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Abstract The blur removal is an important problem in signal and image processing applica-
tions for computing faithful representation of an original scene from a blurred noisy image. The
specific structure of the blurring matrices depends on boundary conditions. When zero boundary
conditions are used, then coefficient matrix is a Toeplitz matrix. If the periodic boundary con-
ditions are used, then coefficient matrices become circulant matrices. The blurring matrices ob-
tained by using Neumann boundary conditions are Toeplitz-plus-Hankel matrices. In this paper,
we formulate deblurring problem by using Truncated Singular Value Decomposition (TSVD)
and Discrete Wavelet Transform (DWT) method and estimating regularization parameter when
generalized cross-validation is used. Finally, we demonstrate the efficiency of our approximation
in a DWT method by numerical experiments.

1 Introduction

In signal and image processing the problem of deblurring is to recover f from the blurred func-
tion g. This basic problem appears in many forms in signal and image processing [1, 2, 3]. Image
restoration is the process of reconstructing an image of an unknown scene from an observed im-
age but blurred image, which is often modeled as

g = Kf + η (1.1)

where f is a vector representing the true image, vector η represents additive noise and g stands for
the blurred noisy image. K is an blurring matrix constructed from a point spread function (PSF),
which specifies how points in the image are distorted. A blur is said to be spatially invariant if
every position in the image domain gets blurred by the same PSF and spatially variant if different
positions are governed by different PSFs. The spatially invariant blur occurs most frequently in
applications [3]. Because the blurring model is a convolution, g is not only determined by f , but
also the values of f outside the domain where g is defined. Thus in solving f from g, we need
some assumptions on the data outside the boundary, called boundary conditions. The structure
of the blurring matrix K depends on the boundary conditions [4].

The zero (Dirichlet) boundary condition assumes that the values of f outside the domain of
consideration are zero. The resulting blurring matrix is Toeplitz in the one-dimensional case and
a block-Toeplitz-Toeplitz-block (two-level Toeplitz) in the two-dimensional case [5]. If a signal
or an image has boundaries, and if the true signal or image is not close to zero at the boundaries,
the zero boundary conditions are introducing an artificial discontinuity, which leads to ringing
effects in the reconstructed image. Also, these matrices are widely known to be computationally
expensive to invert, especially in the two-dimensional case [5]. .

One possible way to drastically alleviate the computational cost is to impose the periodic
boundary conditions; i.e., data outside the domain of consideration are periodically extended.
This results in a blurring matrix which is a circulant matrix in the one-dimensional case and
block-circulant-circulant-block matrix in the two-dimensional case [1]. The ciculant matrices
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can always be diagonalized by discrete Fourier matrices and thus their inverses can easily found
by using the fast Fourier transforms; see [1]. However ringing effects will appear unless f
is close to periodic, and that is not common in practice. Several image restoration methods
have used to solve image deblurring problem [4, 6, 7, 8, 17, 18]. Ng et al. [4] proposed the
Neumann boundary conditions, which assumes that the data outside the domain as a reflection
of data inside. This choice leads to fast algorithms for solving (1.1) because the blurring matrix
results to a special class of Toeplitz-plus-Hankel matrices in one-dimensional case and block
Toeplitz-plus-Hankel matrices with Toeplitz-plus-Hankel blocks in two-dimensional case which
can be diagonalized by discrete cosine transform matrix provided that the blurring function is
symmetric. Also their inverses can be found by using fast cosine transforms (FCTs) which is
faster than that of those matrices obtained from either zero or the periodic boundary conditions.
Cheng et al. [17] proposed blind image deblurring via hybrid deep priors modeling (HDPM)
to simulate the propagation of sharp latent image in kernel estimation and final deconvolution.
Zhang et al. [18] proposed a novel network for joint image deblurring and super-resolution that
handles both tasks jointly and boosts the super-resolution performance from blurry input greatly.

