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Abstract In this paper, we write the differential equations and harmonicity of involute of a
curve according to both Darboux and mean curvature vectors. In order to do these we make use
of a new method, that is, covariant derivative with respect to N . Consequently we obtain all
the characterizations of the involute curve in terms of the principal normal N and the Darboux
vector W of the main curve.

1 Introduction

To assign a relation between the invariants of a curve and characterizations of it in E3 and other
spaces is one of the main topics we encounter most widely among those of scholars particu-
larly interested in geometry. There are so many papers explaining the close relevance between
the characterizations and invariants of the curve pairs. We may recall some remarkable papers
catching our attention: Ferrandez et al.[2] studied curves whose mean curvature vector field is in
the kernel of certain elliptic differential operators. Bulca et al.[3] worked some characterizations
of involute of a given curve in Euclidean space. Arslan et al.[4] examined weak biharmonic
rotational surfaces on which parallel mean curvature vector field is weak biharmonic. Cakir and
Senyurt [5] focused on the characterization of involute of a curve by means of the unit Darboux
vector of the main curve. It is another interesting study on biharmonic curves that we may make
a classification,[6]. In this way we can call curves satisfying the condition that the Laplace im-
age of mean curvature is equal to zero as biharmonic, while some of them provided that the
Laplace image of mean curvature is equal to non-zero real constant λ times mean curvature may
be named as 1-type of harmonic. We use as a tool among many papers only some of them: Ko-
cayigit et al.[7] studied 1-type curves by using the mean curvature vector field of the curve itself.
They also studied the same topic by using the Darboux vector instead of mean curvature vector
field,[8]. We may also mention that Senyurt and Cakir[9] studied biharmonic curves whose mean
curvature vector field is the kernel of Laplace. Recently, Shaikh et. al.[10, 11, 12, 13, 14, 15]
initiated the study of surface curves in a different way, especially, rectifying, osculating and nor-
mal curves on a surface by considering isometry and conformal map between two surfaces and
investigated their invariancy under such maps. Throughout this work, we first take a unit speed
curve which we call main curve and then we write an involute of this curve. After that we give all
the characterizations of involute curve according to Darboux vector and mean curvature vector
of this curve itself. It follows that we make use of the relations between the Frenet frames of
involute curve and main curve. In this way we write all characterizations of involute curve in
terms of the main curve. Finally we give an example to support our assertions. Now let us recall
some basic concepts beginning with the Frenet-Serret formulas

T ′ = ϑκN, N ′ = −ϑκT + ϑτB , B′ = −ϑτN. (1.1)
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Frenet vectors T, N, B form a Frenet frame and every Frenet frame moves along a rotation axis
which is called a Darboux vector and given by

W = τT + κB, (1.2)

see [16].
Given that α is a differentiable curve with the unit tangent T and β is another differentiable
curve. β is called the involute of α on condition that the unit tangent T is perpendicular to the
tangent vector of β at the corresponding points of these curves. It is clear from this statement

β(s) = α(s) + λ(s)T (s) , λ(s) = c− s , c ∈ R. (1.3)

The relation between the Frenet vectors of α and β is

Tβ = N , Nβ =
−κT + τB√
κ2 + τ 2

, Bβ =
τT + κB√
κ2 + τ 2

· (1.4)

Also the relation between the curvatures of α and β is given as

κβ(s) =

√
κ2 + τ 2

λκ
, τβ(s) =

( τκ)
′κ

λ(κ2 + τ 2)
, (1.5)

see [16].
The mapping defined as follows along a differentiable curve α

∆ : χ⊥(α(I))→ χ(α(I)) , ∆H = −D2
TH (1.6)

is called a Laplace operator and also the mapping

∆
⊥
TX = −D⊥

TD
⊥
TX, ∀X ∈ χ⊥(α(I)) (1.7)

is called the normal Laplace operator, where H is mean curvature of α and D is Levi-Civita
connection, see [6].

Theorem 1.1. Let α be a unit speed curve with principal normal N and its involute curve is
denoted by β. Then we can give the covariant derivatives on the curve β w.r. to Levi-Civita
connection D as

DNT = κN, DNN = −κT + τB, DNB = −τN, (1.8)

see [1].

Theorem 1.2. Let α be a unit speed curve with the mean curvature vector H. Then the following
propositions hold.

i) If ∆H = 0 then α is a biharmonic curve.

ii) If ∆H = λH , then α is a 1-type of harmonic curve.

iii) If ∆⊥H = 0 then α is a weak biharmonic curve.

iv) If ∆⊥H = λH , then α is a 1-type of harmonic curve, provided that λ ∈ R− {0},

see [6].

