# NON-PLANARITY USING CYCLES 

Jasmine Mathew and K.Reji Kumar<br>Communicated by V. Swaminathan<br>MSC 2010 Classifications: Primary 05A05, 05C10, 05C38, 05C62, 05C85; Secondary 90B10, 68R10, 68W05.<br>Keywords and phrases: Cycles, Permutation multiplication of cycles, Non-planarity.<br>The authors like to thank the referee for the comments and suggestions that helped to improve the paper.


#### Abstract

This article proposes a method to examine whether a given undirected simple graph is non-planar using Cycles. The cyclic rotation of the available cycle produces a new cycle. The non-planarity can be fixed depending on whether both cycles are subgraphs of the given graph. Pseudocode for setting up an algorithm for detecting non-planarity for any graph containing at-least one cycle is the highlight of the article.


## 1 Introduction

Some graphs are drawn in a plane such that any intersection of edges occurs only at the vertices. Such graphs are called planar graphs. But it is not possible to depict every graph without any edge crossing. The problem of determining whether a graph is planar or not has many practical applications, such as in VLSI design [1]. Danny Dolev et al. [2] provides details of some applications.

Planar drawings represent Integrated circuit layouts to the patterns of semiconductor or metal oxide; which are the components of an integrated circuit. The models are usually large graphs. For large n , finding non-planar subgraphs will help to decompose graphs into planar subgraphs. The union of $C$ and $C^{r}$ is a minimal non-planar graph. Detection of the minimal non-planar sub-graph will simplify the process of planar graph decomposition. Planar Decomposition is the partitioning of the edge set so that each subgraph induced by the corresponding edge set is a planar graph. Isomorphic decomposition is the partitioning of the edge set such that each induced subgraphs are isomorphic to the other. If each subgraph is a path the decomposition is path decomposition. Analogously if each subgraph is a star the decomposition is a star decomposition. The path and star decomposition of Fibonacci graphs are given in [3]. The crossing number of a graph is closely associated with the nonplanarity of a graph. It is the minimum number of crossings in an optimal drawing of a graph. The pseudocode will help to improve the available results in the literature regarding crossing numbers. The determination of crossing numbers in Complete Graphs is of great interest [4]. Several graph parameters exist in the literature to analyze graph properties. A survey on various graph parameters can be found in [5]

Many studies have been done on the verification of planarity. In some problems, it is sufficient to check whether the given graph is non-planar. For testing the non-planarity, Euler's theorem [6] can be used. According to the theorem, $m \leq 3 n-6$ for every planar graph and for bipartite planar graph $m \leq 2 n-4$, where $n$ is the number of vertices and $m$ is the number of edges in $G$. This condition is necessary but not sufficient. So in the case where the above conditions are satisfied, the determination of non-planarity can be done with the well-known Kuratowski's Theorem[6]. The theorem states that a graph is planar if and only if it does not have $K_{5}$ and $K_{3,3}$ as topological minors. But, to find a subgraph homeomorphic to $K_{5}$ or $K_{3,3}$ is not easy. This article proposes an easy method finding a subgraph homeomorphic to $K_{5}$ or $K_{3,3}$ by construction. A graph is tested if it contains a cycle of size greater than or equal to five. The permutation multiplication of cycles proposed by Walecki [7] is used.


Figure 1. $C_{7}, C_{7}^{2}$ and $C_{7}^{3}$


Figure 2. $C_{8}, C_{8}^{2}, C_{9}^{2}$ and $C_{9}^{3}$

## 2 Definition and Terminology

Since the planarity is not affected by loops and parallel edges, this paper discusses only the undirected simple graphs. The readers are expected to be familiar with the elementary graphtheoretical terms, such as subgraphs, paths, cycles, the union of graphs, etc. For basic definitions refer [6], [1]. $C$ represents a cycle according to the context.

Permutation multiplication of vertex labels of a cycle produces new cycles. Walecki used this method for decomposing complete graphs into Hamilton cycles.