In this paper we consider using TSVD for image restoration problem in a wavelet domain.
The TSVD analysis that suggest the TSVD as one method for dealing with the inverted noise
to solve the image deblurring problem. We also present regularization parameter to achieve
stability for large ill-conditioning of the blurring matrices. In addition, numerical examples are
given to illustrate the performance of the proposed TSVD-based regularization algorithm.

The outline of the paper is as follows. Section 2 introduces the three different boundary
conditions. Section 3 introduces the concepts TSVD and DWT briefly. In Section 4, proposed
algorithm steps in detail. Section 5 presents numerical results to demonstrate the efficiency of
the proposed algorithm. Concluding remarks are given in section 6.

2 The boundary conditions

For simplicity, we first consider with the one dimensional deblurring problem. Consider the true
signal

f̃ = (· · · , f−m+1, · · ·, f0, f1, · · ·, fn, fn+1, · · ·, fn+m, · · ·)t. (2.1)

and the blurring function given by

h = (· · ·, 0, 0, h−m, h−m+1, · · ·, h0, · · ·, hm−1, hm, 0, 0, · · ·)t. (2.2)

The blurred signal g is just computing the convolution of h and f , i.e., the ith entry gi of the
blurred signal is given by

gi =
∞∑

j=−∞
hi−jfj . (2.3)

The deblurring problem is to reconstruct the signal f = (f1, f2, · · ·, fn)t from blurring func-
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tion h and a blurred signal g = (g1, g2, · · ·, gn)t of finite length i.e.,



hm · · · h0 · · · h−m

hm h0 h−m 0
. . . . . . . . .

. . . . . . . . .
0 hm h0 h−m

hm · · · h0 · · · h−m





f−m+1

f−m+2
...
f0

f1
...
fn

fn+1
...

fn+m−1

fn+m



=


g1

g2
...
gn

 .

(2.4)
Thus the blurred signal g is determined not by f only, but also by fl = (f−m+1, f−m+2, · ·
·, f0)t and fr = (fn+1, fn+2, · · ·, fn+m)t. Clearly, the above system is underdetermined. To
overcome this, we set up certain assumptions called boundary conditions on the unknown data
f−m+1, · · · , f0 and fn+1, · · · , fn+m such that the number of unknowns equals the number of
equations.
Let us we first rewrite (2.4) as

Tlfl + Tf + Trfr = g, (2.5)

where

Tl =



hm · · · h1
. . .

...
hm

0


n×m

, fl =



f−m+1

f−m+2
...
f−1

f0


m×1

(2.6)

T =



h0 · · · h−m 0
...

. . . . . . . . .

hm
. . . . . . . . . h−m
. . . . . . . . .

...
0 hm · · · h0


n×n

, f =



f1

f2
...

fn−1

fn


n×1

(2.7)

Tr =



0

h−m
...

. . .
h−1 · · · h−m


n×m

, fr =



fn+1

fn+2
...

fn+m−1

fn+m


m×1

. (2.8)

2.1 The Dirichlet boundary condition.

In the zero (or Dirichlet) boundary condition assumes that the values of f outside the domain of
consideration are zero, i.e.,

fl = fr = 0,
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the zero vector. The matrix system in (2.5) takes simplest form

Tf = g. (2.9)

In (2.9) the coefficient matrix T is a Toeplitz matrix. In the two-dimensional case the resulting
blurring matrices will be block-Toeplitz-Toeplitz-block (BTTB) matrices. FFTs can be used to
impliment fast matrix vector multiplications for T .

2.2 Periodic boundary condition.

In the periodic boundary condition assumes that values of signal outside the domain of consid-
eration is a repeat. i.e.,

fj = fn−j

for all j in (2.4) [1]. The matrix system in (2.5) becomes

Bf = [(0|Tl) + T + (Tr|0)]f = g, (2.10)

where (0|Tl) and (Tr|0) are n-by-n Toeplitz matrices obtained by augmenting (n − m) zero
columns to Tl and Tr, respevtively.

