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Abstract In this paper taking a question in [5] into background we investigate the unique-
ness of a non-constant polynomial with the differential polynomial generated by a non-constant
meromorphic function f. Our result will also extend a result of Banerjee-Chakraborty [4] given
earlier. We provide some examples to show that certain conditions used in the paper can not be
removed.

1 Introduction and and main results

In this paper, meromorphic functions mean meromorphic in the complex plane. We use the
standard notations of Nevanlinna theory, which can be found in [23]. A meromorphic function
a(z) is called a small function with respect to f(z) if T (r, a) = S(r, f), i.e., T (r, a) = o(T (r, f))
as r →∞ possibly outside a set of finite linear measure. We say that two meromorphic functions
f and g share a small function a IM (ignoring multiplicities) when f −a and g−a have the same
zeros. If f − a and g − a have the same zeros with the same multiplicities, then we say that f
and g share a CM (counting multiplicities).

Rubel and Yang [22] appear to be the first to study the entire functions that share values with
their derivatives. In 1977, they proved the following well-known theorem.

Theorem 1.1. Let f be a non-constant entire function. If f and f
′

share two distinct finite
numbers a, b CM, then f ≡ f ′ .

Since then, shared value problems, especially the case of f and f
′

sharing values, have
been studied by many authors and a number of profound results have been obtained (see, eg[9,
13],etc).

In 1979, Mues and Steinmetz [21] proved the following result, which is an improvement of
Theorem 1.1.

Theorem 1.2. Let f be a non-constant entire function. If f and f
′

share two distinct values a, b
IM, then f ≡ f ′ .

In connection to finding the relation between an entire function with its derivative when they
share one value CM, in 1996 in this direction the following famous conjecture was proposed by
Brück [9].

Conjecture. Let f be a non-constant entire function such that the hyper order ρ2(f) of f is not
a positive integer or infinite, where

ρ2(f) = lim sup
r→∞

log logT (r, f)
log r

.

If f and f
′

share a finite value a CM, then f
′
−a

f−a = c, where c is a non-zero constant.

In recent years, many results have been published concerning the above conjecture, (see,[2,
3, 4, 6, 8, 10, 11, 17, 18, 19]). Next we recall the following definitions:
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Definition 1.3. [16] Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f |≥ p) (resp.N(r, a; f |≥ p)) denotes the counting function (resp. reduced count-
ing function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (resp.N(r, a; f |≤ p)) denotes the counting function (resp. reduced count-
ing function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.4. [25] For a ∈ C ∪ {∞} and a positive integer p, we define

Np(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ p).

Definition 1.5. [25] For a ∈ C ∪ {∞} and a positive integer p, we put

δp(a, f) = 1− lim sup
r→∞

Np(r, a; f)
T (r, f)

.

Thus

0 ≤ δ(a, f) ≤ δp(a, f) ≤ δp−1(a, f) ≤ ... ≤ δ2(a, f) ≤ δ1(a, f) = Θ(a, f) ≤ 1.

Definition 1.6. [4] For two positive integers n, p we define

µp = min{n, p} andµ∗p = p+ 1− µp.

Then clearly
Np(r, 0; fn) ≤ µpNµ∗p(r, 0; f).

Definition 1.7. [8] Let z0 be a zero of f − a of multiplicity p and a zero of g − a of multiplicity
q.

i) We denote by NL(r, a; f), the counting function of those a-points of f and g where p > q ≥
1,

ii) by N
1)
E (r, a; f), we denote the the counting function of those a-points of f and g where

p = q = 1 and

iii) by N
(2
E(r, a; f), we denote the counting function of those a-points of f and g where p = q ≥

2, each point in these counting functions is counted only once.

Similarly, we can define NL(r, a; g), N1)
E (r, a; g), N

(2
E(r, a; g).

Definition 1.8. [15] Let k be a non-negative integer or infinity and a ∈ C ∪ {∞}. By Ek(a; f),
we mean the set of all a-points of f, where an a-point of multiplicity m is counted m times if
m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say that f and g share the value a
with weight k. Thus we note that f and g share a value a-IM (resp. CM) if and only if f and g
share (a, 0) (resp.(a,∞)).

With the notion of weighted sharing of values Lahiri-Sarkar [16] improved the result of Zhang
[24]. In [25] Zhang extended the result of Lahiri-Sarkar [16] and replaced the concept of value
sharing by small function sharing.

In 2008, Zhang and Lü [26] obtained the following result.

