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Abstract The purpose of this paper is to prove some fixed point results for a mapping satisfying
generalized (φ, ψ)-contractive condition in a complete partially ordered b-metric space. Also, we prove
some coincidence fixed point results for two self mappings S and f on a setX under a set of conditions,
where S satisfies a generalized (φ, ψ)-contractive condition with respect to a function f in a complete
partially ordered b-metric space. Our results generalize, extend and unify most of the fundamental
metrical fixed point theorems in the existing literature. A few examples are illustrated to support our
results.

1 Introduction

The Banach contraction principle [1] is one of the most important results in the fixed point theory which
asserts that every contraction function in a complete metric space has a unique fixed point. After Banach
[1] proposed this important theorem, many researchers extended it to many directions, for example see
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. The usual metric space has been
generalized and enhanced in many different directions, one of such generalization is a b-metric space,
which was initiated by Bakhtin [21]. Czerwik in [22] extended the Banach contraction principle to
the frame work of complete b-metric spaces. Then after, many researchers obtained many important
results in b−metric spaces, for example see [23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36]. In 2015
Abdeljawad et al. [6] extended the Banach contraction principle to the frame of partial b metric spaces.
In the present paper, we will studied some fixed and common fixed point theorems in the frame of
ordered b− metric spaces.

2 Mathematical Preliminaries

The following definitions and results will be needed in what follows.

Definition 2.1. [21, 22] A map d : X × X −→ [0,∞), where X is a non-empty set is said to be a
b-metric, if the following conditions are satisfied for all x, y, z ∈ X and s ≥ 1:
(i) d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x),
(iii) d(x, z) ≤ s[d(x, y) + d(y, z)].
Then (X, d, s) is known as a b-metric space.
If (X,�) is still a partially ordered set, then (X, d, s,�) is called a partially ordered b-metric space.

Definition 2.2. [22] Let (X, d, s) be a b-metric space. Then
(1) A sequence {xn} is said to converges to x if limn−→+∞ d(xn, x) = 0 and written as
limn−→+∞ xn = x.
(2) {xn} is said to be a Cauchy sequence in X if limn,m−→+∞ d(xn, xm) = 0.
(3) (X, d, s) is said to be complete if every Cauchy sequence in it is convergent.

Remark 2.3. If the metric d is complete, then (X, d, s,�) is called a complete partially ordered b-metric
space.
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3 Previous results

Definition 3.1. [35] Let (X,�) be a partially ordered set, let
f, S : X −→ X be two mappings. Then
(1) S is called a monotone nondecreasing, if
S(x) � S(y) for all x, y ∈ X with x � y.
(2) An element x ∈ X is called a coincidence (common fixed) point of fand S if
fx = Sx(fx = Sx = x).
(3) fand S are called commuting if fSx = Sfx, for all x ∈ X .
(4) f and S are called compatible if any sequence {xn} with
limn−→+∞ fxn = limn−→+∞ Sxn = µ, for µ ∈ X , then limn−→+∞ d(Sfxn, fSxn) = 0.
(5) A pair of self maps (f, S) is called weakly compatible if fSx = Sfx, when Sx = fx
for some x ∈ X .
(6) S is called monotone f -nondecreasing if

fx � fy =⇒ Sx � Sy,

for any x, y ∈ X .
(7) A non empty set X is called well ordered set if very two elements of it are comparable,
i.e., x � y or y � x for x, y ∈ X .

Lemma 3.2. [34] Let (X, d, s,�) be a b-metric space with s > 1 and suppose that {xn} and {yn} are
b-convergent to x and y respectively. Then we have

1
s2 d(x, y) ≤ lim

n−→+∞
inf d(xn, yn) ≤ lim

n−→+∞
sup d(xn, yn) ≤ s2d(x, y).

In particular if x = y, then limn−→+∞ d(xn, yn) = 0. Moreover, for each τ ∈ X, we have

1
s
d(x, τ) ≤ lim

n−→+∞
inf d(xn, τ) ≤ lim

n−→+∞
sup d(xn, τ) ≤ sd(x, τ).