Theorem 1.3. Let α be a general helix with the mean curvature vector H , then we can write
the differential equation of α w.r. to H

∆H + λ1DTH + λ2H = 0 (1.9)

with the coefficients λ1 = 3(
κ′

κ
) and λ2 =

κ′′

κ
− 3
(κ′
κ

)2 − (κ2 + τ 2), see [7].



594 Osman Çakır and Süleyman Şenyurt

Theorem 1.4. Let α be a differentiable curve with the Darboux vector W , then we can write
the differential equation of α w. r. to W

c1D
3
TW + c2D

2
TW + c3DTW + c4W = 0 (1.10)

with the coefficients c1 , c2 , c3 , c4

c1 = ϑ
(
κτ ′ − κ′τ

)2
, c2 =

(
ϑκ′′τ − ϑκτ ′′ − (ϑκτ ′ − ϑκ′τ)′

)(
κτ ′ − κ′τ

)
,

c3 =
(
κ′′′τ − κτ ′′′ + ϑ2(κτ ′ − κ′τ)(κ2 + τ 2)

)(
ϑκτ ′ − ϑκ′τ

)
+
(
ϑκ′′τ − ϑκτ ′′ − (ϑκτ ′ − ϑκ′τ)′

)(
κ′′τ − κτ ′′

)
,

c4 =
(
κ′τ ′′′ − κ′′′τ ′ − ϑ2(κκ′ + ττ ′)(κτ ′ − κ′τ)

)(
ϑκτ ′ − ϑκ′τ

)
+
(
ϑκ′′τ − ϑκτ ′′

−(ϑκτ ′ − ϑκ′τ)′(κ′τ ′′ − κ′′τ ′)
)
,

see [8].

Theorem 1.5. Let α be a differentiable curve with normal Darboux vector W⊥, then we can
write the differential equation of α w.r. to W⊥

λ2D
⊥
TD

⊥
TW

⊥ + λ1D
⊥
TW

⊥ + λ0W
⊥ = 0 (1.11)

with the coefficients λ0 , λ1 and λ2

λ0 = κ′
(
(ϑκτ)′ + ϑκ′τ

)
− ϑκτ

(
κ′′ − ϑ2κτ 2) ,

λ1 = −κ
(
(ϑκτ)′ + ϑκ′τ

)
and λ2 = ϑκ2τ ,

see [17].

2 Calculations of harmonicity and differential equations of involute of a
curve according to mean curvature and Darboux vector

It is worth noting at the beginning that throughout this study we use the Frenet elements given
in the set {T,N,B, κ, τ} for the curve α and {Tβ , Nβ , Bβ , κβ , τβ} for the curve β. We also ex-
press W,H to denote the Darboux vector and mean curvature vector of α and we use Wβ , Hβ

for the curve β. It is quite clear that ϑ =‖ d
dsβ(s) ‖.

We show that the Frenet formulas given in Theorem 1.1, that is, a new type of covariant deriva-
tive with respect to N , has a quiet appropriate practise through the Darboux vector W and mean
curvature vector H.

Theorem 2.1. Let α be a differentiable curve with principal normal N , Darboux vector W
and β is the involute of α. Then we can write the differential equation of the curve β with respect
to connection D as

ω1D
3
NW + ω2D

2
NW + ω3DNW + ω4W + ω5D

3
NN + ω6D

2
NN + ω7DNN + ω8N = 0

with the coefficients ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8

ω1 =
c1

λκ
,

ω2 = 3c1(
1
λκ

)′ +
c2

λκ
,
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ω3 = 3c1(
1
λκ

)′′ + 2c2(
1
λκ

)′ +
c3

λκ
,

ω4 = c1(
1
λκ

)′′′ + c2(
1
λκ

)′′ + c3(
1
λκ

)′ +
c4

λκ
,

ω5 =
c1ϕ

′

λκ
,

ω6 = 3c1(
ϕ′

λκ
)′ +

c2ϕ
′

λκ
,

ω7 = 3c1(
ϕ′

λκ
)′′ + 2c2(

ϕ′

λκ
)′ +

c3ϕ
′

λκ
,

ω8 = c1(
ϕ′

λκ
)′′′ + c2(

ϕ′

λκ
)′′ + c3(

ϕ′

λκ
)′ +

c4ϕ
′

λκ

and c1, c2, c3, c4

c1 =

(
κ2 + τ 2

(λκ)
3
2

(
κτ ′ − κ′τ
(κ2 + τ 2)