Theorem 1.9. Let k(≥ 1), n(≥ 1) be integers and f be a non-constant meromorphic function.
Also, let a(z)(6≡ 0,∞) be a small function with respect to f. Suppose fn − a and f (k) − a share
(0, l). If l =∞ and

(3 + k)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > 6 + k − n,

or, l = 0 and

(6 + 2k)Θ(∞, f) + 4Θ(0, f) + 2δ2+k(0, f) > 12 + 2k − n,

then fn ≡ f (k).



UNIQUENESS OF A POLYNOMIAL ... 71

At the end of [26] the following question was raised by Zhang and Lü [26].

Question 1.1. What will happen if fn and [f (k)]m share a small function ?

In 2010, Chen and Zhang [11] answered the above question. But unfortunately there were
some errors in their results. Banerjee-Majumder [8] first pointed out the errors, rectified them
and obtained the correct form of the same as follows.

Theorem 1.10. Let k(≥ 1), n(≥ 1) be integers and f be a non-constant meromorphic function.
Also, let a(z)(6≡ 0,∞) be a small function with respect to f. Suppose fn − a and f (k) − a share
(0, l). If l ≥ 2 and

(3 + k)Θ(∞, f) + 2Θ(0, f) + δ2+k(0, f) > 6 + k − n,

or, l = 1 and (
7
2
+ k

)
Θ(∞, f) + 5

2
Θ(0, f) + δ2+k(0, f) > 7 + k − n,

or, l = 0 and

(6 + 2k)Θ(∞, f) + 4Θ(0, f) + δ2+k(0, f) + δ1+k(0, f) > 12 + 2k − n,

then fn ≡ f (k).

Theorem 1.11. Let k(≥ 1), n(≥ 1), m(≥ 2) be integers and f be a non-constant meromorphic
function. Also, let a(z)(6≡ 0,∞) be a small function with respect to f. Suppose fn − a and
[f (k)]m − a share (0, l). If l = 2 and

(3 + 2k)Θ(∞, f) + 2Θ(0, f) + 2δ1+k(0, f) > 7 + 2k − n, (1.1)

or, l = 1 and (
7
2
+ 2k

)
Θ(∞, f) + 5

2
Θ(0, f) + 2δ1+k(0, f) > 8 + 2k − n, (1.2)

or, l = 0 and

(6 + 3k)Θ(∞, f) + 4Θ(0, f) + 3δ1+k(0, f) > 13 + 3k − n, (1.3)

then fn ≡ [f (k)]m.

It can be easily proved that Theorem 1.10 is a better result than Theorem 1.11 for m = 1
case. Also, it is observed that in the conditions (1.1) - (1.3) there was no influence of m.

Very recently, in order to improve the results of Zhang [25], Li and Huang [17] obtained
the following theorem. In view of Lemma 2.1 proved latter on, we see that the following result
obtained in [17] is better than that of Theorem 1.10 for n = 1.

Theorem 1.12. Let k(≥ 1), l(≥ 0) be integers and f be a non-constant meromorphic function.
Also, let a(z) (6≡ 0,∞) be a small function with respect to f. Suppose f − a and f (k) − a share
(0, l). If l ≥ 2 and

(3 + k)Θ(∞, f) + δ2(0, f) + δ2+k(0, f) > k + 4,

or, l = 1 and (
7
2
+ k

)
Θ(∞, f) + 1

2
Θ(0, f) + δ2(0, f) + δ2+k(0, f) > k + 5,

or, l = 0 and

(6 + 2k)Θ(∞, f) + 2Θ(0, f) + δ2(0, f) + δ1+k(0, f) + δ2+k(0, f) > 2k + 10,

then f ≡ f (k).
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Now, we recall the following definition

Definition 1.13. [14] Let n0j , n1j , ..., nkj be nonnegative integers.

• The expression Mj [f ] = (f)n0j(f (1))n1j ...(f (k))nkj is called a differential monomial gener-
ated by f of degree dMj = d(Mj) =

∑k
i=0 nij and weight ΓMj =

∑k
i=0(i+ 1)nij .

• The sum H[f ] =
∑t
j=1 bjMj [f ] is called a differential polynomial generated by f of degree

d̄(H) = max{d(Mj) : 1 ≤ j ≤ t} and weight Γ = ΓP = max{ΓMj : 1 ≤ j ≤ t}, where
T (r, bj) = S(r, f) for j = 1, 2, ..., t.

