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Abstract This article proposes a method to examine whether a given undirected simple graph
is non-planar using Cycles. The cyclic rotation of the available cycle produces a new cycle. The
non-planarity can be fixed depending on whether both cycles are subgraphs of the given graph.
Pseudocode for setting up an algorithm for detecting non-planarity for any graph containing
at-least one cycle is the highlight of the article.

1 Introduction

Some graphs are drawn in a plane such that any intersection of edges occurs only at the vertices.
Such graphs are called planar graphs. But it is not possible to depict every graph without any
edge crossing. The problem of determining whether a graph is planar or not has many practical
applications, such as in VLSI design [1]. Danny Dolev et al. [2] provides details of some appli-
cations.

Planar drawings represent Integrated circuit layouts to the patterns of semiconductor or metal
oxide; which are the components of an integrated circuit. The models are usually large graphs.
For large n, finding non-planar subgraphs will help to decompose graphs into planar subgraphs.
The union of C and Cr is a minimal non-planar graph. Detection of the minimal non-planar
sub-graph will simplify the process of planar graph decomposition. Planar Decomposition is the
partitioning of the edge set so that each subgraph induced by the corresponding edge set is a pla-
nar graph. Isomorphic decomposition is the partitioning of the edge set such that each induced
subgraphs are isomorphic to the other. If each subgraph is a path the decomposition is path de-
composition. Analogously if each subgraph is a star the decomposition is a star decomposition.
The path and star decomposition of Fibonacci graphs are given in [3]. The crossing number of
a graph is closely associated with the nonplanarity of a graph. It is the minimum number of
crossings in an optimal drawing of a graph. The pseudocode will help to improve the available
results in the literature regarding crossing numbers. The determination of crossing numbers in
Complete Graphs is of great interest [4]. Several graph parameters exist in the literature to ana-
lyze graph properties. A survey on various graph parameters can be found in [5]

Many studies have been done on the verification of planarity. In some problems, it is sufficient
to check whether the given graph is non-planar. For testing the non-planarity, Euler’s theorem [6]
can be used. According to the theorem,m ≤ 3n−6 for every planar graph and for bipartite planar
graph m ≤ 2n − 4, where n is the number of vertices and m is the number of edges in G. This
condition is necessary but not sufficient. So in the case where the above conditions are satisfied,
the determination of non-planarity can be done with the well-known Kuratowski’s Theorem[6].
The theorem states that a graph is planar if and only if it does not haveK5 andK3,3 as topological
minors. But, to find a subgraph homeomorphic to K5 or K3,3 is not easy. This article proposes
an easy method finding a subgraph homeomorphic to K5 or K3,3 by construction. A graph is
tested if it contains a cycle of size greater than or equal to five. The permutation multiplication
of cycles proposed by Walecki [7] is used.
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Figure 1. C7, C2
7 and C3

7

Figure 2. C8, C2
8 , C2

9 and C3
9

2 Definition and Terminology

Since the planarity is not affected by loops and parallel edges, this paper discusses only the
undirected simple graphs. The readers are expected to be familiar with the elementary graph-
theoretical terms, such as subgraphs, paths, cycles, the union of graphs, etc. For basic definitions
refer [6], [1]. C represents a cycle according to the context.

Permutation multiplication of vertex labels of a cycle produces new cycles. Walecki used this
method for decomposing complete graphs into Hamilton cycles.

Definition 2.1 (Permutation Multiplication). :
A cycle of size p in a graph G is expressed using a permutation of vertex labels 0, 1, 2 . . . p− 1.
That is Cp = (0 1 2 . . . p − 1). Then permutation multiplication of two cycles Cp and Cp

represented by, Cp ◦ Cp = C2
p is given by, Cp ◦ Cp = (0 1 2 . . . p − 1) ◦ (0 1 2 . . . p − 1) =

(0 2 4 . . . p− 2 1 3 . . . p− 1) Similarly Cr
p is defined as Cr

p = Cp ◦ Cp ◦ . . . Cp ( r- times).

The new graph produced has the same vertex set as Cp; hence for Cp

⋃
C2

p.

Remark 2.2. From Figure 1 we observe that C2
7 is a 7-cycle. From Figure 2, it is clear that C2

8
is not a cycle, but the union of two, 4-cycles and C2

9 is a 9-cycle, but C3
9 is the union of three,

3-cycles.

3 Main Results

This section shows that the union of an odd cycle and its square is non-planar. Hence if an odd
cycle and its square are in G, then G is non-planar.