3
2

)′)2

,

c2 =

(
κτ ′ − κ′τ
κ2 + τ 2

(√κ2 + τ 2

λκ

)′′
−
√
κ2 + τ 2

( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′

+
(κ2 + τ 2

λκ

( κ′τ − κτ ′
(κ2 + τ 2)

3
2

)′ )′)(κ2 + τ 2

(λκ)2

( κτ ′ − κ′τ
(κ2 + τ 2)

3
2

)′)
,

c3 =

(
κτ ′ − κ′τ
λκ(κ2 + τ 2)

(√κ2 + τ 2

λκ

)′′′
−
√
κ2 + τ 2

λκ

( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′′

+
( κτ ′ − κ′τ
(κ2 + τ 2)

3
2

)′(
κ2 + τ 2)(κ2 + τ 2

(λκ)2 + (
κτ ′ − κ′τ
λκ(κ2 + τ 2)

)2
))(κ2 + τ 2

λκ

( κτ ′ − κ′τ
(κ2 + τ 2)

3
2

)′)

+

(
κτ ′ − κ′τ
κ2 + τ 2

(√κ2 + τ 2

λκ

)′′
−
√
κ2 + τ 2

( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′
+
(( κ′τ − κτ ′

(κ2 + τ 2)
3
2

)′ κ2 + τ 2

λκ

)′)

·
(

κτ ′ − κ′τ
λκ(κ2 + τ 2)

(√κ2 + τ 2

λκ

)′′
−
√
κ2 + τ 2

λκ

( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′)
,
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c4 =

((√κ2 + τ 2

λκ

)′( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′′
−
(√κ2 + τ 2

λκ

)′′′( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′

+
(κ′τ − κτ ′
κ2 + τ 2

( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)
−
√
κ2 + τ 2

(√κ2 + τ 2

λκ

)′′) ·
κ2 + τ 2

λκ

( κτ ′ − κ′τ
(κ2 + τ 2)

3
2

)′)(κ2 + τ 2

λκ

( κτ ′ − κ′τ
(κ2 + τ 2)

3
2

)′)

+

(
κτ ′ − κ′τ
κ2 + τ 2

(√κ2 + τ 2

λκ

)′′
−
√
κ2 + τ 2

( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′

+
(( κ′τ − κτ ′

(κ2 + τ 2)
3
2

)′ κ2 + τ 2

λκ

)′
·

(
(

√
κ2 + τ 2

λκ
)′
( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′′
− (

√
κ2 + τ 2

λκ
)′′
( κτ ′ − κ′τ
λκ(κ2 + τ 2)

)′))
.

Proof. From (1.10) we can write

cβ1D
3
Tβ
Wβ + cβ2D

2
Tβ
Wβ + cβ3DTβ

Wβ + cβ4Wβ = 0 (2.1)

with the coefficients cβ1 , cβ2 , cβ3 , cβ4

cβ1 = ϑ
(
κβ(τβ)

′ − (κβ)
′τβ

)2
,

cβ2 =
(
ϑ(κβ)

′′τβ − ϑκβ(τβ)′′ −
(
ϑκβ(τβ)

′ − ϑ(κβ)′τβ
)′)(

κβ(τβ)
′ − (κβ)

′τβ

)
,

cβ3 =
(
(κβ)

′′′τβ − κβ(τβ)′′′ + ϑ2(κβ(τβ)
′ − (κβ)

′τβ)((κβ)
2 + (τβ)

2)
)(
ϑκβ(τβ)

′ − ϑ(κβ)′τβ
)

+
(
ϑ(κβ)

′′τβ − ϑκβ(τβ)′′ − (ϑκβ(τβ)
′ − ϑ(κβ)′τβ)′

)(
(κβ)

′′τβ − κβ(τβ)′′
)
,

cβ4 =
(
(κβ)

′(τβ)
′′′ − (κβ)

′′′(τβ)
′ − ϑ2(κβ(κβ)

′ + τβ(τβ)
′)(κβ(τβ)

′ − (κβ)
′τβ)

)

(
ϑκβ(τβ)

′ − ϑ(κβ)′τβ
)

+
(
ϑ(κβ)

′′τβ − ϑκβ(τβ)′′ −
(
ϑκβ(τβ)

′ − ϑ(κβ)′τβ
)′(

(κβ)
′(τβ)

′′ − (κβ)
′′(τβ)

′)) .
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By making use of equalities (1.4) and (1.5) we can write equivalents of coefficients cβ1, cβ2, cβ3,
cβ4 and Wβ as c1, c2, c3, c4 and

Wβ =
1
λκ
W +

ϕ′

λκ
N.