• The numbers d(H) = min{d(Mj) : 1 ≤ j ≤ t} and k (the highest order of the derivative of f
in H[f ]) are called respectively the lower degree and order of H[f ].

• H[f ] is said to be homogeneous if d̄(H) = d(H). Also, we define Q := max{ΓMj − d(Mj) :
1 ≤ j ≤ t}; and for the sake of convenience for a differential monomial M [f ], we denote by
λ = ΓM − dM .

Since the natural extension of [f (k)]m is a differential monomial, it will be interesting to see
whether Theorem 1.11 can remain true when [f (k)]m is replaced by M [f ]. In this direction, very
recently Banerjee-Chakraborty [4] have improved Theorem 1.11 in the following way which in
turn improve a recent result of Li-Huang [17] as well.

Theorem 1.14. Let k(≥ 1), n(≥ 1) be integers and f be a non-constant meromorphic function.
Also, let M [f ] be a differential monomial of degree dM and weight ΓM and k is the highest
derivative in M [f ]. Let a(z) (6≡ 0,∞) be a small function with respect to f. Suppose fn − a and
M [f ]− a share (0, l). If l ≥ 2 and

(3 + λ)Θ(∞, f) + µ2δµ∗2 (0, f) + dMδk+2(0, f) > 3 + ΓM + µ2 − n,

or, l = 1 and(
7
2
+ λ

)
Θ(∞, f) + 1

2
Θ(0, f) + µ2δµ∗2 (0, f) + dMδk+2(0, f) > 4 + ΓM + µ2 − n,

or, l = 0 and

(6 + 2λ)Θ(∞, f) + 2Θ(0, f) + µ2δµ∗2 (0, f) + dMδk+2(0, f) + dMδk+1(0, f) > 8 + 2ΓM + µ2 − n,

then fn ≡M [f ].

In the same paper the following was asked:

Question 1.2. Is it possible to extend Theorem 1.14 upto differential polynomial instead of
differential monomial?

To answer the above question, recently Bikash Chakraborty [5] obtained the following theo-
rem:

Theorem 1.15. Let k(≥ 1), n(≥ 1) be integers and f be a non-constant meromorphic function.
Let H[f ] be a homogeneous differential polynomial of degree d̄(H) and weight ΓP such that
ΓP > (k + 1)d(H) − 2, where k is the highest derivative in H[f ]. Also, let a(z) (6≡ 0,∞) be a
small function with respect to f. Suppose fn − a and H[f ]− a share (0, l). If l ≥ 2 and

(ΓP − d(H) + 3)Θ(∞, f) + µ2δµ∗2 (0, f) + d(H)δ2+ΓP−d(H)(0, f) > ΓP + µ2 + 3− n, (1.4)

or, l = 1 and(
ΓP − d(H) +

7
2

)
Θ(∞, f) + 1

2
Θ(0, f) + µ2δµ∗2 (0, f) + d(H)δ2+ΓP−d(H)(0, f)

> ΓP + µ2 + 4− n, (1.5)
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or, l = 0 and

(2(ΓP − d(H)) + 6)Θ(∞, f) + 2Θ(0, f) + µ2δµ∗2 (0, f) + d(H)δ1+ΓP−d(H)(0, f)

+ d(H)δ2+ΓP−d(H)(0, f) > 2ΓP + µ2 + 8− n, (1.6)

then fn ≡ H[f ].

Naturally at the end of the paper the following question was posed by the author in [5].

Question 1.3. Is it is possible to extend Theorem 1.15 up to an arbitrary differential polynomial?

One of our objectives in writing this paper is to solve this Question. Now observing the above
results it is Quite natural to place the following Question

Question 1.4. Is it is possible to replace fn by arbitrary polynomial P [f ] = a0f
n + a1f

n−1 +
...+ an in Theorem 1.15 ?

Throughout the paper, we will use the following notations. Let

P(w) = an+mw
n+m + ...+ anw

n + ...+ a0 = an+m

s∏
i=1

(w − wpi)pi

where aj (j = 0, 1, 2, ..., n+m−1), an+m 6= 0 andwpi (i = 1, 2, ..., s) are distinct finite complex
numbers and 2 ≤ s ≤ n +m and p1, p2, ..., ps, s ≥ 2, n, m and k are all positive integers with∑s
i=1 pi = n + m. Also let p > max

p 6=pi,i=1,...,r
{pi}, r = s − 1, where s and r are two positive

integers.

