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Abstract The analytical study of heat transfer and on the other hand flow of MHD micro-
polar nano fluid, which is affected by thermal radiation in a magneto porous wall channel, is
presented. Equations governing the momentum and energy mechanics are transformed to dif-
ferentials of nonlinear ordinary equations with the appropriate boundary conditions adopting the
similarity transformation technique. The differentials of non-linear ordinary equations (ODE)
are solved analytically using HPM method. Several significant parameters such as the nano fluid
concentration, the micro-polar parameter, the radiation parameter on the temperature and veloc-
ity profiles and magnetic parameter are investigated. Moreover, figures illustrate what the actual
Nusselt number is.

1 Introduction

In the bid to describe the fluid with rotating micro-particles, the theory of micro-polar fluid was
developed from past decades. The fluid with both the components rotational motion and the
macroscopic velocity field are called micro-polar fluid. These fluids such as blood flows, bubbly
liquids and Ferro-fluids consist of components that are suspended in the fluid especially viscous
fluid. In addition, these fluids have many applications in industrial products such as colloidal
expansions, polymer solutions, biological structures and lubricant fluids.

Firstly, Eringen [1] formulated the theory of micro-polar fluids in 1966 and presented bound-
ary conditions and governing equations. These equations were solved by considering the ther-
modynamic limitations. The blood flow can be formulated by using this model as micro rotations
and these types of fluids [2]. Beside the numerus researches in the field of micro-polar fluids,
there is need of some needs in this field [3, 4]. Flow of these fluids, where flat plate is consid-
ered, was studied in [5], Rees and Bassom [6]. There are several researches in these field which
studied this theory and addressed several questions [7–12].

In terms of solving nonlinear differential equations governing on natural phenomena, several
analytical methods were developed in last decades [13-20]. The coupled nonlinear ODE was
solved utilizing HPM [21-26]. The efficient parameters in these phenomena are Peclet number,
the Reynolds number and angular velocity which have significant impact on stream function and
negligible impact on temperature and concentration fields.

Problem of MHD, where natural convection layer on the boundary flow is considered near
the vertical surface, was investigated in [27]. He transformed governing equation to dimension-
less form by applying stream function formulations and solved it numerically. He showed the
micro-polar and the magnetic parameters do not affect heat transfer. Srinivasacharya et al. [28]
investigated the heat transfer and the entropy generation of micro-polar fluid movement in a mag-
netic annulus field. The equations were derived by utilizing Chebyshev spectral collocation. He
showed that the inner cylinder has the highest entropy generation and the outer cylinder has the
minimum entropy generation. The numerical investigation on the non-uniform heat effects on
convective MHD non-porous flow was studied by Mabood et al. [29]. They revealed the velocity
profile reduces as the magnetic factor increases. They also proved that in this case concentration
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and the temperature rise.
There are also numerous investigations on heat transfer effect parameters in diverse aspects.

The thermal conductivity in the nano fluid is more in comparison with the normal fluid because
of the metallic nanoparticles which are suspended in the fluid. Ellahi et al. [30] studied the
particle shape impacts on the mixed convection nano fluid flow over the porous medium wedge.
The authors in [31] studied the force heat transfer and laminar nano fluid flow through a wavy
channel and the impact of Nusselt number on the Reynolds number was shown in their study.
Ellahi et al. [32] examined the same problem as [31] in the vicinity of a mixed convection
and a stagnation point flow in the two-dimensional coordinate system. They showed the radius
of gyration, chemical dimensions and volume friction increase when the temperature of nano
fluid elevate up and the nano fluid velocity decrease by increasing fractal dimensions and the
concentration of particle volume fraction. Moreover, numerous publications investigated the
effect of using nanoparticles since recent years [32-40] and see also for some works in [41-45].

2 Problem description

In this section, two-dimensional laminar fluid flowing steadily in a porous wall channel
with magnetic impact is considered. It is assumed that the input speed and output speed of
fluid are the same v0, the temperature of bottom wall is T1, and the temperature of top wall is
T2. As it can be seen in Figure 1, channel wall’s surface is perpendicular to y-axis, or more
precisely at y = ±h. We assume that the nano fluid studied in this problem is Newtonian and
more importantly compressible. Moreover, sticking velocity is assumed during fluid flow and the
nano mix is in thermal equilibrium, i.e., there is thermal equilibrium between the nanoparticles
and base fluid.