Theorem 3.1. Let G be a graph containing C2n+1, where C2n+1 is an odd cycle for n ≥ 2. If
C2n+1

⋃
C2

2n+1 ⊆ G, then G is non-planar.
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Figure 3. C9,C
′

9 and C9
⋃
C

′

9

Proof. Let G be a graph and C2n+1 be an odd cycle[7], C2n+1 = ( 0 1 2 . . . 2n). Then,
C2

2n+1 = C2n+1 o C2n+1 = (0 1 2 . . . 2n) ◦ (0 1 2 . . . 2n) = (0 2 4 . . . 2n 1 3 . . . 2n− 1 0)
which is a cycle in G. Consider the graph C2n+1

⋃
C2

2n+1, We draw C2n+1
⋃

C2
2n+1 in a

plane as follows. Since C2n+1 is a cycle with a length of 2n+ 1 it can be embedded on a plane
without crossing any edges. Draw C2

2n+1 on C2n+1 to produce C2n+1
⋃
C2

2n+1 according to the
following rule. Without loss of generality, draw the n edges (0, 2), (2, 4), . . . , (2n−2, 2n) inside
C2n+1, which will not produce any edge crossing, so that the resulting graph is planar. Then draw
n edges (2n, 1), (1, 3), (3, 5), . . . , (2n− 3, 2n− 1) outside C, which is also possible without any
edge crossing, hence the resulting graph is planar. One more edge (2n − 1, 0) is remaining to
produce C2n+1

⋃
C2

2n+1, If (2n − 1, 0) is drawn inside C2n+1, it will meet (2n − 3, 2n − 1),
otherwise, it will meet (2n, 1). Hence C2n+1

⋃
C2

2n+1 is non-planar. If C2n+1
⋃
C2

2n+1 ⊆ G,
then G is also non-planar.

Arbitrary selection of two cycles with the same vertex set need not produce a non-planar
subgraph.

Example 3.2. The union of two distinct odd cycles of G with the same vertex set can be planar.

Proof. Consider the odd cycle C9, labeled as C9 = (0 1 2 3 4 5 6 7 8). Another odd cycle C1
9

with same vertices, labeled as C
′

9 = (0 3 5 2 7 1 8 6 4). The planar embedding of C9∪C
′

9 shows
that the arbitrary selection of two cycles need not produce a non-planar sub graph.

An immediate consequence of theorem 3.1 is that the complement of an odd cycle is always
non-planar when the size is greater than or equal to 7.

Corollary 3.3. Cc
2n+1 is non-planar for 2n+ 1 ≥ 7.

Proof. K2n+1 can be decomposed into n cycles [7], also these cycles can be expressed as
C2n+1, C

2
2n+1, C

3
2n+1, . . . , C

n
2n+1 by Walecki’s construction method. Thus Cc

2n+1, the comple-
ment ofC2n+1 can be decomposed into n−1 cycles. If 2n+1 ≥ 7, Cc

2n+1 can be decomposed into
two or more cycles of the form C2n+1, C

2
2n+1, C

3
2n+1, . . . , C

n−1
2n+1. Thus, Cc

2n+1 is non-planar.

C2
2n+1 does not need to be always a subgraph of G. But the following Theorem says that if at

least one power Cr
2n+1 ⊆ G, for 2 ≤ r ≤ n, then also G is non-planar. Here we have an upper

bound n for r, since Cr
2n+1 is produced by permutation multiplication of C2n+1, r-times, we have

only n distinct graphs.

Theorem 3.4. If G be a graph having an odd cycle C2n+1 with n ≥ 2, if C2n+1
⋃
Cr

2n+1 ⊆ G for
some 2 ≤ r ≤ n, then G is non-planar.

Proof. Let C2n+1 be the cycle, C2n+1 = (0 1 2 . . . 2n), Cr
2n+1 = C2n+1 o C2n+1 o . . . o C2n+1

(r times)
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Figure 4. C9
⋃
C3

9 and C9
⋃
C4

9

Case 1: If 2n+1 = mr for some integer m. Cr
2n+1 = (0 r 2r . . . (m−1)r)

⋃
(1 r+1 2r+

1 . . . ((m−1)r+1))
⋃

. . . ((r−1) (2r−1) . . . ((m−1)r+(r−1))) = C1
⋃
C2
⋃

. . .
⋃
Cr.

Hence Cr
2n+1 is the union of r, m-cycles. Draw C2n+1 in a plane. Draw Cr

2n+1 on C2n+1 ac-
cording to the following rule. Without loss of generality draw C1 inside and C2 outside C2n+1,
the planarity of C2n+1 will not be affected. Draw C3 inside C2n+1, the edge (2, r + 2) will
cut (0, r) and (r, 2r). If C3 is drawn outside C2n+1, the edge (2, r + 2) will cut (1, r + 1) and
(r + 1, 2r + 1). Hence C2n+1

⋃
C1
⋃
C2
⋃
C3 is non-planar andC1

⋃
C2
⋃
C3 ⊆ Cr

2n+1 .
Then, C2n+1

⋃
Cr

2n+1 is non-planar. So if C2n+1
⋃
Cr

2n+1 ⊆ G, then G is non-planar.