4 Main Results

Definition 4.1. The notion of distance functions, given by Khan [37], play major role in our results. A
self mapping φ defined on [0,+∞) is said to be an altering distance function, if it satisfies the following
conditions:
(i) φ is continuous,
(ii) φ is non-decreasing,
(iii) φ(t) = 0 if and only if t = 0.

Let (X, d, s,�) be a partially ordered b-metric space with parameter s ≥ 1 and
S : X −→ X be a mapping. Set

M(x, y) = max
{
d(y, Sy)[1 + d(x, Sx)]

1 + d(x, y)
,
d(x, Sy) + d(y, Sx)

2s
,

d(x, Sx)d(x, Sy)

1 + d(x, Sy) + d(y, Sx)
,

d(x, y)

}
.

Definition 4.2. Let φ, ψ ∈ Φ. We call the mapping S a generalized (φ, ψ)-contraction mapping if it
satisfies the following condition:

φ(sd(Sx, Sy)) ≤ φ(M(x, y))− ψ(M(x, y)), (4.1)

for any x, y ∈ X with x � y.

Theorem 4.3. Suppose that (X, d, s,�) is a complete partially ordered b-metric space with parameter
s ≥ 1. Let S : X −→ X be a generalized (φ, ψ)-contractive mapping. Suppose S is a continuous,
nondecreasing mapping with respect to �. If there exists x0 ∈ X with x0 � Sx0, then S has a fixed
point in X .
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Proof. If there exists x0 ∈ X such that Sx0 = x0, then we have the result. Assume that x0 ≺ Sx0.
Then construct a sequence {xn} ⊂ X by xn+1 = Sxn for n ≥ 0. Since S is nondecreasing, then by
induction we obtain that

x0 ≺ Sx0 = x1 � ... � xn � Sxn = xn+1 � .... (4.2)

If for some n0 ∈ N such that xn0 = xn0+1, then xn0 is a fixed point of S and we have nothing to
prove. Suppose that xn 6= xn+1 for all n ≥ 1. Since xn−1 � xn for all n ≥ 1, then Condition (3)
implies that

φ(d(xn, xn+1)) = φ(d(Sxn−1, Sxn)) ≤ φ(sd(Sxn−1, Sxn)) (4.3)

≤ φ(M(xn−1, xn))− ψ(M(xn−1, xn)), (4.4)

(4.5)

where

M(xn−1, xn) = max
{

d(xn,Sxn)[1+d(xn−1,Sxn−1)]
1+d(xn−1,xn)

,
d(xn−1,Sxn)+d(xn,Sxn−1)

2s ,

d(xn−1,Sxn−1)d(xn−1,Sxn)
1+d(xn−1,Sxn)+d(xn,Sxn−1)

, d(xn−1, xn)

}
≤ max

{
d(xn, xn+1),

d(xn+1,xn)+d(xn,xn−1)
2 ,

d(xn−1,xn)d(xn−1,xn+1)
1+)d(xn−1,xn+1)

, d(xn−1, xn)

}
≤ max

{
d(xn, xn+1), d(xn−1, xn)

}
.

If max{d(xn, xn+1), d(xn−1, xn)} = d(xn, xn+1) for some n ≥ 1, then (4.3) implies that

φ(d(xn, xn+1)) ≤ φ(d(xn, xn+1))− ψ(d(xn, xn+1)) < φ(d(xn, xn+1)), (4.6)

which is a contradiction. This means that max{d(xn, xn+1), d(xn−1, xn)} = d(xn−1, xn) for n ≥ 1.
Hence, we obtain from (4.3) that

φ(d(xn, xn+1)) ≤ φ(d(xn, xn−1))− ψ(d(xn, xn−1)) < φ(d(xn, xn−1)). (4.7)

