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Abstract The present article deals with the oscillatory nature of nonlinear impulsive frac-
tional differential equations of order α, where α ∈ (2, 3). Here, some oscillation results are
established using sufficient parts of the differential inequalities established via differential in-
equality methods. Also, abstract results are illustrated by an example.

1 Introduction

Fractional differential equations are the generalization of integer order classical differential equa-
tions to non-integer orders. Due to the wide applicability of these differential equations in many
science and engineering areas, fractional calculus deserves an independent study parallel to the
well-known theory of ordinary differential equations. The accountable number of scientific and
engineering problems, including fractional derivatives, is already very large and growing. Frac-
tional order differential equations came into existence because ordinary differential equations
cannot formulate many physical problems. Also, fractional differentials and integrals provide a
more accurate model of the system under consideration.

Initially, the existence, uniqueness, approximations of solutions, and controllability of frac-
tional differential equations have been studied by many authors. Some such work can be found
in papers [20, 22, 23]. Basic results and definitions of fractional differential equations are dis-
cussed in [5, 11, 19]. In the last few decades, various types of models on fractional derivatives
have been studied by many authors [20, 21, 24, 25]. In recent years, a huge interest in studying
oscillatory and non-oscillatory behavior of solutions for different types of fractional differential
equations developed [14, 24, 25, 26, 27], etc. In papers [2, 3, 10, 16, 18, 26], authors studied
the oscillatory behavior of different classes of fractional differential equations without impulses.
Oscillation criteria for different orders of neutral differential equations have been discussed in
[1].

The physical problem, where parameters are subject to short-term perturbations, can be mod-
eled as impulsive differential equations. The differential equations with impulsive effect can
be used to simulate those discontinuous processes in which impulses occur. So, it becomes an
important tool to handle the natural process of mathematical models and phenomena such as in
optimal control, electric circuit, biotechnology, population dynamics, fractals, neural network,
viscoelasticity, chemical technology. For more details on impulsive differential equations, we
refer to the paper [12]. Investigation on oscillation theory for impulsive differential equations
started in 1989 [9] and is at the initial stage of its development. Later on, authors in papers
[4, 6, 7, 15] have extended the study of oscillation to parabolic and hyperbolic impulsive par-
tial differential equations. In the past few years, many researchers have shown great interest in
studying the oscillatory behavior of solutions of fractional differential equations with impulsive
conditions. For these studies, we refer to [6, 7, 8, 13, 15, 17, 21, 24, 25] and references cited in
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these papers. In [24], Sadhasivam and Deepa derived some sufficient conditions for oscillatory
solutions of hybrid partial differential equations with impulses. New oscillation criteria (known
as Philos type) were obtained for a class of second-order differential equations with impulses in
[25].

Our work is motivated by the work of [21], in which oscillatory properties are studied for a
noninteger order differential equation with impulsive conditions. In this paper, we extended the
study of oscillatory behavior of solutions to a class of impulsive fractional differential equations
of order 2 < α < 3. We investigated how the impulses affect the oscillation of solutions. The
mathematical formulation of the considered problem is given by:



Dα
+,tu(z, t) + a1(t)D

α−1
+,t u(z, t) + a2(t)D

α−2
+,t u(z, t)

+a3(t)g

(∫ ∞
t

(s− t)−(α−2)u(z, s)ds

)
= 0, t 6= tj ,

Dα−1
+,t u(z, t

+
j )−Dα−1

+,t u(z, t
−
j ) = ρ1(z, tj)D

α−1
+,t u(z, tj),

Dα−2
+,t u(z, t

+
j )−Dα−2

+,t u(z, t
−
j ) = ρ2(z, tj)D

α−2
+,t u(z, tj),

j = 1, 2, 3, . . . , (z, t) ∈ D ×R+ = Ω,

(1.1)

where a1, a2, a3, g are piecewise continuous functions defined from [t0,∞) into R+ with discon-
tinuities at t = tj , j = 1, 2, . . . but continuous from left at t = tj . g also satisfies zg(z) > 0, for
z 6= 0. Dα

+,t is the fractional derivative of Riemann-Liouville type, where α ∈ (2, 3), D ⊂ Rn is
bounded with a smooth boundary ∂D and D̄ = D ∪ ∂D.

The organization of the rest of this paper is as follows. Section 2 contains some basic lemmas
and assumptions which are required for the next sections. In section 3, some oscillation criteria
are obtained for the problem (1.1) by using differential inequality methods.

2 Preliminaries and Assumptions

Throughout the paper, we assume the following assumptions:

(H1) The functions ρi : D̄ ×R+ → R+ (i = 1, 2) are such that

ρ1(z, tj) ≤ βj , ρ2(z, tj) ≤ γj .

(H2) The given numbers
0 < t1 < · · · < tj < · · ·

are such that
lim
j→∞

tj = +∞.