Case II:If r does not divide 2n + 1, i.e, r = mr + q, where m, q are integers such that
0 < q < r. Then Cr

2n+1 = (0 r 2r . . . (m − 1)r mr (m + 1)r (m + 2)r . . . (2m +
1)r (2m + 2)r . . . (3m + 1)r (3m + 2)r . . . (pm + l)r . . . ((m − 1)r + q) which is a
cycle; where (m+ 1)r = r − q, (m+ 2)r = 2r − q, . . . (2m+ 1)r = r − 2q, (2m+ 2)r =
2r − 2q, . . . (3m + 1)r = r − 3q, (3m + 2)r = 2r − 3q , . . . (pm + l)r = lr − pq,
. . . ((m−1)r+ q). Without loss of generality draw m edges (0, r), (r, 2r), . . . , ((m−1)r,mr)

inside, (call the graph produced by these m edges D1) and the m edges (mr, (m+ 1)r), ((m+
1)r, (m+2)r), . . . , ((m+m−1)r, 2mr), outside (call the graph produced by thesem edges
D2) C2n+1 in a plane. Now if the edge (2mr, (2m + 1)r) is drawn inside C2n+1, it will cut at
least ((m − 1)r, mr) and if drawn outside C2n+1, it will meet at least (mr, (m + 1)r). Then
C2n+1

⋃
D1

⋃
D2

⋃
(2mr, (2m+1)r) is non-planar. SinceD1

⋃
D2

⋃
(2mr, (2m+

1)r) ⊆ Cr
2n+1, C2n+1

⋃
Cr

2n+1 is non-planar. Hence if C2n+1
⋃

Cr
2n+1 ⊆ G, then G is

also non planar.

For even cycles C2n
⋃
C2

2n is planar. But theorem 3.5 proves that C2n
⋃
Cr

2n is non-planar
for all r ≥ 3.

Theorem 3.5. Let C2n be an even cycle in G, with n ≥ 3. If C2n
⋃
Cr

2n ⊆ G for at least one r
such that 3 ≤ r ≤ n, then G is non-planar.

Proof. Let C2n = (0 1 2 . . . 2n − 1). Then C2
2n = C2n o C2n = (0 1 2 . . . 2n − 1) ◦

( 0 1 2 . . . 2n− 1) = (0 2 4 . . . 2n− 4 2n− 2) ∪ (1 3 5 . . . 2n− 1). C
⋃
C2

2n is
planar. Consider the following cases. Cr

2n = C2n o C2n o . . . o C2n (r times)

Case I: If 2n = mr, then, Cr
2n = (0 r 2r . . . (m− 1)r)

⋃
(1 r + 1 2r + 1 . . . ((m−

1)r+ 1))
⋃

. . .
⋃
((r− 1) (2r− 1) . . . ((m− 1)r+ (r− 1))) = C1

⋃
C2

⋃
. . .

⋃
Cr.

Cr
2n is not a cycle, but it is the union of r different m-cycles.

Draw C2n in a plane. Draw Cr
2n on C2n according to the following rule. With out loss of

generality draw C1 inside and C2 outside C2n. Draw C3 inside C2n, the edge (2, r + 2) will
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Figure 5. C8
⋃
C2

8 , C8
⋃
C3

8 and C8
⋃
C4

8

cut (0, r) and (r, 2r). If C3 is drawn outside C2n, the edge (2, r + 2) will cut (1, r + 1) and
(r + 1, 2r + 1). Hence C2n

⋃
C1
⋃
C2
⋃
C3 is non-planar.

Then, since C1
⋃
C2
⋃
C3 ⊆ Cr

2n, C2n
⋃
Cr

2n is non-planar. So if C2n
⋃
Cr

2n ⊆ G, then G is
non-planar.

Case II: If 2n = mr + q, where 0 < q < r, then Cr
2n = (0 r 2r . . . (m− 1)r mr (m+

1)r (m+2)r . . . (2m+1)r (2m+2)r . . . (3m+1)r(3m+2)r . . . (pm+ l)r . . . ((m−
1)r + q)) which is a cycle; where (m + 1)r = r − q, (m + 2)r = 2r − q, . . . (2m + 1)r =
r−2q,(2m+2)r = 2r−2q,. . . (3m+1)r = r−3q, (3m+2)r = 2r−3q, . . . (pm+ l)r = lr−
pq,. . . ((m−1)r+q)). Without loss of generality drawm edges (0, r), (r, 2r), . . . , ((m−1)r,mr)
inside (call the graph produced by these m edges C1) and the m edges (mr, (m + 1)r), ((m +
1)r, (m+2)r), . . . , ((2m−1)r, 2mr), outside (call the graph produced by thesem edges C2) C2n
in a plane. If the edge (2mr, (2m+ 1)r) is drawn inside C2n, it will cut at least ((m− 1)r,mr)
and if it is drawn outside C2n, it will meet at least (mr, (m+ 1)r).
Then C2n