In this case the coefficient matrix B is a circulant matrix. Hence B can be diagonalized
by discrete Fourier matrix. In the two-dimensional case, the blurring matrix becomes block-
circulant-circulant-block matrix which is diagonalized by two-dimensional FFTs (tensor product
of one-dimensional FFTs).

2.3 Reflexive boundary condition.

In the Neumann boundary condition assumes the data outside of f are a reflection of the data
inside f . This amounts to setting

f0 = f1
...

...
...

f−m+1 = fm

and

fn+1 = fn
...

...
...

fn+m = fn−m+1

(2.11)

in (2.4). Thus (2.5) becomes

Af = [(0|Tl)J + T + (Tr|0)J ]f = g, (2.12)

where J is the n -by- n reversal matrix.
In (2.12) the coefficient matrix A is a Toeplitz-plus-Hankel matrix. In two-dimensional case

the coefficient matrix is a block Toeplitz-plus-Hankel matrices with Toeplitz-plus-Hankel blocks
which is diagonalized by the discrete cosine transform matrix provided that the blurring function
h is symmetric.

The most important advantage of using Neumann boundary condition is that the solving a
problem with Neumann boundary condition is twice as fast a solving a problem with the periodic
boundary condition.

The solution f of (2.12) is given by

f = CΛ
−1CT g, (2.13)

where C is the discrete cosine transform matrix and Λ is the diagonal matrix holding the eigen-
values of A [9].
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3 Background of mathematical transforms

3.1 Truncated Singular Value Decomposition

The deblurred image consists of two components : The first component is the exact image, and
the second component is the inverted noise.

The inverted noise term can be gained using the singular value decomposition (SVD). The
SVD of a blurring matrix A is defined as the decomposition

A = UΣV T , (3.1)

A =
N∑
i=1

uiσiv
T
i (3.2)

Where U , V are orthogonal matrices and Σ = diag(σ) is a diagonal matrix whose elements σi
are non-negative and appear in non-increasing order,

σ1 ≥ σ2 ≥ · · · ≥ σN ≥ 0

The quantities σi are called the singular values of A. The columns ui of U are called the left
singular vectors, while the columns vi of V are the right singular vectors [10].

In this section we discuss the most important spectral filtering method called TSVD metthod
[11]. For this method, we define the filter factors to be one for large singular values, and zero for
the rest. More precisely,

Φi =

{
1 i = 1, 2, · · · , k
0 i = k + 1, · · · , N

The parameter k is called the truncation parameter or regularization parameter and it represents
the number of SVD component maintained in the regularized solution where the k satisfies 1 ≤
k ≤ N .

In SVD analysis the use of spectral filtering methods give us control-via the filter factors-over
the spectral contents of the deblurred images. Spectral filtering methods work by choosing the
filter factor φi in the computed solution,

fTSV D = V Σ
−1
filtU

T g

where Σ
−1
filt = ΦΣ−1.

fTSV D =
k∑

i=1

φi
uTi g

σi
vi (3.3)

Note that as k increases, more terms are included in the SVD expansion, and consequently
components with higher frequencies are included. Hence we can think of k as a way to control
how much smoothing is introduced in the reconstruction. If some of the singular values in Σ are
zero then A−1 not exists. We can avoid this unwanted situation by performing the computation
only for non zero values of Σ, and setting all other Σ

−1
filt values to zero.

Generally blurring matrices are ill-conditioned and deblurring algorithms will be extremely
sensitive to noise [1]. The ill-contitioning of the blurring matrices grow from the wide range
of magnitudes of their eigenvalues [12]. Therefore redundant amplication of the noise at small
eigenvalues can occur. Therefore choosing the regularization parameter for an ill-posed probllem
is an art based on a combination of good heuristics and prior knowledge of the noise in the
observations.

The norm of the spectral filtering solution in (3.3) becomes

‖ffTSV D
‖2

2 =
N∑
i=1

(
φi
uTi g

σi

)2

(3.4)

and the residual norm

‖g −AfTSV D‖2
2 =

N∑
i=1

(
(1− φi)uTi g

)2
. (3.5)



622 A. Padmanabha Reddy and K. Riyajuddin

For the TSVD method the norm of the solutioin fTSV D = fk is a monotonically nondecreasing
function of k, while the residual norm is monotonically nonincreasing.