Figure 1. Physical model of laminarmicro-polar nano fluid flow

The general form of the basic equations for energy and conservative momentums is reformu-
lated as follows:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

ρnf

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ (µnf + k)

(
∂2u

∂x2 +
∂2u

∂y2

)
+ k

∂N

∂y
− σfB

2
0u, (2.2)

ρnf

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂x
+ (µnf + k)

(
∂2v

∂x2 +
∂2v

∂y2

)
− k

∂N

∂x
, (2.3)

ρnf j

(
u
∂N

∂x
+ v

∂N

∂y

)
= −k

(
2N +

∂u

∂y
− ∂v

∂x

)
+ γnf

(
∂2N

∂x2 +
∂2N

∂y2

)
, (2.4)



606 Akinshilo, Davodi, Rezazadeh and Tunç

u
∂T

∂x
+ v

∂T

∂y
=

knf
(ρCp)nf

(
∂2T

∂x2 +
∂2T

∂y2

)
− 1

(ρCp)nf

∂qrad.
∂y

, (2.5)

where P,B0, u, v, T, σf , N, k, j, qrad and γnf are the pressure, the magnetic field, the velocity
in the x direction velocity, y direction velocity, the temperature, the electric conductivity of the
fluid, the micro-rotation velocity, the viscosity of vortex, the spin-gradient viscosity, the radiative
heat flux and the micro-inertia γnf = −(µnf −+k

2 )j, respectively. Rosseland approximation is
considered for radiation:
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(
4σ∗/3k∗nf

) ∂T 4

∂y
, (2.6)

where σ∗ is the Stefan–Boltzmann constant, while the constant k∗nf is the coefficient of absorp-
tion of the nano fluid. More so, flow temperature variation is a function of distance. Therefore
T 4 is expanded adopting the Taylor series. By ignoring higher order terms, we expand T 4 about
T∞:

T 4 ∼= 4T 3
∞T − 3T 4

∞. (2.7)

Eq. (5) is rewritten:
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Note that ρnf , µnf , are the density effective and the dynamic viscosity effective, while (ρCp)nf
and knf are the capacitance of heat and the nano fluid thermal conductivity. Some of these
parameters are presented for copper and water in Table 1.

ρ
(
Kg/m3

)
Cp (J/KgK) K (w/mk)

Copper (Cu) 8933 385 401
Water 997.1 4179 0.613

Table 1. The rmophysical properties of nanofluid (see [33])

The boundary conditions for Eq. (8) are given as follows:

u = 0, v = −v0, N = −s ∂u
∂y

∣∣∣∣
y=−h

T = T1, at y = −h,

(2.10)

u = 0, v = v0, N = −s ∂u
∂y

∣∣∣∣
y=+h

T = T2, at y = +h,

where s demonstrates the microelements’ rotational factor close to walls. If s = 0, then there
is no microelements rotation near the walls and concentrated particle flows is occurred. Weak
concentration and the turbulent flow are occurred if s = 0.5 and s = 1, respectively.The suction
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and injection are occurred if v0 > 0 and v0 < 0, respectively. The dimensionless parameters are
presented as follows:
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h
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h2 g (η) ,

(2.11)

v = v0, f (η) , θ = (T − T1) / (T2 − T1) , T2 = T1 +Ax.

From above the coupled system of nonlinear equations, it is achieved by substituting above
equations into the equations (1-5) and then removing the pressure gradient:(

1 + (1 − φ)
2.5
K
)
f iv)− (1 − φ)

2.5
Kg′′

(2.12)

−
(

1 − φ+ ρs
ρf
φ
)
(1 − φ)

2.5
Re (ff ′′′ − f ′f ′′)− (1 − φ)

2.5
Mnf ′′ = 0,

(
1 +

(1 − φ)
2.5

2
K

)
g′′ + (1 − φ)

2.5
K (f ′′ − 2g)

(2.13)

−
(

1 − φ+
ρs
ρf
φ

)
(1 − φ)

2.5
Re (fg

′ − gf ′) = 0,

θ′′ +

(
(1 − φ) +

(ρCp)s
(ρCp)f

φ

)(
3N

3N + 4

)
kf
knf

PrRe (f
′θ − fθ′) = 0. (2.14)

The boundary condition is presented by:

f (−1) = −1, f ′ (−1) = 0, f (+1) = 1, f ′ (+1) = 0,

g (−1) = 0, g (+1) = 0, (2.15)

θ (−1) = 0, θ (+1) = 1.