Applying the formulas given in (1.8) we may write the counterparts of DTβ
Wβ , D

2
Tβ
Wβ , D

3
Tβ
Wβ

as in the following form:

DTβ
Wβ =

1
λκ
DNW + (

1
λκ

)′W +
ϕ′

λκ
DNN + (

ϕ′

λκ
)′N,

D2
Tβ
Wβ =

1
λκ
D2
NW + 2(

1
λκ

)′DNW + (
1
λκ

)′′W +
ϕ′

λκ
D2
NN + 2(

ϕ′

λκ
)′DNN + (

ϕ′

λκ
)′′N,

D3
Tβ
Wβ =

1
λκ
D3
NW + 3(

1
λκ

)′D2
NW + 3(

1
λκ

)′′DNW + (
1
λκ

)′′′W

+
ϕ′

λκ
D3
NN + 3(

ϕ′

λκ
)′D2

NN + 3(
ϕ′

λκ
)′′DNN + (

ϕ′

λκ
)′′′N .

Setting the equivalents of coefficients and derivatives with respect to N into the equ.(2.1) we get
desired result which completes the proof.

Theorem 2.2. Let α be a differentiable curve with principal normal N , Darboux vector W
and β is the involute of α. We can give the differential equation of β w.r. to normal connection

δ1D
⊥
ND

⊥
NW + δ2D

⊥
NW + δ3W = 0

with the coefficients δ1, δ2, δ3

δ1 =
(τ/κ)′

κλ3 ,

δ2 = 2
(τ/κ)′

λ2 (
1
λκ

)′ −
√
κ2 + τ 2

(λκ)2

(
(

(τ/κ)′κ

λ
√
κ2 + τ 2

)′ + (

√
κ2 + τ 2

λκ
)′
κτ ′ − κ′τ
κ2 + τ 2

)
,

δ3 =
(τ/κ)′

λ2 (
1
λκ

)′′ +
(
√
κ2 + τ 2)′

(λκ)2

(
(

(τ/κ)′κ

λ
√
κ2 + τ 2

)′ + (

√
κ2 + τ 2

λκ
)′
κτ ′ − κ′τ
κ2 + τ 2

)

− (τ/κ)′

λ2
√
κ2 + τ 2

(
(

√
κ2 + τ 2

λκ
)′′ − ((τ/κ)′)2κ3

λ(κ2 + τ 2)3/2

)
.
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Proof. It is obvious from equation (1.11) we can write

ϑ(κβ)
2τβD

⊥
Tβ
D⊥
Tβ
W⊥
β − κβ

(
(ϑκβτβ)

′ + ϑκ′βτβ
)
D⊥
Tβ
W⊥
β

+
(
κ′β((ϑκβτβ)

′ + ϑκ′βτβ)− ϑκβτβ(κ′′β − ϑ2κβ(τβ)
2)
)
W⊥
β = 0.

(2.2)

Since the counterparts of κβ , τβ are clear from (1.5) we look at the equivalents of W⊥
β , D

⊥
Tβ
W⊥
β

and D⊥
Tβ
D⊥
Tβ
W⊥
β referring the equalities (1.4) and (1.5) as follows

W⊥
β =

1
λκ
W, D⊥

Tβ
W⊥
β = (

1
λκ

)′W +
1
λκ
D⊥
NW and

D⊥
Tβ
D⊥
Tβ
W⊥
β =

1
λκ
D⊥
ND

⊥
NW + 2(

1
λκ

)′D⊥
NW + (

1
λκ

)′′W.

Writing the equivalents of coefficients of (2.2) with the use of (1.4) , (1.5) and then the derivatives
with respect to N into (2.2) we get desired result which completes the proof.

Theorem 2.3. Let β be an involute of a differentiable curve α. Then we can give the differential
equation w.r. to connection characterizing the curve β by means of the mean curvature vector
Hβ as follows

hβ1D
3
Tβ
Hβ + hβ2D

2
Tβ
Hβ + hβ3DTβ

Hβ + hβ4Hβ = 0 (2.3)

with the coefficients hβ1, hβ2, hβ3 and hβ4

hβ1 = −
(κβ
τβ

)′(
ϑ2κβτβ

)2
,

hβ2 = 3ϑ2κβτβ

(
ϑκβ(ϑκβ)

′
)′
− (ϑκβ)

2
(

2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)
′
)′
,

hβ3 =
(
ϑ4κ2

β

(
κ2
β + τ 2

β

)
− ϑκβ

(
ϑκβ

)′′ − 3
(
ϑκβ

(
ϑκβ

)′)′)(
2ϑτβ

(
ϑκβ

)′
+ ϑκβ

(
ϑτβ
)′)