Definition 2.1 (Permutation Multiplication). :
A cycle of size $p$ in a graph $G$ is expressed using a permutation of vertex labels $0,1,2 \ldots p-1$. That is $C_{p}=\left(\begin{array}{lll}0 & 1 & 2\end{array} \ldots p-1\right)$. Then permutation multiplication of two cycles $C_{p}$ and $C_{p}$ represented by, $C_{p} \circ C_{p}=C_{p}^{2}$ is given by, $C_{p} \circ C_{p}=\left(\begin{array}{lll}0 & 1 & 2\end{array} \ldots p-1\right) \circ\left(\begin{array}{lll}0 & 1 & \ldots p-1)\end{array}\right)=$ $(024 \ldots p-213 \ldots p-1)$ Similarly $C_{p}^{r}$ is defined as $C_{p}^{r}=C_{p} \circ C_{p} \circ \ldots C_{p}(r$-times $)$.

The new graph produced has the same vertex set as $C_{p}$; hence for $C_{p} \bigcup C_{p}^{2}$.

Remark 2.2. From Figure 1 we observe that $C_{7}^{2}$ is a 7-cycle. From Figure 2, it is clear that $C_{8}^{2}$ is not a cycle, but the union of two, 4-cycles and $C_{9}^{2}$ is a 9 -cycle, but $C_{9}^{3}$ is the union of three, 3-cycles.

## 3 Main Results

This section shows that the union of an odd cycle and its square is non-planar. Hence if an odd cycle and its square are in $G$, then $G$ is non-planar.

Theorem 3.1. Let $G$ be a graph containing $C_{2 n+1}$, where $C_{2 n+1}$ is an odd cycle for $n \geq 2$. If $C_{2 n+1} \bigcup C_{2 n+1}^{2} \subseteq G$, then $G$ is non-planar.


Figure 3. $C_{9}, C_{9}^{\prime}$ and $C_{9} \bigcup C_{9}^{\prime}$

Proof. Let $G$ be a graph and $C_{2 n+1}$ be an odd cycle[7], $C_{2 n+1}=\left(\begin{array}{lll}0 & 1 & 2\end{array} \ldots 2 n\right)$. Then, $C_{2 n+1}^{2}=C_{2 n+1} o C_{2 n+1}=(012 \ldots 2 n) \circ(012 \ldots 2 n)=(024 \ldots 2 n 13 \ldots 2 n-10)$ which is a cycle in $G$. Consider the graph $C_{2 n+1} \cup C_{2 n+1}^{2}$, We draw $C_{2 n+1} \cup C_{2 n+1}^{2}$ in a plane as follows. Since $C_{2 n+1}$ is a cycle with a length of $2 n+1$ it can be embedded on a plane without crossing any edges. Draw $C_{2 n+1}^{2}$ on $C_{2 n+1}$ to produce $C_{2 n+1} \cup C_{2 n+1}^{2}$ according to the following rule. Without loss of generality, draw the $n$ edges $(0,2),(2,4), \ldots,(2 n-2,2 n)$ inside $C_{2 n+1}$, which will not produce any edge crossing, so that the resulting graph is planar. Then draw $n$ edges $(2 n, 1),(1,3),(3,5), \ldots,(2 n-3,2 n-1)$ outside $C$, which is also possible without any edge crossing, hence the resulting graph is planar. One more edge $(2 n-1,0)$ is remaining to produce $C_{2 n+1} \bigcup C_{2 n+1}^{2}$, If $(2 n-1,0)$ is drawn inside $C_{2 n+1}$, it will meet $(2 n-3,2 n-1)$, otherwise, it will meet $(2 n, 1)$. Hence $C_{2 n+1} \cup C_{2 n+1}^{2}$ is non-planar. If $C_{2 n+1} \cup C_{2 n+1}^{2} \subseteq G$, then $G$ is also non-planar.

Arbitrary selection of two cycles with the same vertex set need not produce a non-planar subgraph.

Example 3.2. The union of two distinct odd cycles of $G$ with the same vertex set can be planar.
Proof. Consider the odd cycle $C_{9}$, labeled as $C_{9}=\left(\begin{array}{l}0 \\ 1\end{array} 2345678\right)$. Another odd cycle $C_{9}^{1}$ with same vertices, labeled as $C_{9}^{\prime}=(035271864)$. The planar embedding of $C_{9} \cup C_{9}^{\prime}$ shows that the arbitrary selection of two cycles need not produce a non-planar sub graph.

An immediate consequence of theorem 3.1 is that the complement of an odd cycle is always non-planar when the size is greater than or equal to 7 .