Where K and Pr are the micropolar parameter and Prandtl number, while Re, N and Mn are
the Reynolds number, the radiation parameter and the magnetic parameter, respectively. These
numbers can be presented as follows:
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2
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The suction and the injection will be occurred if Re > 0 and Re < 0, respectively. The Nusselt
number (Nu∗) is another considerable parameter of this study:
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From Equations (9) and (11), we can write:
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3 Analytical solution of problem

In this section the transport and heat transport of micropolar fluid through penetrable wall con-
sidering thermal radiation and magnetic field is studied utilizing HPM. The principles and fun-
damentals of the HPM, an approximate method of analytical solution has been extensively de-
scribed by J.H. He [21-22]. The HPM been an analytical method with fast rate of convergence,
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coupled with procedural stability is the selected method adopted to generate solution to the sys-
tem of coupled higher order differentials. Therefore, constructing the homotopy the governing
equations Eqs. (12)- (14) are expressed as follows:
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Note that, by taking power series of velocity and similarly temperature fields, we obtain the
following equations:

f = P 0f0 + P 1f1 + P 2f2 + ..., (3.4)

g = P 0g0 + P 1g1 + P 2g2 + ..., (3.5)

θ = P 0θ0 + P 1θ1 + P 2θ2 + .... (3.6)

Substituting Eq. (22) into (19) and selecting at the various order yields
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Similar to above, by utilizing (23) in (20), we have

p0 :
d2g
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Similarly, from (24) and (21), we conclude that
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Leading order boundary condition can be written as follows:

f0(−1) = −1,
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Similarly, for the function g(.), we have
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The boundary condition is presented as
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Note that, the boundary condition here is represented as

g1(−1) = 0, g1(1) = 0. (3.23)
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Using (41) in (29), we obtain
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Similar to above, we have

θ1(−1) = 0, θ1(1) = 1, (3.25)
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The coefficient of p2 in f(η), g(η) and θ(η) in Eqs.(27), (29) and (32) are too heavy to write in
this article. Therefore, we present and show these functions graphically in the results and the
following table. Therefore, flow and heat transfer are presented as follows:

f(η) = f0(η) + f1(η) + f2(η), (3.27)

g(η) = g0(η) + g1(η) + g2(η), (3.28)

θ(η) = θ0(η) + θ1(η) + θ2(η). (3.29)

These problems were solved numerically using finite element numerical method (FEM) by
Takhar et al. [34] and approximately using the Duan-Rach approach (DRA) by Ganji et al
[35]. We validate our result with these methods. There is a precise agreement as those have been
showed in Tables 2 and 3.

R FEM HPM FEM HPM FEM HPM FEM HPM
Re=-5 Re=-5 Re=-1 Re=-1 Re=1 Re=1 Re=5 Re=5

5 3.12232 3.1231 3.15858 3.1487 3.17854 3.1673 3.22218 3.2163
10 4.81237 4.8034 4.86364 4.8372 4.89095 4.8756 4.94897 4.9352

Table 2. Comparison of values for g′(1) with the numerical result

R DRA HPM DRA HPM DRA HPM DRA HPM
Re=-5 Re=-5 Re=-1 Re=-1 Re=1 Re=1 Re=5 Re=5

5 3.126127 3.1231 3.15933 3.1487 3.17779 3.1673 3.218511 3.2163
10 4.817155 4.8034 4.86459 4.8372 4.88999 4.8756 4.944212 4.9352

Table 3. Comparison of values for g′(1) with the Duan-Rach approach (DRA)
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4 Results and Discussion

Here, the influences of several characteristics (magnetic parameter (Mn), nanoparticle con-
centration, Reynold parameter and micro-polar parameter) on the velocity profile, micro rotation
profile and thermal profile are presented.