+
(
ϑτβ
(
ϑκβ

)′′ − ϑ4κβτβ
(
κ2
β + τ 2

β

)
+
(

2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)
′
)′)(

3ϑκβ
(
ϑκβ

)′)
,

hβ4 =
(
ϑ4κ2

β

(
κ2
β + τ 2

β

)
− ϑκβ

(
ϑκβ

)′′ − 3
(
ϑκβ(ϑκβ)

′)′)
(
ϑτβ
(
ϑκβ

)′′ − ϑ4κβτβ
(
κ2
β + τ 2

β

)
− (ϑκβ)′

ϑκβ

(
2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)

′
))

+
(((

ϑκβ
)′′ − ϑ3κβ

(
κ2
β + τ 2

β

))′
− 3
(
ϑκβ

)2(
ϑκβ

)′ − 2
(
ϑτβ
)2(

ϑκβ
)′ − ϑ2κβτβ

(
ϑτβ
)′)

((κβ
τβ

)′
ϑ3κβτ

2
β

)
+
((
ϑτβ
(
ϑκβ

)′′ − ϑ4κβτβ
(
κ2
β + τ 2

β

)
+
(
2ϑτβ

(
ϑκβ

)′
+ ϑκβ

(
ϑτβ
)′)′)

(
ϑκβ

(
ϑκβ

)′′ − ϑ4κ2
β

(
κ2
β + τ 2

β

)
− 3
((
ϑκβ

)′)2
)
.
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Proof. From equ.(1.1) we have Hβ = ϑκβNβ . Taking the derivatives w. r. to Tβ we get

DTβ
Hβ = −ϑ2κ2

βTβ + (ϑκβ)
′Nβ + ϑ2κβτβBβ , (2.4)

D2
Tβ
Hβ =

(
− 3ϑκβ(ϑκβ)′

)
Tβ +

(
(ϑκβ)

′′ − (ϑκβ)
3 − ϑ3κβτ

2
β

)
Nβ

+
(
2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)

′)Bβ , (2.5)

D3
Tβ
Hβ =

(
ϑ4κ2

β(κ
2
β + τ 2

β)− ϑκβ(ϑκβ)′′ − 3
(
ϑκβ(ϑκβ)

′)′)Tβ
+
((

(ϑκβ)
′′ − ϑ3κβ(κ

2
β + τ 2

β)
)′ − 3(ϑκβ)2(ϑκβ)

′

−2(ϑτβ)2(ϑκβ)
′ − ϑ2κβτβ(ϑτβ)

′
)
Nβ

+
(
ϑτβ(ϑκβ)

′′ − ϑ4κβτβ(κ
2
β + τ 2

β) +
(
2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)

′)′)Bβ .
(2.6)

From equ.(2.4) and equ.(2.5) we can write the vectors Tβ and Bβ as

Tβ =
ϑτβ(ϑκβ)′′ − ϑ4κβτβ(κ2

β + τ 2
β)−

(ϑκβ)
′

ϑκβ

(
2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)′

)
(κβ

τβ
)′(ϑ2κβτβ)2 Hβ

+
2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)′

(κβ

τβ
)′(ϑ2κβτβ)2 DTβ

Hβ −
1

(κβ

τβ
)′(ϑ2κβτβ)

D2
Tβ
Hβ ,

Bβ =
ϑκβ(ϑκβ)′′ − ϑ4κ2

β(κ
2
β + τ 2

β)− 3((ϑκβ)′)2

(κβ

τβ
)′(ϑ2κβτβ)2 Hβ +

3ϑκβ(ϑκβ)′

(κβ

τβ
)′(ϑ2κβτβ)2DTβ

Hβ

− 1
(κβ

τβ
)′(ϑτβ)2D

2
Tβ
Hβ .

Putting the equivalents of vectors Tβ andBβ into the equ.(2.6) results the desired equation which
completes the proof.

Theorem 2.4. Let β be an involute of the curveα. Then we can give the differential equation
w. r. to connection characterizing the curve β by means of the mean curvature vector DNN as
follows

h4D
4
NN + h3D

3
NN + h2D

2
NN + h1DNN = 0

with the coefficients h1, h2, h3, h4
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h1 =
(κτ ′ − κ′τ)2