Corollary 3.3. $C_{2 n+1}^{c}$ is non-planar for $2 n+1 \geq 7$.
Proof. $K_{2 n+1}$ can be decomposed into $n$ cycles [7], also these cycles can be expressed as $C_{2 n+1}, C_{2 n+1}^{2}, C_{2 n+1}^{3}, \ldots, C_{2 n+1}^{n}$ by Walecki's construction method. Thus $C_{2 n+1}^{c}$, the complement of $C_{2 n+1}$ can be decomposed into $n-1$ cycles. If $2 n+1 \geq 7, C_{2 n+1}^{c}$ can be decomposed into two or more cycles of the form $C_{2 n+1}, C_{2 n+1}^{2}, C_{2 n+1}^{3}, \ldots, C_{2 n+1}^{n-1}$. Thus, $C_{2 n+1}^{c}$ is non-planar. $\quad \square$
$C_{2 n+1}^{2}$ does not need to be always a subgraph of $G$. But the following Theorem says that if at least one power $C_{2 n+1}^{r} \subseteq G$, for $2 \leq r \leq n$, then also $G$ is non-planar. Here we have an upper bound $n$ for $r$, since $C_{2 n+1}^{r}$ is produced by permutation multiplication of $C_{2 n+1}, r$-times, we have only $n$ distinct graphs.

Theorem 3.4. If $G$ be a graph having an odd cycle $C_{2 n+1}$ with $n \geq 2$, if $C_{2 n+1} \cup C_{2 n+1}^{r} \subseteq G$ for some $2 \leq r \leq n$, then $G$ is non-planar.

Proof. Let $C_{2 n+1}$ be the cycle, $C_{2 n+1}=\left(\begin{array}{lll}0 & 1 & 2\end{array} 2 n\right), C_{2 n+1}^{r}=C_{2 n+1} o C_{2 n+1} o \ldots o C_{2 n+1}$ ( $r$ times)


Figure 4. $C_{9} \bigcup C_{9}^{3}$ and $C_{9} \bigcup C_{9}^{4}$

Case 1: If $2 n+1=m r$ for some integer $m . C_{2 n+1}^{r}=(0 r 2 r \ldots(m-1) r) \cup(1 r+12 r+$ $1 \ldots((m-1) r+1)) \cup \ldots((r-1)(2 r-1) \ldots((m-1) r+(r-1)))=C_{1} \cup C_{2} \cup \ldots \cup C_{r}$. Hence $C_{2 n+1}^{r}$ is the union of $r, m$-cycles. Draw $C_{2 n+1}$ in a plane. Draw $C_{2 n+1}^{r}$ on $C_{2 n+1}$ according to the following rule. Without loss of generality draw $C_{1}$ inside and $C_{2}$ outside $C_{2 n+1}$, the planarity of $C_{2 n+1}$ will not be affected. Draw $C_{3}$ inside $C_{2 n+1}$, the edge $(2, r+2)$ will cut $(0, r)$ and $(r, 2 r)$. If $C_{3}$ is drawn outside $C_{2 n+1}$, the edge $(2, r+2)$ will cut $(1, r+1)$ and $(r+1,2 r+1)$. Hence $C_{2 n+1} \bigcup C_{1} \bigcup C_{2} \bigcup C_{3}$ is non-planar and $C_{1} \cup C_{2} \bigcup C_{3} \subseteq C_{2 n+1}^{r}$. Then, $C_{2 n+1} \bigcup C_{2 n+1}^{r}$ is non-planar. So if $C_{2 n+1} \bigcup C_{2 n+1}^{r} \subseteq G$, then $G$ is non-planar.