Let P (w1) = an+m
s−1∏
i=1

(w1+wp−wpi)
pi = bqw

q
1 +bq−1w

q−1
1 + ...+b0, where an+m = bq, w1 =

w − wp, q = n+m− p. Therefore, P(w) = wp1P (w1).

Next we assume P (w1) = bq
r∏
i=1

(w1 − αi)pi , where αi = wpi − wp, (i = 1, 2, ..., r), be distinct

zeros of P (w1).

The following theorem is the main result of this paper which gives an affirmative answer of the
question 1.4 and also the question of Bikash Chakraborty [5] in a more convenient way.

Theorem 1.16. Let k(≥ 1), n(≥ 1), p(≥ 1) andm(≥ 0) be integers and f and f1 = f − wp be
two non-constant meromorphic functions and H[f ] be a non-constant differential polynomial of
degree d̄(H) and weight ΓP satisfying ΓP > (k + 1)d(H) − 2. Let P(z) = am+nz

n+m + ...+
anz

n + ... + a0, am+n 6= 0, be a polynomial in z of degree m + n such that P(f) = fp1 P (f1).
Also, let a(z) (6≡ 0,∞) be a small function with respect to f. Suppose P(f) − a and H[f ] − a
share (0, l). If l ≥ 2 and

(ΓP − d̄(H) + 3)Θ(∞, f) + µ2δµ∗2 (wp, f) + d(H)δ2+ΓP−d(H)(0, f) > ΓP + µ2 + 3− p

+ d̄(H)− d(H), (1.7)

or, l = 1 and(
ΓP − d̄(H) +

7
2

)
Θ(∞, f) + 1

2
Θ(wp, f) + µ2δµ∗2 (wp, f) + d(H)δ2+ΓP−d(H)(0, f) > ΓP + µ2

+ 4 +
(m+ n)− 3p

2
+ d̄(H)− d(H), (1.8)

or, l = 0 and

(2(ΓP − d̄(H)) + 6)Θ(∞, f) + 2Θ(wp, f) + µ2δµ∗2 (wp, f) + d(H)

(
2∑
i=1

δi+ΓP−d(H)(0, f)

)
> 2ΓP + µ2 + 8 + 2(m+ n)− 3p+ 2(d̄(H)− d(H)), (1.9)

then P(f) ≡ H[f ].
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The following Corollary can easily be deduced from the above theorem which is an extension
and improvement of the Theorem 1.15. It is clear that for P (z) = 1 i.e., m = 0 and d̄(H)−d(H)
(i.e., Homogeneous differential polynomial), we get exactly Theorem 1.15 from Corollary 1.17.

Corollary 1.17. Let k(≥ 1), n(≥ 1), andm(≥ 0) be integers and f be a non-constant meromor-
phic function and H[f ] be a non-constant differential polynomial of degree d̄(H) and weight ΓP

satisfying ΓP > (k + 1)d(H) − 2. Let P (z) = amz
m + ...+ a0, am 6= 0, be a polynomial in z

of degree m. Also, let a(z) (6≡ 0,∞) be a small function with respect to f. Suppose fnP (f)− a
and H[f ]− a share (0, l). If l ≥ 2 and

(ΓP − d̄(H) + 3)Θ(∞, f) + µ2δµ∗2 (wp, f) + d(H)δ2+ΓP−d(H)(0, f) > ΓP + µ2 + 3− n

+ d̄(H)− d(H), (1.10)

or, l = 1 and(
ΓP − d̄(H) +

7
2

)
Θ(∞, f) + 1

2
Θ(wp, f) + µ2δµ∗2 (wp, f) + d(H)δ2+ΓP−d(H)(0, f) > ΓP + µ2

+ 4 +
m

2
− n+ d̄(H)− d(H), (1.11)

or, l = 0 and

(2(ΓP − d̄(H)) + 6)Θ(∞, f) + 2Θ(wp, f) + µ2δµ∗2 (wp, f) + d(H)

(
2∑
i=1

δi+ΓP−d(H)(0, f)

)
> 2ΓP + µ2 + 8 + 2m− n+ 2(d̄(H)− d(H)), (1.12)

then fnP (f) ≡ H[f ].

The following examples show that the conditions (1.7) - (1.9) in Theorem 1.16 cannot be
removed.

Example 1.1. Let f(z) = Aez +Be−z, AB 6= 0. Then N(r, f) = S(r, f) and

N(r, 0; f) = N

(
r,
−B
A

; e2z
)
∼ T (r, f).