κ2 + τ 2

((κ2 + τ 2)3/2

κ′τ − κτ ′
)′
,

h2 = 3
κτ ′ − κ′τ√
κ2 + τ 2

(√
κ2 + τ 2

(√
κ2 + τ 2

)′)′ − (κ2 + τ 2)(2
κτ ′ − κ′τ
κ2 + τ 2

(√
κ2 + τ 2

)′
+
√
κ2 + τ 2

(κτ ′ − κ′τ
κ2 + τ 2

)′)′
,

h3 =
((
κ2 + τ 2)(κ2 + τ 2 + (

κτ ′ − κ′τ
κ2 + τ 2 )2

)
−
√
κ2 + τ 2

(√
κ2 + τ 2

)′′
−3
(√

κ2 + τ 2(
√
κ2 + τ 2)′

)′)(
2
κτ ′ − κ′τ
κ2 + τ 2 (

√
κ2 + τ 2)′ +

√
κ2 + τ 2

(κτ ′ − κ′τ
κ2 + τ 2

)′)
+
(κτ ′ − κ′τ
κ2 + τ 2 (

√
κ2 + τ 2)′′ − κτ ′ − κ′τ√

κ2 + τ 2

(
κ2 + τ 2 +

(κτ ′ − κ′τ
κ2 + τ 2

)2
)

+
(

2
κτ ′ − κ′τ
κ2 + τ 2 (

√
κ2 + τ 2)′ +

√
κ2 + τ 2(

κτ ′ − κ′τ
κ2 + τ 2 )′

)′)(
3
√
κ2 + τ 2(

√
κ2 + τ 2)′

)
,

h4 =
((
κ2 + τ 2)2

+
(κτ ′ − κ′τ)2

κ2 + τ 2 −
√
κ2 + τ 2(

√
κ2 + τ 2)′′ − 3

(√
κ2 + τ 2(

√
κ2 + τ 2)′

)′)
(κτ ′ − κ′τ
κ2 + τ 2

(√
κ2 + τ 2

)′′ − κτ ′ − κ′τ√
κ2 + τ 2

(
κ2 + τ 2 +

(κτ ′ − κ′τ
κ2 + τ 2

)2
)

−(
√
κ2 + τ 2)′√
κ2 + τ 2

(
2
κτ ′ − κ′τ
κ2 + τ 2

√
κ2 + τ 2

′
+
√
κ2 + τ 2

(κτ ′ − κ′τ
κ2 + τ 2

)′))
+
((

(
√
κ2 + τ 2)′′ −

√
κ2 + τ 2

(
κ2 + τ 2 + (

κτ ′ − κ′τ
κ2 + τ 2 )2))′ − 3(κ2 + τ 2)(

√
κ2 + τ 2)′

−2
(κτ ′ − κ′τ
κ2 + τ 2

)2
(
√
κ2 + τ 2)′ − κτ ′ − κ′τ√

κ2 + τ 2

(κτ ′ − κ′τ
κ2 + τ 2

)′)(
(
(κ2 + τ 2)3/2

κτ ′ − κ′τ
)′
(κτ ′ − κ′τ)2

(κ2 + τ 2)3/2

)
+
(κτ ′ − κ′τ
κ2 + τ 2 (

√
κ2 + τ 2)′′ − κτ ′ − κ′τ√

κ2 + τ 2

(
κ2 + τ 2 +

(κτ ′ − κ′τ
κ2 + τ 2

)2
)

+
(

2
κτ ′ − κ′τ
κ2 + τ 2 (

√
κ2 + τ 2)′ +

√
κ2 + τ 2

(κτ ′ − κ′τ
κ2 + τ 2

)′)′)(√
κ2 + τ 2(

√
κ2 + τ 2)′′

−
(
κ2 + τ 2)2 − (κτ ′ − κ′τ)2

κ2 + τ 2 − 3
(
(
√
κ2 + τ 2)′

)2
)
.

Proof. We can make use of equ.(1.4) and also equ.(1.8) in order to write the equivalents of
derivatives D3

Tβ
Hβ , D

2
Tβ
Hβ , DTβ

Hβ with respect to N . It follows that

Hβ = DTβ
Tβ = DNN, DTβ

Hβ = D2
NN, D

2
Tβ
Hβ = D3

NN and D3
Tβ
Hβ = D4

NN.

By the same method from equ.(1.5) we can write the counterparts of coefficients hβ1, hβ2, hβ3
and hβ4 as h1, h2, h3 and h4.