Another complexity in regularization is the choice of k. Generalized cross-validation [13] is
a technique that estimates k directly without requiring an estimate of the noise variance.

The best parameter for our spectral filtering method minimizes the GCV functional.

G(k) =
||(IN −AVΦΣ−1UT )g||22

(trace(IN −AVΦΣ−1UT ))2 (3.6)

The numerator is just ||(IN − AVΦΣ−1UT )g||22 = ||g − AfTSV D||22, for which we already
have a formula. We evaluate the denominator by noting that the trace of a matrix is the sum of
its main diagonal elements, and the trace is invariant under orthogonal transformation, so

trace(IN −AVΦΣ
−1UT ) = N − k

Which is easy to compute. So equation in (3.6) can be written in simpler form as

G(k) =
||g −AfTSV D||22

(N − k)2

G(k) =
1

(N − k)2

N∑
i=k+1

(uTi g)
2 (3.7)

For best parameter choice is to minimize the GCV functional

t = arg minG(k) = arg min
||g −AfTSV D||22

(N − k)2 , (3.8)

where N is the number of pixels in the image, and

ft = V diag(
1
σ1
, · · · , 1

σk
, 0, · · · , 0)UT g. (3.9)

3.2 Discrete wavelet transform

A part of waveforms generate wavelets: the wavelet function and the scaling function. The
wavelet function produces the wavelets, while the scaling function finds the approximate signal
at that scale. The resulting wavelets include coarse-scale ones that have a long duration, and
fine-scale ones that ones have a short amount of time.

Let (f(1), f(2), · · · , f(n)) be a sample of a real signal f(t). The wavelet transform express
the signal as coefficients in a function space spanned by a set of basis functions. The basis
of the wavelet transform consists of infinitely many scaled and shifted versions of a mother
wavelet function[14]. The discrete wavelet transform (DWT) measures frequency at different
time resolutions and locations. The signal is projected into the time-frequency plane. The basis
functions are

ψj,k = 2j/2ψ(2jt− k) (3.10)

Where ψ is the mother wavelet function. Any square integrable real function f(t) can be repre-
sented in terms of this bases as

f(t) =
∑
j,k

Cj,kψj,k(t) (3.11)

and the Cj,k =< ψj,k(t), f(t) > are the coefficients of the DWT. A simple and commonly used
wavelet is the Haar wavelet with the mother function

ψHaar(t) =


1, if 0 ≤ t < 1/2
−1, if 1/2 ≤ t < 1

0, otherwise

(3.12)

Discrete Haar wavelet transform has become an attractive domain for the deblurring of im-
ages due to its well matching behaviour with human visual system (HVS) and it is a system of
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filters that decomposes an input image into a set of four non-overlapping multiresolution sub-
bands[15] denoted as LL (approximation sub-band), LH (Horizontal sub-band), HL (vertical
sub-band) and HH (Diagonal sub-band). LH, HL and HH represents the finest scale wavelet co-
efficients and LL stands for the coarse-level coefficient. Due to its excellent spatial localization
and multiresolution properties, the discrete wavelet transform is much applicable to analyzing
image features such as edges or textured areas in the image[16]. The block matrix LL truncated
by SVD method which makes image more clear and high PSNR value. The main advantage of
using wavelet transform is to reconstruct deblurred image with very low truncation index k.