Here m = 0, p = n = 1, wp = 0, d̄(H) = d(H) = 1, µ2 = 1 and ΓP = 2. Again Θ(∞, f) =
1 and Θ(0, f) = δq(0, f) = 0. Let m = 0, hence P(f) = f. Therefore it is clear that H[f ] =

2f
′′

andP(f) share (a, l)(l ≥ 0) but none of the inequalities (1.7), (1.8) and (1.9) of Theorem
1.16 is satisfied and P(f) 6≡ H[f ].

Example 1.2. Let f(z) = − sinα(z)+a− a
α4k , k ∈ N; where α 6= 0, α4k 6= 1, and a ∈ C−{0}.

Let p = n = 1, wp = 0, andm = 0. Then let P(f) = f. Again let H[f ] = 2f4k. Then H[f ] =
−2α(4k) sin(α(z)). Here m = 0, µ2 = 1, ΓP = 4k, d̄(H) = d(H) = 1. Again Θ(∞, f) = 1 and

N(r, 0; f) = N
(
r, a− a

α4k ; sinα(z)
)
∼ T (r, f).

Therefore, Θ(0, f) = 0 = δq(0, f),∀q ∈ N.Also it is clear that P(f) andH[f ] share (a, l)(l ≥ 0)
but none of the inequalities (1.7), (1.8) and (1.9) of Theorem 1.16 is satisfied and P(f) 6≡ H[f ].

2 Preliminary Lemmas

In this section, we present some lemmas which will be needed in the sequel. Let F, G be two
non-constant meromorphic functions. Henceforth we shall denote by ∆ the following function.

∆ =

(
F
′′

F ′
− 2F

′

F − 1

)
−

(
G
′′

G′
− 2G

′

G− 1

)
. (2.1)
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Lemma 2.1. ([4]) If f is a non-constant meromorphic function, then

1 + δ2(0, f) ≥ 2Θ(0, f).

Lemma 2.2. ([8]) If F and G share (1, l), N(r,∞;F ) = N(r,∞;G) and ∆ 6≡ 0, then

N(r,∞; ∆) ≤ N(r,∞;F ) +N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
)

+NL(r, 1;F ) +NL(r, 1;G) + S(r, F ) + S(r,G).

Lemma 2.3. ([4]) Let F and G share (1, l). Then

NL(r, 1;F ) ≤ 1
2
N(r,∞;F ) +

1
2
N(r, 0;F ) + S(r, F )when l ≥ 1,

and

NL(r, 1;F ) ≤ N(r,∞;F ) +N(r, 0;F ) + S(r, F )when l = 0.

Similar expressions also hold for G.

Lemma 2.4. ([4]) Let F and G share (1, l) and ∆ 6≡ 0. Then

N(r, 1;F ) +N(r, 1;G) ≤ N(r,∞; ∆) +N
(2
E(r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N(r, 1;G)

+ S(r, F ) + S(r,G).

Lemma 2.5. Let f be non-constant meromorphic function and a(z) be a small function of f. Let
F = P(f)

a =
fp

1 P (f1)
a and G = H[f ]

a . such that F and G shares (1,∞). Then one of the following
cases holds:

(i) T (r) ≤ N2(r, 0;F )+N2(r, 0;G)+N(r,∞;F )+N(r,∞;G)+NL(r, 1;F )+NL(r, 1;G)+
S(r),

(ii) F ≡ G,

(iii) FG ≡ 1,

where T (r) = max{T (r, F ), T (r,G)} andS(r) = o(T (r)), r ∈ I, I is a set of infinite linear
measure of r ∈ (0,∞).

Proof. Let z0 be a pole of f which is not a pole or zero of a(z). Then z0 is a pole of F and G
simultaneously. Thus F and G share those pole of f which is not zero or pole of a(z). Clearly

N(r,∞; ∆) ≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +NL(r,∞;F ) +NL(r,∞;G) +N0(r, 0;F
′
)

+N0(r, 0;G
′
) + S(r, F ) + S(r,G).

Rest of the proof can be carried out in the line of proof of Lemma 2.13 of [1]. So we omit the
details

Lemma 2.6. ([18]) The inequality N(r,∞;H[f ]) ≤ d̄(H)N(r,∞; f)+(ΓP − d̄(H))N(r,∞; f)
holds.