Setting the equivalents of coefficients and derivatives with respect to N into the equ.(2.3) we
get desired result which completes the proof.
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Theorem 2.5. Let β be an involute of αwith the mean curvatureHβ . According to connection,
harmonicity ( biharmonic or 1-type harmonic) of the curve β can be expressed through the Frenet
elements of α as

1. Involute curve β is biharmonic if

κ
(√
κ2 + τ 2

)′′
√
κ2 + τ 2

−κ
(
κ2+τ 2+

(κτ ′ − κ′τ
κ2 + τ 2

)2
)
−2τ

(κτ ′ − κ′τ)(
√
κ2 + τ 2)′

(κ2 + τ 2)3/2 −τ
(κτ ′ − κ′τ
κ2 + τ 2

)′
= 0 ,

τ
(
κ2+τ 2+

(κτ ′ − κ′τ
κ2 + τ 2

)2
)
− τ(
√
κ2 + τ 2)′′√
κ2 + τ 2

−2κ
(κτ ′ − κ′τ)(

√
κ2 + τ 2)′

(κ2 + τ 2)3/2 −κ
(κτ ′ − κ′τ
κ2 + τ 2

)′
= 0 ,

and κκ′ + ττ ′ = 0.

2. Involute curve β is 1-type of harmonic if

κ
(√
κ2 + τ 2

)′′
√
κ2 + τ 2

− κ
(
κ2 + τ 2 +

(κτ ′ − κ′τ
κ2 + τ 2

)2
)
− 2τ

(κτ ′ − κ′τ)(
√
κ2 + τ 2)′

(κ2 + τ 2)3/2

−τ
(κτ ′ − κ′τ
κ2 + τ 2

)′
= −λκ,

τ
(
κ2 + τ 2 +

(κτ ′ − κ′τ
κ2 + τ 2

)2
)
− τ(

√
κ2 + τ 2)′′√
κ2 + τ 2

− 2κ
(κτ ′ − κ′τ)(

√
κ2 + τ 2)′

(κ2 + τ 2)3/2

−κ
(κτ ′ − κ′τ
κ2 + τ 2

)′
= λτ,

and κκ′ + ττ ′ = 0 , λ ∈ R .

Proof. From equ.(2.5) we have

∆Hβ = 3ϑκβ(ϑκβ)′Tβ +
(
(ϑκβ)

3 − (ϑκβ)
′′ + ϑ3κβτ

2
β

)
Nβ

−
(
2ϑτβ(ϑκβ)′ + ϑκβ(ϑτβ)

′)Bβ
Taking the equations (1.4) and (1.5) together into consideration we get

∆DNN =

(
κ
(√
κ2 + τ 2

)′′
√
κ2 + τ 2

− κ
(
κ2 + τ 2 + (

κτ ′ − κ′τ
κ2 + τ 2 )2

)
− 2τ

(κτ ′ − κ′τ)(
√
κ2 + τ 2)′

(κ2 + τ 2)3/2

−τ
(κτ ′ − κ′τ
κ2 + τ 2

)′)
T +

(√
κ2 + τ 2(

√
κ2 + τ 2)′

)
N +

(
− κ
(κτ ′ − κ′τ
κ2 + τ 2

)′
+τ
(
κ2 + τ 2 +

(κτ ′ − κ′τ
κ2 + τ 2

)2
)
− τ(

√
κ2 + τ 2)′′√
κ2 + τ 2

− 2κ
(κτ ′ − κ′τ)(

√
κ2 + τ 2)′

(κ2 + τ 2)3/2

)
B.

If we consider the case ∆DNN = 0 from (i) of Theorem 1.2 we obtain that the first
proposition holds. By the same way if we consider the case ∆DNN = λDNN from (ii) of
Theorem 1.2 second proposition also holds.
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Corollary 2.6. Let β be an involute of α. If α is a general helix then β is biharmonic with respect
to connection.

Proof. If α is a general helix then we have τ/κ = const. First derivative of this equality is

κτ ′ − κ′τ = 0 =⇒ κ

τ
=
κ′

τ ′
= const.

From Theorem 2.5 we write√
κ2 + τ 2

′√
κ2 + τ 2 = 0 =⇒ κκ′ + ττ ′ = 0

=⇒ κ

τ
=
κ′

τ ′
= const.

Again from Theorem 2.5 taking the equality κ/τ = const into account we get

κ
((√κ2 + τ 2)′′√

κ2 + τ 2
− (κ2 + τ 2)

)
= 0 and − τ

((√κ2 + τ 2)′′√
κ2 + τ 2

− (κ2 + τ 2)
)
= 0.

This system yields that

(
κ− τ

)((√κ2 + τ 2)′′√
κ2 + τ 2

− (κ2 + τ 2)
)
= 0

and we obtain κ/τ = const. Hence the condition ∆DNN = 0 is satisfied.

Corollary 2.7. Let β be an involute of α. If α is a circular helix then β is 1-type of harmonic
with respect to connection.

Proof. If α is a circular helix then we have κ = const and τ = const. From theorem we have
−κ(κ2 + τ 2) = −λκ and τ(κ2 + τ 2) = λτ . If we consider the case ∆DNN = λDNN , it is
clear that the involute curve β is of 1-type harmonic provided λ = κ2 + τ 2.