Case II:If $r$ does not divide $2 n+1$, i.e, $r=m r+q$, where $m, q$ are integers such that $0<q<r$. Then $C_{2 n+1}^{r}=\left(\begin{array}{llll}0 & r & 2 r & \ldots \\ (m-1) r m r & (m+1) r(m+2) r \ldots(2 m+ \\ \hline\end{array}\right.$ 1) $r(2 m+2) r \ldots(3 m+1) r(3 m+2) r \ldots(p m+l) r \ldots((m-1) r+q)$ which is a cycle; where $(m+1) r=r-q,(m+2) r=2 r-q, \ldots(2 m+1) r=r-2 q, \quad(2 m+2) r=$ $2 r-2 q, \quad \ldots(3 m+1) r=r-3 q, \quad(3 m+2) r=2 r-3 q, \ldots(p m+l) r=l r-p q$, $\ldots((m-1) r+q)$. Without loss of generality draw $m$ edges $(0, r),(r, 2 r), \ldots,((m-1) r, m r)$ inside, (call the graph produced by these $m$ edges $D_{1}$ ) and the $m$ edges $(m r, \quad(m+1) r),((m+$ 1) $r,(m+2) r), \ldots,((m+m-1) r, 2 m r)$, outside (call the graph produced by these $m$ edges $\left.D_{2}\right) C_{2 n+1}$ in a plane. Now if the edge $(2 m r,(2 m+1) r)$ is drawn inside $C_{2 n+1}$, it will cut at least $((m-1) r, m r)$ and if drawn outside $C_{2 n+1}$, it will meet at least $(m r,(m+1) r)$. Then $C_{2 n+1} \bigcup D_{1} \bigcup D_{2} \bigcup(2 m r,(2 m+1) r)$ is non-planar. Since $D_{1} \bigcup D_{2} \bigcup(2 m r,(2 m+$ 1)r) $\subseteq C_{2 n+1}^{r}, C_{2 n+1} \bigcup C_{2 n+1}^{r}$ is non-planar. Hence if $C_{2 n+1} \cup C_{2 n+1}^{r} \subseteq G$, then $G$ is also non planar.

For even cycles $C_{2 n} \cup C_{2 n}^{2}$ is planar. But theorem 3.5 proves that $C_{2 n} \cup C_{2 n}^{r}$ is non-planar for all $r \geq 3$.

Theorem 3.5. Let $C_{2 n}$ be an even cycle in $G$, with $n \geq 3$. If $C_{2 n} \cup C_{2 n}^{r} \subseteq G$ for at least one $r$ such that $3 \leq r \leq n$, then $G$ is non-planar.

Proof. Let $C_{2 n}=\left(\begin{array}{lllll}0 & 1 & 2 & \ldots & 2 n-1\end{array}\right)$. Then $C_{2 n}^{2}=C_{2 n} \quad o \quad C_{2 n}=\left(\begin{array}{lllll}0 & 1 & 2 & \ldots & 2 n-1\end{array}\right) \circ$ $\left.\left(\begin{array}{lllll}0 & 1 & 2\end{array} \ldots 2 n-1\right)=\left(\begin{array}{lllll}0 & 2 & 4 & \ldots & 2 n-4\end{array} 2 n-2\right) \cup\left(\begin{array}{llll}1 & 3 & 5 & \ldots\end{array}\right) 2 n-1\right) . C \cup C_{2 n}^{2}$ is planar. Consider the following cases. $C_{2 n}^{r}=C_{2 n} \quad o C_{2 n} \quad o \quad \ldots \quad o C_{2 n}$ (r times)

Case I: If $2 n=m r$, then, $C_{2 n}^{r}=\left(\begin{array}{lll}0 & r & 2 r \ldots(m-1) r) \cup(1 r+1\end{array} 2 r+1 \ldots((m-\right.$ $1) r+1)) \bigcup \ldots \bigcup((r-1)(2 r-1) \ldots((m-1) r+(r-1)))=C_{1} \bigcup C_{2} \cup \ldots \bigcup C_{r}$. $C_{2 n}^{r}$ is not a cycle, but it is the union of $r$ different $m$-cycles.

Draw $C_{2 n}$ in a plane. Draw $C_{2 n}^{r}$ on $C_{2 n}$ according to the following rule. With out loss of generality draw $C_{1}$ inside and $C_{2}$ outside $C_{2 n}$. Draw $C_{3}$ inside $C_{2 n}$, the edge $(2, r+2)$ will


Figure 5. $C_{8} \cup C_{8}^{2}, C_{8} \cup C_{8}^{3}$ and $C_{8} \cup C_{8}^{4}$
cut $(0, r)$ and $(r, 2 r)$. If $C_{3}$ is drawn outside $C_{2 n}$, the edge $(2, r+2)$ will cut $(1, r+1)$ and $(r+1,2 r+1)$. Hence $C_{2 n} \cup C_{1} \cup C_{2} \cup C_{3}$ is non-planar.
Then, since $C_{1} \cup C_{2} \cup C_{3} \subseteq C_{2 n}^{r}, C_{2 n} \cup C_{2 n}^{r}$ is non-planar. So if $C_{2 n} \cup C_{2 n}^{r} \subseteq G$, then $G$ is non-planar.