Lemma 2.7. ([20]) Let f be a non-constant meromorphic function and let

R(f) =

n∑
i=0

aif
i

m∑
j=0

bjf j

be an irreducible rational function in f with constant coefficients {ai} and {bj} where an 6= 0
and bm 6= 0. Then

T (r,R(f)) = pT (r, f) + S(r, f),

where p = max{n,m}.
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Lemma 2.8. ([7, 12]) Let f be a meromorphic function and H[f ] be a differential polynomial.
Then

m

(
r,
H[f ]

f d̄(H)

)
≤ (d̄(H)− d(H))m

(
r,

1
f

)
+ S(r, f).

Lemma 2.9. ([2, 3]) Let H[f ] be a differential polynomial generated by a non-constant mero-
morphic function f. Then

N

(
r,∞;

H[f ]

f d̄(H)

)
≤ (ΓP − d̄(H))N(r,∞; f) + (d̄(H)− d(H))N(r, 0; f |≥ k + 1)

+QN(r, 0; f |≥ k + 1) + d̄(H)N(r, 0; f |≤ k) + S(r, f).

Lemma 2.10. Let f be a non-constant meromorphic function and a(z) be a small function in f.
Let us define F = P(f)

a =
fp

1 P (f1)
a and G = H[f ]

a . Then FG 6≡ 1.

Proof. On contrary, assume that FG ≡ 1, i.e., fp1 P (f1)H[f ] = (a(z))2. Then

N(r, 0; f |≥ k + 1) = S(r, f).

Now applying Lemmas 2.8, 2.9 and the first fundamental theorem, we get

(m+ n+ d̄(H))T (r, f) = T

(
r,

a2

fp1 P (f1)f d̄(H)

)
+ S(r, f) = T

(
r,
H[f ]

f d̄(H)

)
+ S(r, f)

≤ m
(
r,
H[f ]

f d̄(H)

)
+N

(
r,
H[f ]

f d̄(H)

)
+ S(r, f)

≤ (d̄(H)− d(H))[T (r, f)− {N(r, 0; f |≤ k) +N(r, 0; f |≥ k + 1)}]

+ (Γp − d̄(H))N(r,∞; f) + (d̄(H)− d(H))N(r, 0; f |≥ k + 1)

+QN(r, 0; f |≥ k + 1) + d̄(H)N(r, 0; f |≤ k) + S(r, f)

≤ (d̄(H)− d(H))T (r, f) + d(H)N(r, 0; f |≤ k)

+ (Γp − d̄(H))N(r,∞; f) + S(r, f)

≤ d̄(H)T (r, f) + (Γp − d̄(H))N(r,∞; fp1 P (f1)) + S(r, f)

≤ d̄(H)T (r, f) + (Γp − d̄(H))N(r,∞; (a(z))2) + S(r, f)

≤ d̄(H)T (r, f) + S(r, f),

which is a contradiction.

Lemma 2.11. ([5]) For the differential polynomial H[f ],

N(r, 0;H[f ]) ≤ (Γp − d̄(H))N(r,∞; f) + d(H)N(r, 0; f)

+ (d̄(H)− d(H))

(
m

(
r,

1
f

)
+ T (r, f)

)
+ S(r, f).

Lemma 2.12. ([5]) Let j and p be two positive integers satisfying j ≥ p + 1 and ΓP > (k +
1)d(H)− (p+ 1). Then for the differential polynomial H[f ],

N (j+ΓP−d(H)(r, 0; d(H)) ≤ N (j(r, 0;H[f ]).

Lemma 2.13. Let j and p be two positive integers satisfying j ≥ p+ 1 and ΓP > (k+ 1)d(H)−
(p+ 1). Then for a differential polynomial H[f ],
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Proof. From Lemmas 2.11 and 2.12 we have

NP (r, 0;H[f ]) ≤ (Γp − d̄(H))N(r,∞; f) +N(r, 0; fd(H)) + (d̄(H)− d(H))(
m

(
r,

1
f

)
+ T (r, f)

)
−

∞∑
j=p+1

N (j(r, 0;H[f ]) + S(r, f)

≤ (Γp − d̄(H))N(r,∞; f) +NP+ΓP−d(H)(r, 0; fd(H))

+ (d̄(H)− d(H))

(
m

(
r,

1
f

)
+ T (r, f)

)
+

∞∑
j=p+ΓP−d(H)+1

N (j(r, 0; fd(H))−
∞∑

j=p+1

N (j(r, 0;H[f ]) + S(r, f)

≤ (Γp − d̄(H))N(r,∞; f) +NP+ΓP−d(H)(r, 0; fd(H))

+ (d̄(H)− d(H))

(
m

(
r,

1
f

)
+ T (r, f)

)
+ S(r, f).