4 Proposed algorithm

X← Original image of size 512× 512
B← Array containing blurred image of X.
P← Array containing point spread function; same size as B.
step 1: Without constructing blurring matrix, we compute eigen values of blurring matrix.
The eigen values of blurring matrix for periodic boundary condition is computed as

S = fft2(circshift(P, 1− center)) (4.1)

step 2: Eigen values of blurring matrix for Neumann boundary condition is computed as

S = dct2(dctshift(P, center))/dct(e1), (4.2)

where dctshift is a built-in Matlab function and e1 is the first column of identity matrix.
step 3: We decompose original image X into four sub-bands by applying discrete Haar wavelet
transform

i.e., [cA, cH, cV, cD] = dwt2(X,′ haar′). (4.3)

step 4: Construct blurred image B of X by using eigen vales of blurring matrix and coarse-scale
dwt coefficients of X

i.e., B = real(ifft2(S. ∗ fft2(cA))). (4.4)

step 5: Arranging the eigen values of blurring matrix by decreasing order.
step 6: Use Generalization cross-validation to estimate k directly

i.e., G(k) =
1

(N − k)2

N∑
i=k+1

(uTi g)
2 (4.5)

where uTi g = fft2(B) and N is the number of pixels in the image.
step 7: Minimizing GCV functional tol=min G(k)
k is the truncation index and tol is the truncation tolerence that is any singular values less than
tolerence is truncated.
step 8: Compute Ak = V S−1UTB
step 9: Finally, compute the deblurred image by applying inverse discrete Haar wavelet trans-
form to Ak.

Xk = Idwt2(Ak, cH, cV, cD,
′ haar′). (4.6)

5 Numerical experiments

This section provides the experimental results and analysis of the proposed scheme. This work is
programmed in matlab 2016a with system specifications- windows 7 OS, intel i5 core processor
and 64 bit operating system. figure 1 shows the original Barbara, Lena and Cameraman images
of size 512 × 512, 512 × 512 and 256 × 256 respectively. The Barbara, Lena and Cameraman
images are blurred by the following two blurring functions [3].
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(i) a Gaussian blur,

hij =

{
ce−0.1(i2+j2) if |i− j| ≤ 8

0 otherwise

(ii) an Out-of-focus blur,

hij =

{
c if i2 + j2 ≤ 4
0 otherwise

where c is the normalization constant such that
∑

i,j hi,j = 1.
The noisy blurred Barbara, Lena and Cameraman images by Gaussian blur and Out-of-focus

blur are shown in figure 2 and figure 3. Two boundary conditions are compared here: Periodic
boundary condition and Neumann boundary condition. Relative error of the restored image is
defined as ||f−ft||2||f ||2 , where f is the original image and ft is the restored image with regularization
parameter t. In figure 4 to figure 7, we present the restored images with Gaussian and Out-of-
focus blurring functions for the periodic and Neumann boundary conditions by TSVD method
and images are reconstructed well with large number of truncation index k as shown in Table 1
and Table 2. From figure 8 to figure 11 are deblurred images reconstructed by DWT method for
both periodic and Neumann boundary conditions with low truncation index k as shown in Table
3 and Table 4. The truncation tolerence, PSNR, relative error and truncation index are calculated
both in TSVD and DWT method for Gaussian blur and Out-of focus blur as shown in Table 1 to
Table 4. The restored images with periodic boundary conditions is showed in figure 4 to figure
11; one can easily see that the ringing effects appear at the boundary. We see that by imposing
the Neumann boundary condition, the relative error and the ringing effect are the smallest. Also
the Barbara and Lena images are better reconstructed by using the Neumann boundary condition
than by using periodic boundary conditions.

(a) Barbara (b) Lena (c) Cameraman

Figure 1. Original images of (a) Barbara, (b) Lena and (c) Cameraman

(a) Barbara (b) Lena (c) Cameraman

Figure 2. Blurred images (a) Barbara, (b) Lena and (c) Cameraman by Gaussian blur
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(a) Barbara (b) Lena (c) Cameraman

Figure 3. Blurred images (a) Barbara, (b) Lena and (c) Cameraman by Out-of-focus blur

(a) Barbara (b) Lena (c) Cameraman

Figure 4. Restoring (a), (b) and (c) by Gaussian blur with periodic boundary conditions using
TSVD method.

(a) Barbara (b) Lena (c) Cameraman

Figure 5. Restoring (a), (b) and (c) by Gaussian blur with reflexive boundary conditions using
TSVD method.