So {d(xn, xn+1) : n = 0, 1, 2, ...} is a decreasing sequence. Thus there exists t ≥ 0 such that
limn→+∞ d(xn, xn+1) = t. Letting n→ +∞ in (4.6), we get that

φ(t) ≤ φ(t)− ψ(t),

which is correct only if ψ(t) = 0 and hence t = 0. So

lim
n→+∞

d(xn, xn+1) = 0. (4.8)

Now, we will show that (xn) is a Cauchy sequence. Suppose to the contrary. Then there exist ε > 0
for which we can find two subsequences (xmi

) and (xni
) such that ni is the smallest index for which

d(xmi
, xni

) ≥ ε, ni ≥ mi > i. (4.9)

that means

d(xmi
, xni−1) < ε. (4.10)

Triangular inequality implies that

d(xmi−1, xni
) ≤ sd(xmi−1, xmi

) + sd(xmi
, xni

)

≤ sd(xmi−1, xmi
) + s2d(xmi

, xni−1) + s2d(xni−1, xni
),

and

d(xmi−1, xni−1) ≤ sd(xmi−1, xmi
) + sd(xmi

, xni−1)

≤ sd(xmi−1, xmi
) + sε.
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Taking lim sup in above inequalities and using (4.8) and (4.10), we arrive to

lim sup
n→+∞

d(xmi−1, xni
) ≤ s2ε, (4.11)

and

lim sup
n→+∞

d(xmi−1, xni−1) ≤ sε. (4.12)

So, we have the following:

lim sup
n→+∞

d(xni−1, xni
)(1 + d(xmi−1, xmi

))

1 + d(xmi−1, xni−1)
≤ lim sup

n→+∞
d(xni−1, xni

)(1 + d(xmi−1, xmi
)) = 0, (4.13)

lim sup
n→+∞

d(xmi−1, xni
) + d(xni−1, xmi

)

2s
≤ s2ε+ ε

2s
≤ sε, (4.14)

and

lim sup
n→+∞

d(xmi−1, xmi
d(xmi−1, xni

))

1 + d(xmi−1, xni
) + d(xni−1, xmi

)
≤ lim sup

n→+∞
d(xmi−1, xmi

d(xmi−1, xni
)) = 0. (4.15)

Also, from triangular inequality, we get

ε ≤ d(xmi , xni) ≤ sd(xmi , xmi−1) + sd(xmi−1, xni)

≤ sd(xmi , xmi−1) + s2d(xmi−1, xni−1) + s2d(xni−1, xni).

Taking lim sup in above inequalities and using (4.9), we get

ε

s2 ≤ lim sup
n→+∞

d(xmi−1, xni−1).

Using the properties of ψ,

−ψ(lim inf
n→+∞

d(xmi−1, xni−1)) ≤ −ψ
(
ε

s2

)
. (4.16)

Now, since xni
and xmi

are comparable, we have

φ(sd(xmi
, xni

)) = φ(sd(Sxmi−1, Sxni−1)) ≤ φ(M(xmi−1, xni−1))− ψ(M(xmi−1, xni−1)), (4.17)

where

M(xmi−1, xni−1) = max
{

d(xni
,xni+1)[1+d(xmi

,xmi+1)]

1+d(xmi−1,xni−1)
,
d(xmi−1,xni

)+d(xni−1,xmi
)

2s ,

d(xmi−1,xmi
)d(xmi−1,xni

)

1+d(xmi−1,xni
)+d(xni−1,xmi

) , d(xmi−1, xni−1)

}
So,

d(xmi−1, xni−1) ≤M(xmi−1, xni−1).

Using the properties of ψ, we get

−ψ(M(xmi−1, xni−1)) ≤ −ψ(d(xmi−1, xni−1)).

From (4.17), we get

φ(d(xmi
, xni

)) ≤ φ(M(xmi−1, xni−1))− ψ(d(xmi−1, xni−1)). (4.18)

Taking the lim sup in (4.18) and using the inequalities (4.9), (4.12)− (4.15), we get that

φ(sε) ≤ φ(sε)− ψ
(
ε

s2

)
.
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the last inequality is true only if

ψ

(
ε

s2

)
= 0.