This completes the proof.

3 Proof of Theorem

Proof of Theorem 1.1. Let F = P(f)
a =

fp
1 P (f1)
a and G = H[f ]

a . Then F − 1 =
fp

1 P (f1)−a
a and

G − 1 = H[f ]−a
a . Since P(f) and H[f ] share (a, l), it follows that F and G share (1, l) except

the zeros and poles of a(z). Now we consider the following cases.

Case 1. First we assume that ∆ 6≡ 0.

Subcase 1.1. If l ≥ 1, then using the second fundamental Theorem and Lemmas 2.2 and 2.4, we
get

T (r, F ) + T (r,G) ≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F ) +N(r, 0;G) +N(r,∞; ∆)

+N
(2
E(r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N(r, 1;G)−N0(r, 0;F

′
)

−N0(r, 0;G
′
) + S(r, f).

≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G) +N
(2
E(r, 1;F )

+ 2NL(r, 1;F ) + 2NL(r, 1;G) +N(r, 1;G) + S(r, f). (3.1)

Subcase 1.1.1. If l ≥ 2, then using the inequality (3.1), we get

T (r, F ) + T (r,G) ≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G) +N
(2
E(r, 1;F )

+ 2NL(r, 1;F ) + 2NL(r, 1;G) +N(r, 1;G) + S(r, f)

≤ 2N(r,∞;F ) +N(r,∞;G) + µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f)

+N2(r, 0;G) +N(r, 1;G) + S(r, f).

i.e., for any ε > 0, in view of Lemma 2.13, the above inequality becomes

(m+ n)T (r, f) ≤ (ΓP − d̄(H) + 3)N(r,∞; f) + µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f)

+N2+ΓP−d(H)(r, 0; fd(H)) + 2(d̄(H)− d(H))T (r, f) + S(r, f)

≤ {(ΓP − d̄(H) + 3)− (ΓP − d̄(H) + 3)Θ(∞, f) + µ2 − µ2δµ∗2 (wp, f)

+ d(H)− d(H)δ2+ΓP−d(H)(r, 0; f) + (m+ n− p) + 2(d̄(H)− d(H)) + ε}T (r, f)

+ S(r, f).
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i.e.,

(ΓP − d̄(H) + 3)Θ(∞, f) + µ2δµ∗2 (wp, f) + d(H)δ2+ΓP−d(H)(r, 0; f) ≤ ΓP + µ2 + 3

− p+ d̄(H)− d(H),

which contradicts to the condition (1.7) of Theorem 1.16.

Subcase 1.1.2. If l = 1, then using the inequality (3.1) and Lemma 2.3, we get

T (r, F ) + T (r,G) ≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G) +N
(2
E(r, 1;F )

+ 2NL(r, 1;F ) + 2NL(r, 1;G) +N(r, 1;G) + S(r, f)

≤ 5
2
N(r,∞;F ) +N(r,∞;G) +

1
2
N(r, 0;F ) + µ2Nµ∗2 (r, wp; f)

+ (m+ n− p)T (r, f) +N2(r, 0;G) +N(r, 1;G) + S(r, f).

i.e., for any ε > 0, in view of Lemma 2.13, the above inequality becomes

(m+ n)T (r, f) ≤ (ΓP − d̄(H) +
7
2
)N(r,∞; f) +

1
2
N(r, wp; f) +

1
2
(m+ n− p)T (r, f)

+ µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f) +N2+ΓP−d(H)(r, 0; fd(H))

+ 2(d̄(H)− d(H))T (r, f) + S(r, f)

≤ {(ΓP − d̄(H) +
7
2
)− (ΓP − d̄(H) +

7
2
)Θ(∞, f) + 1

2
− 1

2
Θ(wp, f)

+ µ2 − µ2δµ∗2 (wp, f) + d(H)− d(H)δ2+ΓP−d(H)(r, 0; f) +
3(m+ n− p)

2
+ 2(d̄(H)− d(H)) + ε}T (r, f) + S(r, f).

i.e.,

(ΓP − d̄(H) +
7
2
)Θ(∞, f) + 1

2
Θ(wp, f) + µ2δµ∗2 (wp, f) + d(H)δ2+ΓP−d(H)(r, 0; f)

≤ ΓP + µ2 + 4 +
m+ n− 3p

2
+ d̄(H)− d(H),

which contradicts to the condition (1.8) of Theorem 1.16.