(a) Barbara (b) Lena (c) Cameraman

Figure 6. Restoring (a), (b) and (c) by Out-of-focus blur with periodic boundary conditions
using TSVD method.
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(a) Barbara (b) Lena (c) Cameraman

Figure 7. Restoring (a), (b) and (c) by Out-of-focus blur with reflexive boundary conditions
using TSVD method.

(a) Barbara (b) Lena (c) Cameraman

Figure 8. Restoring (a), (b) and (c) by Gaussian blur with periodic boundary conditions using
TSVD-DWT method.

(a) Barbara (b) Lena (c) Cameraman

Figure 9. Restoring (a), (b) and (c) by Gaussian blur with reflexive boundary conditions using
TSVD-DWT method.

(a) Barbara (b) Lena (c) Cameraman

Figure 10. Restoring (a), (b) and (c) by Out-of-focus blur with periodic boundary conditions
using TSVD-DWT method.
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(a) Barbara (b) Lena (c) Cameraman

Figure 11. Restoring (a), (b) and (c) by Out-of-focus blur with reflexive boundary conditions
using TSVD-DWT method.

Image Blurring function tolerence PSNR relative error truncation index (k)

Barbara Gaussian 1.67×10−8 74.9536 0.0236 449
Lena Gaussian 1.855×10−14 89.11 0.0058 433

Cameraman Gaussian 3×10−5 74.53 00.0226 246
Barbara Out-of-focus 0.0015 93.57 0.0027 510

Lena Out-of-focus 0.0030 96.42 0.0023 508
Cameraman Out-of-focus 0.0015 90.93 0.0057 254

Table 1. Summary of restoration results for periodic boundary condition by TSVD method.

Image Blurring function tolerence PSNR relative error truncation index (k)

Barbara Gaussian 1×10−4 85.97 0.0112 338
Lena Gaussian 0.0099 79.47 0.0112 417

Cameraman Gaussian 3×10−4 80.3580 0.0135 255
Barbara Out-of-focus 0.0011 95.13 0.0034 511

Lena Out-of-focus 0.0011 101.25 0.0011 511
Cameraman Out-of-focus 0.0015 92.44 0.0051 255

Table 2. Summary of restoration results for Neumann boundary condition by TSVD method.

Image Blurring function tolerence PSNR relative error truncation index (k)

Barbara Gaussian 1.68 ×10−15 78.46 0.0209 225
Lena Gaussian 3.32 ×10−14 85.42 0.0086 215

Cameraman Gaussian 4.8 ×10−10 76.34 0.0255 115
Barbara Out-of-focus 0.0015 93.18 0.0051 254

Lena Out-of-focus 0.0015 95.90 0.0032 254
Cameraman Out-of-focus 0.0003 95.49 0.0042 126

Table 3. Summary of restoration results for periodic boundary condition by TSVD-DWT
method.
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Image Blurring function tolerence PSNR relative error truncation index (k)

Barbara Gaussian 3 ×10−4 78.35 0.0188 209
Lena Gaussian 3 ×10−4 83.60 0.0105 195

Cameraman Gaussian 2×10−5 89.32 0.0156 101
Barbara Out-of-focus 0.0015 94.52 0.0039 255

Lena Out-of-focus 0.0015 98.13 0.0022 255
Cameraman Out-of-focus 0.0015 90.85 0.0062 127

Table 4. Summary of restoration results for Neumann boundary condition by TSVD-DWT
method.

6 Concluding remarks

In this paper, we have studied TSVD-based regularization method and DWT method for solving
image restoration problems with periodic and Neumann boundary conditions for two different
blurring functions. Numerical results suggest that TSVD method needs large number of trunca-
tion index to construct deblurred image while DWT method needs small number of truncation
index. Advantage of the proposed algorithm to achieve best performance in relative error and
truncation index without losing the quality of the image. For future work, proposed algorithm
leads to different types of wavelet transform methods such as Daubechies, Coiflet to improve-
ment in image deblurring and denoising techniques.
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