By properties of ψ, we conclude that ε = 0, which is a contradiction. So (xn) is cauchy. Since X is
complete, then there exists µ ∈ X such that xn −→ µ.
Also, the continuity of S implies that

Sµ = S( lim
n−→+∞

xn) = lim
n−→+∞

S(xn) = lim
n−→+∞

xn+1 = µ. (4.19)

Therefore µ is a fixed point of S in X .

The continuity condition in Theorem 4.3 can be dropped if we assume that X satisfies the following
conditions:
(i) if a nondecreasing sequence {xn} −→ µ in X , then xn � µ for all n ∈ N, i.e., µ = supxn.

Theorem 4.4. In Theorem 4.3 all conditions are satisfied except the continuity of S. If X satisfies the
condition (i), then a nondecreasing mapping S has a fixed point in X .

Proof. From Theorem 4.3, we take the same sequence {xn} in X such that x0 � x1 � ... � xn �
xn+1 � ..., that is, {xn} is nondecreasing and converges to some µ ∈ X . Thus from the hypotheses, we
have xn � µ, for any n ∈ N, implies that µ = supxn.
Next, we prove that µ is a fixed point of S in X , that is Sµ = µ. Suppose that Sµ 6= µ.
Let

M(xn, µ) = max
{
d(µ, Sµ)[1 + d(xn, Sxn)]

1 + d(xn, µ)
,
d(xn, Sµ) + d(µ, Sxn)

2s
,

d(xn, Sxn)d(xn, Sµ)

1 + d(xn, Sµ) + d(µ, Sxn)
, d(xn, µ)

}
.

Letting n −→ +∞ and from the fact that limn−→+∞ xn = µ, we get

lim
n−→+∞

M(xn, µ) = max
{
d(µ, Sµ),

d(µ, Sµ)

2s
0, 0
}
= d(µ, Sµ). (4.20)

We know that xn � µ for all n, then from contraction condition (3), we get

φ(d(xn+1, Sµ)) = φ(d(Sxn, Sµ)) ≤ φ(sd(Sxn, Sµ)) ≤ φ(M(xn, µ))− ψ(M(xn, µ)). (4.21)

Letting n −→ +∞. By (4.20), we get

φ(d(µ, Sµ)) ≤ φ(d(µ, Sµ))− ψ(d(µ, Sµ)) < φ(d(µ, Sµ)), (4.22)

which is a contradiction. Thus, Sµ = µ, that is S has a fixed point µ in X .

Theorem 4.5. In addition to the hypotheses of Theorem 4.3 (or Theorem 4.4), and adding this condition:
Every pair of elements has a lower bound or an upper bound. Then the fixed point of S is unique.

Proof. From Theorem 4.3 (or Theorem 4.4), we conclude that S has a nonempty set of fixed points.
Suppose that x∗ and y∗ be two fixed points of S. Then we claim that x∗ = y∗.
Suppose that x∗ 6= y∗. From the hypotheses we have

φ(d(Sx∗, Sy∗)) ≤ φ(sd(Sx∗, Sy∗)) ≤ φ(M(x∗, y∗))− ψ(M(x∗, y∗)). (4.23)
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where

M(x∗, y∗) = max
{
d(y∗, Sy∗)[1 + d(x∗, Sx∗)]

1 + d(x∗, y∗)
,
d(x∗, Sy∗) + d(y∗, Sx∗)

2s
,

d(x∗, Sx∗)d(x∗, Sy∗)

1 + d(x∗, Sy∗) + d(y∗, Sx∗)
, d(x∗, y∗)

}
= max

{
d(y∗, y∗)[1 + d(x∗, x∗)]

1 + d(x∗, y∗)
,
d(x∗, y∗) + d(y∗, x∗)

2s
,

d(x∗, x∗)d(x∗, y∗)

1 + d(x∗, y∗) + d(y∗, x∗)
,

d(x∗, y∗)

}
.