(H3) The solution u(z, t) of the problem (1.1), Dα−1
+,t u(z, t) and Dα−2

+,t u(z, t) are piecewise con-
tinuous with discontinuities of first kind only at t = tj , and left continuous at t = tj i.e.,
u(z, t−j ) = u(z, tj), Dα−1u(z, t−j ) = Dα−1u(z, tj), Dα−2u(z, t−j ) = Dα−2u(z, tj).

Lemma 2.1. [21] For any function U : R+ → R, (Dα
+,tU)(t) = (Dα−1

+,t U)
′(t) and (Dα

+,tU)(t) =

(Dα−2
+,t U)

′′(t).

Lemma 2.2. [14] For any function U : R+ → R, let

G(t) =

∫ t

0
(t− τ)−(α−2)U(τ)dτ, where α ∈ (2, 3) and t ≥ 0, then

G′(t) = Γ(3− α)(Dα−2
+,t U)(t).

Lemma 2.3. [12] Assume that

V ′(t) ≤ g1(t)V (t) + g2(t), t 6= ti, t ≥ t0
V (t+i ) ≤ (1 + ai)V (ti), i = 1, 2, 3, . . . ,
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where {ti} is an increasing sequence such that lim
i→∞

ti = +∞, V ∈ PC1[R+,R+], g1, g2 ∈
PC[R+,R+] and ai are constants. Then

V (t) ≤ V (t0)
∏

t0<ti<t

(1 + ai) exp
(∫ t

t0

g1(s)ds

)

+

∫ t

t0

∏
s<ti<t

(1 + ai) exp
(∫ t

s

g1(σ)dσ

)
g2(s)ds, t ≥ t0.

3 Main Results

Theorem 3.1. If each solution of the following system of inequalities
Dα

+,tU(t) + a1(t)D
α−1
+,t U(t) + a2(t)D

α−2
+,t U(t) + a3(t)g(G(t)) ≤ 0

Dα−1
+,t U(t

+
j ) ≤ (1 + βj)D

α−1
+,t U(tj)

Dα−2
+,t U(t

+
j ) ≤ (1 + γj)D

α−2
+,t U(tj)

(3.1)

is eventually negative and each solution of the following system of inequalities
Dα

+,tU(t) + a1(t)D
α−1
+,t U(t) + a2(t)D

α−2
+,t U(t) + a3(t)g(G(t)) ≥ 0

Dα−1
+,t U(t

+
j ) ≥ (1 + βj)D

α−1
+,t U(tj)

Dα−2
+,t U(t

+
j ) ≥ (1 + γj)D

α−2
+,t U(tj)

(3.2)

is eventually positive, then all nonzero solutions of (1.1) are oscillatory in the domain Ω, where

G(t) =

∫ ∞
t

(s− t)−(α−2)U(s)ds.

Proof. Let on contrary, we assume that u(z, t) 6= 0 be a non oscillatory solution of (1.1) and for
some τ ≥ t0, u(z, t0) > 0 for t ≥ τ.

Case 1: t 6= tj . Integrating the first equation of (1.1) with respect to z over the domain D, we
have

Dα
+,t

∫
D

u(z, t)dz + a1(t)D
α−1
+,t

∫
D

u(z, t)dz + a2(t)D
α−2
+,t

∫
D

u(z, t)dz

= −a3(t)

∫
D

g

(∫ ∞
t

(s− t)−(α−2)u(z, s)ds

)
dz. (3.3)

Using Jensen’s inequality, we get∫
D

g

(∫ ∞
t

(s− t)−(α−2)u(z, s)ds

)
dz

≥ g
(∫

D

(∫ ∞
t

(t− s)−(α−2)u(z, s)ds

)
dz

)

≥
(∫

D

dz

)
g

[∫ ∞
t

(t− s)−(α−2)
(∫

D

u(z, s)dz

)(∫
D

dz

)−1

ds

]
.

Let U(t) =
∫
D
u(z, t)dz∫
D
dz

. Using the above inequality in (3.3), we get

Dα
+,tU(t) + a1(t)D

α−1
+,t U(t) + a2(t)D

α−2
+,t U(t) + a3(t)g(G(t)) ≤ 0. (3.4)

Case 2: t = tj . From last two equations of (1.1), we have

Dα−1
+,t

∫
D

u(z, t+j )dz ≤ (1 + βj)D
α−1
+,t

∫
D

u(z, tj)dz

Dα−2
+,t

∫
D

u(z, t+j )dz ≤ (1 + γj)D
α−2
+,t

∫
D

u(z, tj)dz.
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Dividing both equations by
∫
D
dz, we get

Dα−1
+,t U(t

+
j ) ≤ (1 + βj)D

α−1
+,t U(tj) (3.5)

Dα−2
+,t U(t

+
j ) ≤ (1 + γj)D

α−2
+,t U(tj). (3.6)

Thus the equations (3.4), (3.5) and (3.6) show that the functionU(t) =
∫
D
u(z,t)dz∫
D
dz

is an eventually
positive solution of (3.1) which is a contradiction.