Case II: If $2 n=m r+q$, where $0<q<r$, then $C_{2 n}^{r}=\left(\begin{array}{lll}0 & r & 2 r \ldots(m-1) r m r(m+\end{array}\right.$ 1) $r(m+2) r \ldots(2 m+1) r(2 m+2) r \ldots(3 m+1) r(3 m+2) r \ldots(p m+l) r \ldots((m-$ 1) $r+q)$ ) which is a cycle; where $(m+1) r=r-q,(m+2) r=2 r-q, \ldots(2 m+1) r=$ $r-2 q,(2 m+2) r=2 r-2 q, \ldots(3 m+1) r=r-3 q,(3 m+2) r=2 r-3 q, \ldots(p m+l) r=l r-$ $p q, \ldots((m-1) r+q))$. Without loss of generality draw $m$ edges $(0, r),(r, 2 r), \ldots,((m-1) r, m r)$ inside (call the graph produced by these $m$ edges $C_{1}$ ) and the $m$ edges $(m r,(m+1) r),((m+$ $1) r,(m+2) r), \ldots,((2 m-1) r, 2 m r)$, outside (call the graph produced by these $m$ edges $\left.C_{2}\right) C_{2 n}$ in a plane. If the edge $(2 m r,(2 m+1) r)$ is drawn inside $C_{2 n}$, it will cut at least $((m-1) r, m r)$ and if it is drawn outside $C_{2 n}$, it will meet at least ( $m r,(m+1) r$ ).
Then $C_{2 n} \cup C_{1} \cup C_{2} \cup(2 m r,(2 m+1) r)$ is non-planar. Since $C_{1} \cup C_{2} \cup(2 m r,(2 m+$ 1)r) $\subseteq C_{2 n}^{r}, C_{2 n} \cup C_{2 n}^{r}$ is non-planar. Hence if $C_{2 n} \cup C_{2 n}^{r} \subseteq G$, then $G$ is also nonplanar.

It is nice to have an algorithm for checking non-planarity since real-life problems handle large graphs in VLSI design, networks, etc. This article provides pseudo-code for the algorithm to check whether a given graph is non-planar. The concept of fundamental cycles[8] and their union produce all possible cycles in $G$. By checking whether the powers of each cycle belong to the graph, we confirm the non-planarity.
We select an arbitrary spanning tree $T$ and collect all edges which are not present in $T$. Each edge will contribute to one fundamental cycle. The collection of edges that produce one fundamental cycle each is denoted as $E_{1}$. Several algorithms exist in literature to generate fundamental cycles in a graph. Any cycle in $G$ can be expressed as the union of fundamental cycles. Hence we search for the existence of all possible unions of cycles in $G$. Then search for the existence of the powers too. The existence of a cycle and its power will confirm the non-planarity of $G$. The fundamental cycles are the input of our algorithm. The steps of the algorithm are given below.
(i) Set $j=0$. Input the fundamental cycles $S=\left\{C_{0 i}\right.$, produced by each edge $e_{i} \in E_{1}$; where $1 \leq i \leq m-n+1$. Go to Step 2 .
(ii) Set $i=1$ and go to step 3 .
(iii) $n_{i}=\left|C_{j i}\right|$. If $n_{i}$ is odd, set $r=2$, else set $r=3$. Go to step 4 .
(iv) Check $C_{j i} \cup C_{j i}^{r} \subseteq G$. If yes conclude that $G$ is non-planar and exit, else go to step 5 .
(v) Set $r=r+1$. If $r \leq\left\lfloor\frac{n_{i}}{2}\right\rfloor$, go to step 4, else set $i=i+1$ and go to step 6 .
(vi) Check $i \leq m-n+1-$. If yes, go to step 3 , else set $i=1$ and go to step 7 .
(vii) set $j=j+1$, check $j \leq m-n$. If yes go to Step 8 , else exit the algorithm without a conclusion regarding non-planarity.
(viii) Form a new cycle $C_{j i}=C_{j-1 i} \bigcup C_{j-1 i+1}-\left(C_{j-1} \bigcap C_{j-1 i+1}\right)$.