= max
{

0,
d(x∗, y∗)

s
, 0, d(x∗, y∗)

}
= d(x∗, y∗).

From (4.23), we obtain that

φ(d(x∗, y∗)) = φ(d(Sx∗, Sy∗)) ≤ φ(d(x∗, y∗))− ψ(d(x∗, y∗)) < φ(d(x∗, y∗)). (4.24)

which is a contradiction. Hence, x∗ = y∗. This completes the proof.
Let (X, d, s,�) be a partially ordered b-metric space with parameter s ≥ 1, and let
S, f : X −→ X be two mappings. Set

Mf (x, y) = max
{
d(fy, Sy)[1 + d(fx, Sx)]

1 + d(fx, fy)
,
d(fx, Sy) + d(fy, Sx)

2s
,

d(fx, Sx)d(fx, Sy)

1 + d(fx, Sy) + d(fy, Sx)
, d(fx, fy)

}
. (4.25)

Now, we introduce the following definition.

Definition 4.6. Let (X, d, s,�) be a partially ordered b-metric space with s ≥ 1. The mapping S :
X −→ X is called a generalized (φ, ψ)-contraction mapping with respect to f : X −→ X for some
φ ∈ Φ and ψ ∈ Ψ if

φ(sd(Sx, Sy)) ≤ φ(Mf (x, y))− ψ(Mf (x, y)), (4.26)

for any x, y ∈ X with fx � fy, where Mf (x, y) as given by (4.25).

Theorem 4.7. Suppose that (X, d, s,�) be a complete partially ordered b-metric space with
s ≥ 1. Let S : X −→ Xbe a generalized (φ, ψ)-contractive mapping with respect to
f : X −→ X . Assume the following hypotheses:
(1) f and S are continuous.
(2) S is a compatible with f .
(3) SX ⊆ fX .
(4) S is a monotone f -non decreasing mapping.
If for some x0 ∈ X such that fx0 � Sx0, then S and f have a coincidence point in X .

Proof. From (3) and (4), we construct two sequences {xn} and {yn} in X with

yn = Sxn = fxn+1, ∀n ≥ 0, (4.27)

such that
fx0 � fx0 � ... � fxn � fxn+1 � .... (4.28)

If yn = yn+1 for some n = 0, 1, 2, 3, . . .. Then yn = fyn = Syn, that is yn is a coincidence point of f
and S. So, we may assume that yn 6= yn+1 for all n = 0, 1, 2, 3, . . ..
Given n ∈ {0, 1, 2, 3, . . .}. Since yn = fxn+1 and yn+1 = fxn+2 are comparable, we have

φ(sd(yn, yn+1)) = φ(sd(Sxn, Syn+1)) ≤ φ(Mf (xn, xn+1))− ψ(Mf (xn, xn+1)), (4.29)
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where

Mf (xn, xn+1) = max
{

d(fxn+1,Sxn+1)[1+d(fxn,Sxn)]
1+d(fxn,fxn+1)

,

d(fxn,Sxn+1)+d(fxn+1,Sxn)
2s , d(fxn,Sxn)d(fxn,Sxn+1)

1+d(fxn,Sxn=1)+d(fxn+1,Sxn)
, d(fxn, fxn+1)

}
= max

{
d(yn,yn+1)[1+d(yn−1,yn)]

1+d(yn−1,yn)
,
d(yn−1,yn+1)+d(yn,yn)

2s ,

d(yn−1,yn)d(yn−1,yn+1)
1+d(yn−1,yn+1)+d(yn,yn)

, d(yn−1, yn)

}
≤ max

{
d(yn,yn+1)[1+d(yn−1,yn)]

1+d(yn−1,yn)
,
d(yn−1,yn)+d(yn,yn+1)