In Figure 2, the impacts of the micro-polar parameter on the flow and micro rotation dis-
tribution are illustrated. With numeric enhancement of the micro-polar parameter, the velocity
distribution and the momentum boundary layer thickness reduce to η = 0. For η > 0, this ex-
perience is a reverse trend and the velocity of micro-polar fluid (K > 0) is higher than viscous
fluids (K = 0). In addition, from the η = −1 (the lower plate level) to η = 0 (middle of the
channel), the micro-rotation is unsupported by the micro-elements which are derived from the
bottom plate, so the micro-rotation distribution is improved by growing the micro-polar param-
eter. On the other hand, from the middle of the channel to upper plate (η = 0 to η = 1), when
the micro-polar parameter increases, micro-rotation profile is reduced. In terms of dominant
concentration, the microelements which are near the walls do not able to rotate, so there are no
plate’s micro-rotation.

The Figure 3 illustrates the influence of magnetic field applied constantly on the flow, micro-
rotation and the temperature functions. As presented graphically in Figure 3-a, with the quan-
titative increase of the magnetic parameter, the velocity distribution near the lower plate is en-
hanced while near the top plate decreases. In addition, the micro-rotation near the bottom plate
has positive value. On the other hand, the opposite rotation occurs near the top plates which
means the micro-rotation has negative value near the top plate. In this research, the dominant
microelements concentration is assumed which implies there is no micro-rotation of the plates.
The increase of magnetic field strength reduces the angular micro-rotation which is illustrated in
Figure 3-b. Finally, the temperature distribution and the thickness of the thermal boundary layer
are slightly reduced by increasing magnetic field strength, Figure 3.c.

The impact of Reynolds number on the velocity and temperature profiles is illustrated in Fig-
ure 4. Figure 4.a shows that by numeric increase of the Reynolds number the velocity distribution
close to the bottom plate is increased but it is decreased close the top plate. Figure 4.b reveals
that temperature profile and the thickness of thermal boundary layer enhances by increasing the
η from -1 to 0, while for η from 0 to 1, those reduce. In addition, the impact of the Reynolds
number on temperature profiles in middle of channel is maximum while the Reynolds number
has not influence on temperature profiles in vicinity of bottom or top walls.

Figure 2. Effect of micro-polar parameter on a: velocity profile and b: on micro rotation profile.
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Figure 3. Effect of magnetic parameter on a: velocity profile, b: micro rotation profile and c:
thermal profile.

Figure 4. Effect of Reynolds number on a: velocity profile and b: on the thermal profile

In Figure 5, influence of nanoparticle concentration on velocity profile, micro rotation profile
and thermal profile are illustrated. Figure 5.a shows, although nanoparticle concentration has
not significant impact on the velocity profile, the amount of velocity for higher nanoparticle
concentration is greater. In addition, Figure 5.b present from the η = −1 (the lower plate
level) to η0 (middle of the channel), the micro-rotation has greater value for higher nanoparticle
concentration, while for η = 0 to η = 1, it reduces when nanoparticle concentration increases.
Finally, from Figure 5.c it can be observed that temperature profile and the thermal boundary
layer thickness heighten by increasing the η from -1 to 0, while for η from 0 to 1, those decrease.
Moreover, influence of the nanoparticle concentration on temperature profiles in the middle of
channel is increased by greater value of nanoparticle concentration.
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Finally, in Figure 6 the influence of nanoparticle concentration and micropolar parameter on
the Nusselt number are depicted. Figure 6.a shows the Nusselt number is decreased by increasing
the nanoparticle concentration from bottom wall to middle of channel while it is inverse for
middle of channel to top wall. The Nusselt number is decreased by increasing the micropolar
parameter which is presented in Figure 6.b.

Figure 5. Effect of nanoparticle concentration on a: velocity profile, b: micro rotation profile
and c: thermal profile

Figure 6. Impact of a: nanoparticle concentration and b: micro polar parameter on Nusselt
number
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5 Conclusion

This study considers the mass and heat transfer flow of MHD micro-polar Nano-fluid flow
through the porous wall channel under the influence of thermal radiation and magnetic field. This
was investigated utilizing the homotopy perturbation method. The comparison between HPM
method, finite element numerical method and Duan-Rach approach illustrated the precise of our
study. The influences of several characteristics (magnetic parameter, nanoparticle concentration,
Reynold parameter and micro-polar parameter) on the velocity profile, micro rotation profile
and thermal profile were presented. The results showed that when the micro-polar parameter
increases, temperature profile rises slightly. Moreover, when the Nusselt number increased,
concentration of nanofluid volume and radiation parameter increased.
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