If $E\left(C_{j-11} \bigcap C_{j-1 i+1}\right) \neq \phi, C_{j i}$ is a cycle. go to step 9 , else go to Step 10 .
(ix) Add $C_{j i}$ to $S$ and go to Step 3.
(x) $C_{j i}$ is not a cycle. Update $i=i+1$ and go to step 11 .
(xi) Check $C_{j-1} i_{+1} \in S$. If yes go to Step 8 , else go to step 10 .

There are $m-n+1$ fundamental cycles in $G$ and their unions will produce all cycles in $G$. A cycle has maximum $\left\lfloor\frac{n_{i}}{2}\right\rfloor$ distinct powers and since $n_{i} \leq n$, we have maximum $\left\lfloor\frac{n}{2}\right\rfloor$ powers for each cycle. Hence the complexity of the algorithm is $O\left(n m^{2}\right)$.

## 4 Conclusion

In many practical problems determination of non-planarity is a tedious job. There does not exist a fast recognition algorithm for detecting subgraph homeomorphic to $K_{5}$ or $K_{3,3}$. This paper opens an easy method by detecting the presence of the union of some cycles and its $r^{t h}$ power, for some $r$. More clearly, any graph $G$ which contains an odd cycle and its square or even cycle and its cube is non planar. In general, every graph $G$ with an odd cycle and its $r^{t h}$ power for $r \geq 2$ or even cycle and its $r^{t h}$ power for $r>2$ is non planar. We can observe that $K_{5}=C_{5} \bigcup C_{5}^{2}$ and $K_{3,3}=C_{6} \bigcup C_{6}^{3} . C_{2 n+1} \bigcup C_{2 n+1}^{r}$ is homeomorphic to $K_{5}$; if $2 n+1=m r+q$ with $0<q<r$ and $C_{2 n+1} \bigcup C_{2 n+1}^{r}$ is homeomorphic to $K_{3,3}$; if $2 n+1=m r . C_{2 n} \cup C_{2 n}^{r}$ is homeomorphic to $K_{5}$; if $2 n=m r+q$ with $0<q<r$ and $C_{2 n} \cup C_{2 n}^{r}$ is homeomorphic to $K_{3,3}$; if $2 n=m r$. Thus the theorem plays the role of sufficiency part of the Kurtowski's theorem, but reduces its complexity. Unfortunately it is not necessary that a non planar graph must contain either $C_{2 n+1} \bigcup C_{2 n+1}^{r}$ or $C_{2 n} \bigcup C_{2 n}^{r}$; Peterson graph is the counter example. The algorithm is needed only when $m \leq 3 n-6$.

## References

[1] G. Agnarsson, R. Greenlaw, Graph Theory, modelling Applications and Algorithms, Dorling Kindersley (India) Pvt Ltd, (2007).
[2] D. Dolev, T. Leighton, H. Trickey, Planar Embedding of Planar Graphs, Advances in Computing Research, vol. 2 pages 147-161, (1984).
[3] K. Reji Kumar, Jasmine Mathew, On some decomposition problems of Fibonacci graphs, Complete Bipartite Graphs and Complete Graphs, Mathematical Sciences International Research Journal, Volume 6, Special Issue, pp 39-43 (2017).
[4] F. Harary, A. Hill, On the number of crossings in a complete graph, Open Graph Problems, Harary Hills (1963).
[5] Jasmine Mathew, K. Reji Kumar, Communication Structures, its graph representations and decomposition possibilities, Journal of Physics: Conference Series, 1706, 012050, (2020), doi:10.1088/17426596/1706/1/012050
[6] D.B. West, Introduction to Graph Theory, Prentince Hall of India Pvt Ltd, New Delhi, (1999).
[7] B. Alspach, J.C. Bermond, D. Sotteau, Decomposition in to cycles I: Hamilton Decomposition, Kluwer Academic Publishers, (1990).
[8] Gross, Jonathan L., Yellen, Jay, Graphs and Vector Spaces: Section 6 of the fourth chapter of the the book Graph Theory and Its Applications (2nd ed.), CRC Press, pp. 197-217, (2005).

## Author information

Jasmine Mathew, Department of Basic Sciences, Amal Jyothi College of Engineering, Kanjirappally, Kottayam. Department of Mathematics, Mar Thoma College, Tiruvalla, India.
E-mail: jasminebinu@gmail.com
K.Reji Kumar, Department of Mathematics, N.S.S College

Cherthala, Alleppey, India.
E-mail: rkkresearch@yahoo.in
Received: February 25, 2021
Accepted: July 15, 2021