2 ,

d(yn−1,yn)d(yn−1,yn+1)
1+d(yn−1,yn+1)+d(yn,yn)

, d(yn−1, yn)

}
= max{d(yn−1, yn), d(yn, yn+1)}

Therefore from equation (4.29), we get

φ(sd(yn, yn+1)) ≤ φ(max{d(yn−1, yn), d(yn, yn+1)})− ψ(max{d(yn−1, yn), d(yn, yn+1)}). (4.30)

If 0 < d(yn−1, yn) ≤ d(yn, yn+1) for some n ∈ N, then (4.30) implies that

φ(d(yn, yn+1)) ≤ φ(sd(yn, yn+1)) ≤ φ(d(yn, yn+1))− ψ(d(yn, yn+1)) ≤ φ(d(yn, yn+1)). (4.31)

So, we conclude that
ψ(d(yn, yn+1)) = 0. (4.32)

Hence yn = yn+1, which is a contradiction. Hence from (4.30) we obtain that

{d(yn, yn+1) : n = 0, 1, 2, 3, ...} (4.33)

is a decreasing sequence. So, there exist t ∈ [0,+∞) such that

lim
n→+∞

d(yn, yn+1) = t.

Letting n→ +∞ in (4.31), we get
φ(t) ≤ φ(t)− ψ(t),

this is true only if ψ(t) = 0 and hence t = 0. Similar arguments to those given in Theorem 4.3, we
conclude that yn = {Sxn} = {fxn+1} is a Cauchy sequence in X . Since X is complete, then there
exists µ ∈ X such that

lim
n−→+∞

Sxn = lim
n−→+∞

fxn+1 = µ.

Thus by the compatibility of S and f , we obtain that

lim
n−→+∞

d(f(Sxn), S(fxn)) = 0. (4.34)

From the continuity of S and f , we have

lim
n−→+∞

f(Sxn) = fµ, lim
n−→+∞

S(fxn) = Sµ. (4.35)

Further by use of triangular inequality and from equations (4.34) and (4.35) , we get

1
s
d(Sµ, fµ) ≤ d(Sµ, S(fxn)) + sd(S(fxn), f(Sxn)) + sd(f(Sxn), fµ). (4.36)

Finally, we arrive at d(Sµ, fµ) = 0 as n −→ +∞ in (4.36). Therefore, µ is a coincidence point of S
and f in X .

The continuity of the functions f and S in Theorems 4.7 by adding another suitable conditions.
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Theorem 4.8. Assume all the hypotheses of Theorem 4.7 are satisfied, except the condition of the con-
tinuity of f and S. Also, suppose the following conditions:
(1) f(X) is a closed subspace of X .
(2) If limn−→+∞ fxn = fx, then fxn � f(x) ∀n ∈ N and fx � f(fx).
(3) S and f are weakly compatible.
If there exists x0 ∈ X such that fx0 � Sx0, then f and S have a coincidence point in X .
Furthermore, if S and f commute at their coincidence point, then S and f have a common fixed point.

Proof. Following the proof of Theorem 4.7 line by line, we construct the Cauchy sequence yn = Sxn =
fxn+1. Since fX is closed, then there is some µ ∈ X such that

lim
n−→+∞

Sxn = lim
n−→+∞

fxn = fµ.

Thus from the hypotheses, we have fxn � fµ for all n ∈ N. Now, we have to prove that µ is a
coincidence point of S and f . From equation (4.26), we have

φ(sd(Sxn, Sµ)) ≤ φ(Mf (xn, µ))− ψ(Mf (xn, µ)), (4.37)

where

Mf (xn, µ) = max
{
d(fµ, Sµ)[1 + d(fxn, Sxn)]

1 + d(fxn, fµ)
,
d(fxn, Sµ) + d(fµ, Sxn)

2s
,

d(fxn, Sxn)d(fxn, Sµ)

1 + d(fxn, Sµ) + d(fµ, Sxn)
, d(fxn, fµ)

}
−→ max

{
d(fµ, Sµ),

d(fµ, Sµ)

2s
, 0, 0

}
= d(fµ, Sµ), n −→ +∞.