⋃
C1

⋃
C2

⋃
(2mr, (2m + 1)r) is non-planar. Since C1

⋃
C2

⋃
(2mr, (2m +

1)r) ⊆ Cr
2n, C2n

⋃
Cr

2n is non-planar. Hence if C2n
⋃

Cr
2n ⊆ G, then G is also non-

planar.

It is nice to have an algorithm for checking non-planarity since real-life problems handle
large graphs in VLSI design, networks, etc. This article provides pseudo-code for the algorithm
to check whether a given graph is non-planar. The concept of fundamental cycles[8] and their
union produce all possible cycles in G. By checking whether the powers of each cycle belong to
the graph, we confirm the non-planarity.
We select an arbitrary spanning tree T and collect all edges which are not present in T . Each edge
will contribute to one fundamental cycle. The collection of edges that produce one fundamental
cycle each is denoted as E1. Several algorithms exist in literature to generate fundamental cycles
in a graph. Any cycle in G can be expressed as the union of fundamental cycles. Hence we
search for the existence of all possible unions of cycles in G. Then search for the existence of
the powers too. The existence of a cycle and its power will confirm the non-planarity of G. The
fundamental cycles are the input of our algorithm. The steps of the algorithm are given below.

(i) Set j = 0. Input the fundamental cycles S = {C0i, produced by each edge ei ∈ E1; where
1 ≤ i ≤ m− n+ 1. Go to Step 2.

(ii) Set i = 1 and go to step 3.

(iii) ni = |Cji|. If ni is odd, set r = 2, else set r = 3. Go to step 4.

(iv) Check Cji

⋃
Cr

ji ⊆ G. If yes conclude that G is non-planar and exit, else go to step 5.

(v) Set r = r + 1. If r ≤
⌊
ni

2

⌋
, go to step 4, else set i = i+ 1 and go to step 6.

(vi) Check i ≤ m− n+ 1−. If yes, go to step 3, else set i = 1 and go to step 7.

(vii) set j = j + 1, check j ≤ m − n. If yes go to Step 8, else exit the algorithm without a
conclusion regarding non-planarity.
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(viii) Form a new cycle Cj i = Cj−1 i

⋃
Cj−1 i+1 − (Cj−1 1

⋂
Cj−1 i+1).

If E(Cj−1 1
⋂
Cj−1 i+1) 6= φ, Cj i is a cycle. go to step 9, else go to Step 10.

(ix) Add Cj i to S and go to Step 3.

(x) Cj i is not a cycle. Update i = i+ 1 and go to step 11.

(xi) Check Cj−1 i+1 ∈ S. If yes go to Step 8, else go to step 10.

There are m − n + 1 fundamental cycles in G and their unions will produce all cycles in G. A
cycle has maximum

⌊
ni

2

⌋
distinct powers and since ni ≤ n, we have maximum

⌊
n
2

⌋
powers for

each cycle. Hence the complexity of the algorithm is O(nm2).

4 Conclusion

In many practical problems determination of non-planarity is a tedious job. There does not
exist a fast recognition algorithm for detecting subgraph homeomorphic to K5 or K3,3. This
paper opens an easy method by detecting the presence of the union of some cycles and its rth
power, for some r. More clearly, any graph G which contains an odd cycle and its square or
even cycle and its cube is non planar. In general, every graph G with an odd cycle and its rth
power for r ≥ 2 or even cycle and its rth power for r > 2 is non planar. We can observe that
K5 = C5

⋃
C2

5 andK3,3 = C6
⋃
C3

6 . C2n+1
⋃
Cr

2n+1 is homeomorphic toK5; if 2n+1 = mr+q
with 0 < q < r and C2n+1

⋃
Cr

2n+1 is homeomorphic to K3,3; if 2n + 1 = mr. C2n
⋃
Cr

2n is
homeomorphic to K5; if 2n = mr + q with 0 < q < r and C2n

⋃
Cr

2n is homeomorphic to K3,3;
if 2n = mr. Thus the theorem plays the role of sufficiency part of the Kurtowski’s theorem, but
reduces its complexity. Unfortunately it is not necessary that a non planar graph must contain
either C2n+1

⋃
Cr

2n+1 or C2n
⋃
Cr

2n; Peterson graph is the counter example. The algorithm is
needed only when m ≤ 3n− 6.
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