Example 2.8. Given that the curve α(s) = 1√
2
(coss, sins, s) be a circular helix. It is plain to

write the involute curve β(s) as

β(s) = 1√
2
(coss− (c− s)sins, sins+ (c− s)coss, c) , c ∈ R.

It follows that Wβ = (
√

2
λ )W and Hβ = 1√

2
(−T +B) = DNN.

Taking the above theorems into account we can write the characterizations of the curve β through
the Frenet elements of α in the following cases.

i) DN (
1
λ
W )− 1

λ
DNW − (

1
λ
)′W = 0 ,

ii) D⊥
N (

1
λ
W )− 1

λ
D⊥
NW − (

1
λ
)′W = 0 ,

iii) D3
NN +DNN = 0 .

Conclusion Writing differential equations and defining the harmonicity of a curve in Euclidean
space are well known. From this point of view, by taking the advantage of properties of con-
nected curves we derive the necessary conditions and also clarify the differential equations of
involute of a curve in terms of the Frenet apparatus of the main curve. We wish this work inspire
the scholars to make scientific studies in non-Euclidean spaces.



Calculations of Harmonicity and Diff. Equations of Involute Curve 603

References
[1] O. Çakır and S. S. enyurt, Harmonicity and Differential Equation of Involute of a Curve in E3, Thermal

Science, 23(6), 2119–2125 (2019).

[2] A. Ferrandez, P. Lucas and M. A. Merono, Biharmonic hopf cylinders, Rocky Mountain Journal of Maths.,
28(3), 957–975 (1998).

[3] B. Bulca, K. Arslan and G. Ozturk, A characterization of involutes and evolutes of a given curve in En,
Kyungpook Math. J., 58, 117–135 (2018).

[4] M. Harmanli, K. Arslan and B. Bulca, On weak biharmonic generalized rotational surface in E4, Journal
of Universal Mathematics, 2(2), 166–174 (2019).

[5] O. Çakır and S. S. enyurt, Calculation of the differential equations and harmonicity of the involute curve
according to unit Darboux vector with a new method, Turkish Journal of Science, 5(2), 62–77 (2020).

[6] B. Y. Chen and S. Ishikawa, Biharmonic Surface in Pseudo-Euclidean Spaces, Mem. Fac. Sci. Kyushu
Univ.Ser.A, 45(2), 323–347 (1991).

[7] H. Kocayigit and H. H. Hacisalihoglu, 1-Type curves and biharmonic curves in Euclidean 3-space, Int.
Elect. Journ. of Geo., 4(1), 97–101 (2011).

[8] K. Arslan, H. Kocayigit and M. Onder, Characterizations of Space Curves with 1-type Darboux Instanta-
neous Rotation Vector, Commun. Korean Math. Soc., 31(2), 379–388 (2016).

[9] S. S. enyurt and O. Çakır, Differential Equations for a Space Curve According to the Unit Darboux Vector,
Turk. J. Math. Comput. Sci., 9(1), 91–97 (2018).

[10] A. A. Shaikh and P. R. Ghosh, Rectifying curves on a smooth surfaces immersed in the Euclidean space,
Indian J. Pure Appl. Math., 50(4), 883–890 (2019).

[11] A. A. Shaikh and P. R. Ghosh, Rectifying and Osculating curves on a smooth surface, Indian J. Pure Appl.
Math., 51(1), 67–75 (2020).

[12] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Conformal image of an osculating curves on a smooth im-
mersed surface, J. Geom. Phy., 151, (2020).

[13] A. A. Shaikh and P. R. Ghosh, Curves on a smooth surface with position vectors lie in the tangent plane,
Indian J. Pure Appl. Math., 51(3), 1097–1104 (2020).

[14] Shaikh, A. A., Lone, M.S. and Ghosh, P. R., Normal curves on a smooth immersed surface, Indian J. Pure
Appl. Math., 51(4) (2020), p. 1343–1355.

[15] A. A. Shaikh, M. S. Lone and P. R. Ghosh, Rectifying curves under conformal transformation, J. Geom.
Phy., 163, (2021).

[16] A. Sabuncuoglu, Diferensiyel Geometri, Nobel Akademik Yayincilik, Ankara, (2014).

[17] H. Kocayigit, M. Önder and H. H. Hacisalihoglu, Harmonic 1-type Curves and Weak Biharmonic Curves
in Lorentzian 3-space, An Alele Stiintifice Ale Universitatii "Al.I. Cuza" Din Iasi(S.N.) Matematica, Tomul
LX, 60(1), 109–124 (2014).

Author information
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