Subcase 1.2. If l = 0, then applying the second fundamental theorem and Lemmas 2.2, 2.3, 2.4
we get

T (r, F ) + T (r,G) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) +N(r,∞;G) +N(r, 0;G)

+N(r, 1;G)−N0(r, 0;F
′
)−N0(r, 0;G

′
) + S(r, F ) + S(r,G)

≤ N(r,∞;F ) +N(r, 0;F ) +N(r,∞;G) +N(r, 0;G) +N(r,∞; ∆)

+N
(2
E(r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N(r, 1;G)−N0(r, 0;F

′
)

−N0(r, 0;G
′
) + S(r, F ) + S(r,G)

≤ 2N(r,∞;F ) +N(r,∞;G) +N2(r, 0;F ) +N2(r, 0;G) +N
(2
E(r, 1;F )

+ 2NL(r, 1;F ) + 2NL(r, 1;G) +N(r, 1;G) + S(r, f)

≤ 2N(r,∞;F ) +N(r,∞;G) + µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f)

+N2(r, 0;G) + 2(N(r,∞;F ) +N(r, 0;F )) +N(r,∞;G) +N(r, 0;G)

+N
(2
E(r, 1;F ) +NL(r, 1;G) +N(r, 1;G) + S(r, f)

≤ 4N(r,∞;F ) + µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f) +N2(r, 0;G)

+ 2N(r,∞;G) +N(r, 0;G) + 2N(r, 0;F ) + T (r,G) + S(r, f)
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i.e., for any ε > 0, in view of Lemma 2.13, the above inequality becomes

(m+ n)T (r, f) ≤ (2(ΓP − d̄(H)) + 6)N(r,∞; f) + µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f)

+N2+ΓP−d(H)(r, 0; fd(H)) + 2(d̄(H)− d(H))T (r, f) +N1+ΓP−d(H)(r, 0; fd(H))

+ 2N(r, wp; f) + 2(m+ n− p)T (r, f) + S(r, f)

≤ {(2(ΓP − d̄(H)) + 6)− (2(ΓP − d̄(H)) + 6)Θ(∞, f) + µ2 − µ2δµ∗2 (wp, f)

+ d(H)− d(H)δ2+ΓP−d(H)(r, 0; f) + d(H)− d(H)δ1+ΓP−d(H)(r, 0; f) + 2−

2Θ(wp, f) + (m+ n− p) + 2(d̄(H)− d(H)) + ε}T (r, f) + S(r, f).

i.e.,

(2(ΓP − d̄(H)) + 6)Θ(∞, f) + 2Θ(wp, f) + µ2δµ∗2 (wp, f) + d(H)

(
2∑
i=1

δi+ΓP−d(H)(r, 0; f)

)
≤ 2ΓP + µ2 + 8 + 2(m+ n)− 3p+ 2(d̄(H)− d(H)),

which contradicts to the condition (1.9) of Theorem 1.16.

Case 2. Next we assume that ∆ ≡ 0. Then on integration of (2.1), we get,

1
G− 1

≡ A

F − 1
+B, (3.2)

where A(6= 0) and B are complex constants. Clearly F and G share (1,∞). Also, by construc-
tion of F and G, F and G share (∞, 0). So using Lemma 2.13 and condition (1.7) of Theorem
1.16, we obtain

N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G) +NL(r,∞;F ) +NL(r,∞;G) + S(r)

≤ µ2Nµ∗2 (r, wp; f) + (m+ n− p)T (r, f) +N2+ΓP−d(H)(r, 0; fd(H))

+ (ΓP − d(H) + 3)N(r,∞; f) + 2(d̄(H)− d(H))T (r, f) + S(r)

≤ {ΓP + 3 + µ2 +m+ n− p+ 2(d̄(H)− d(H))− (ΓP + µ2 + 3− p+ 2d̄(H)− 2d(H)) + ε}
T (r, f) + S(r)

≤ (m+ n)T (r, f) + S(r)

< T (r, F ) + S(r).

Hence inequality (1) of Lemma 2.5 does not hold. Again in view of Lemma 2.10, we get FG 6≡
1. Therefore F ≡ G i.e., P(f) ≡ H[f ].
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