Hence we omit the proof.
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