By letting n→ +∞ in (4.37) we get

φ(sd(fµ, Sµ)) ≤ φ(d(fµ, Sµ))− ψ(d(fµ, Sµ)), (4.38)

which true only if ψ(d(fµ, Sµ)). Hence fµ = Sµ. So µ is a coincidence of f and S. Now, let
fµ = Sµ = ρ. Since f and S are commute at ρ, then Sρ = S(fµ) = f(Sµ) = fρ. From Condition
(2), we conclude that fµ � f(fµ) = fρ. So fµ and fρ. Thus quation (4.37) implies that

φ(sd(Sµ, Sρ)) ≤ φ(Mf (µ, ρ))− ψ(Mf (µ, ρ)). (4.39)

By simple calculation, we find Mf (µ, ρ) = d(Sµ, Sp). Thus (4.39) becomes:

φ(sd(Sµ, Sρ)) ≤ φ(d(µ, ρ))− ψ(d(µ, ρ)),

which is true only if ψ(d(µ, ρ)) = 0. Properties of ψ implies that Sµ = Sρ; that is, ρ is a common fixed
point of S and f .

Example 4.9. Define a metric d : X −→ X , where X = {0, 1, 1
2 , 1

3 , 1
4 , ........

1
n ,.....} with usual order ≤

is as follows

d(x, y) =


0 , if x = y,
1 , if x 6= y ∈ {0, 1}.
|x− y| , if x, y ∈ {0, 1

2n ,
1

2m : n 6= m ≥ 1},
5 , if otherwise.

A map S : X −→ X be such that S0 = 0, S 1
n = 1

10n for all n ≥ 1 and let φ(t) = t, ψ(t) = 3t
4 for

t ∈ [0,+∞). Then, S has a fixed point in X .

Proof. It is obvious that for s = 10
4 , (X, d, s,�) is a complete partially ordered b-metric space and also

by definition, d is discontinuous b-metric space. Now for x, y ∈ X with x < y, we have the following
cases:
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Case I: Let x = 0 and y = 1
n , n ≥ 1, we have two subcases:

Subcase 1: If n = 2t for some t ≥ 1, then d(Sx, Sy) = 1
10n and M(x, y) = 1

n . Therefore, we have

φ

(
10
4
d(Sx, Sy)

)
=

1
4n
≤ M(x, y)

4
= φ(M(x, y))− ψ(M(x, y)).

Subcase 2: if n = 2t− 1 for some t ≥ 1, then d(Sx, Sy) = 1
10n and M(x, y) = 5. Therefore, we have

φ

(
10
4
d(Sx, Sy)

)
≤ M(x, y)

4
= φ(M(x, y))− ψ(M(x, y)).

Case II: Let x = 1
m and y = 1

n with m > n ≥ 1, we have three cases:
Subcase 1: If n = 2t and m = 2k for t, k ≥ 1, then d(Sx, Sy) = 1

10n −
1

10m and d(x, y) = 1
n −

1
m ≤

M(x, y). Therefore, we have

φ

(
10
4
d(Sx, Sy)

)
=

1
4n
− 1

4m
≤ M(x, y)

4
= φ(M(x, y))− ψ(M(x, y)).

Subcase 2: if n = 2t− 1 and m = 2k− 1 for t, k ≥ 1, then d(Sx, Sy) = 1
10n −

1
10m and M(x, y) = 5.

Therefore, we have

φ

(
10
4
d(Sx, Sy)

)
=

1
4n
− 1

4m
≤ 5

4
=
M(x, y)

4
= φ(M(x, y))− ψ(M(x, y)).

Subcase 3: Similar to those arguments given in Subcase 2.
Hence, condition (3) of Theorem 4.3 and remaining assumptions are satisfied. Thus, S has a fixed point
in X .
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