Secondly, in the case of eventually negative solutions of (1.1), the arguments are similar.

Lemma 3.2. For an eventually positive solution U(t) of (3.1) such that (Dα
+,tU)(t) > 0 for

t ≥ τ > 0, and ∫ ∞
τ

exp
(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =∞,

then (Dα−2
+,t U)(t) > 0 for t ≥ τ.

Proof. If we take u1(t) = exp
(∫ t

t0

a2(σ)

a1(σ)
dσ

)
, then

[(Dα−2
+,t U)(t)u1(t)]

′ = (Dα−1
+,t U)(t)u1(t) +

a2(t)

a1(t)
(Dα−2

+,t U)(t)u1(t)

=
1

a1(t)
[a1(t)(D

α−1
+,t U)(t) + a2(t)(D

α−2
+,t U)(t)]u1(t)

≤ − 1
a1(t)

[(Dα
+,tU)(t) + a3(t)g(G(t))]u1(t) < 0.

This implies that (Dα−2
+,t U)(t)u1(t) is strictly decreasing for t ≥ τ and is eventually of constant

sign. Since u1(t) > 0, we see that (Dα−2
+,t U)(t) is eventually of constant sign. We now claim

that (Dα−2
+,t U)(t) > 0 for t ≥ τ , otherwise (Dα−2

+,t U)(t) < 0 for t ≥ τ . Since (Dα−2
+,t U)(t)u1(t)

is strictly decreasing for t ≥ τ , it follows that

(Dα−2
+,t U)(t)u1(t) < (Dα−2

+,t U)(τ)u1(τ) = C < 0, t ≥ τ.

From Lemma 2.2, we get

G′(t)

Γ(3− α)
= (Dα−2

+,t U)(t) < C exp
(
−
∫ t

t0

a2(σ)

a1(σ)
dσ

)
, t ≥ τ.

On integration from τ to t, we have

G(t) < G(τ) + CΓ(3− α)
∫ t

τ

exp
(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds.

By taking limit, we get lim
t→∞

G(t) = −∞, which contradicts the fact that G(t) > 0. Hence

(Dα−2
+,t U)(t) > 0 for t ≥ τ .

Following the process of the above lemma, we have:

Lemma 3.3. For an eventually negative solution of (3.2) such that (Dα
+,tU)(t) < 0 for t ≥ τ > 0,

and ∫ ∞
τ

exp
(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =∞,

then (Dα−2
+,t U)(t) < 0 for t ≥ τ.



102 A. Raheem, A. Afreen and A. Khatoon

Theorem 3.4. If all the conditions of Lemma 3.2 and Lemma 3.3 are satisfied and further, we
assume that for some τ ∈ [t0,∞),

lim inf
t→∞

W (t)∏
t0<tj<t

(1 + γj)
= −∞, (3.7)

and

lim sup
t→∞

W (t)∏
t0<tj<t

(1 + γj)
=∞, (3.8)

where

W (t) =

∫ t

τ

∏
t0<tj<s

(1 + βj)
∏

s<tj<t

(1 + γj) exp
(
−
∫ s

t0

a1(σ)dσ

)
ds,

then each nonzero solution of (1.1) oscillates in domain Ω.

Proof. To complete the proof, it is sufficient to show that every solution of (3.1) is eventually
negative and every solution of (3.2) is eventually positive. Let on contrary, first we assume
that (3.1) has an eventually positive solution U(t) (say). Let v(t) = (Dα−2

+,t U)(t), then using
Lemma 2.1, we have v′(t) = (Dα−1

+,t U)(t) and v′′(t) = (Dα
+,tU)(t). From (3.1), we have

v′′(t) + a1(t)v′(t) ≤ 0,
v′(t+j ) ≤ (1 + βj)v′(tj),

v(t+j ) ≤ (1 + γj)v(tj).

(3.9)

Putting v′(t) = u(t) and v′′(t) = u′(t), we obtain from above inequality{
u′(t) ≤ −a1(t)u(t), t 6= tj ,

u(t+j ) ≤ (1 + βj)u(tj).

Using Lemma 2.3, we get

u(t) ≤ u(t0)
∏

t0<tj<t

(1 + βj) exp
(
−
∫ t

t0

a1(σ)dσ

)
.

Putting u(t) = v′(t) and using inequality (3.9), we have
v′(t) ≤ v′(t0)

∏
t0<tj<t

(1 + βj) exp
(
−
∫ t

t0

a1(σ)dσ

)
,

v(t+j ) ≤ (1 + γj)v(tj).

Again using Lemma 2.3, we have

v(t) ≤ v(t0)
∏

t0<tj<t

(1 + γj) + v′(t0)W (t)

⇒ v(t)∏
t0<tj<t

(1 + γj)
≤ v(t0) + v′(t0)

W (t)∏
t0<tj<t

(1 + γj)
.

Taking limit infimum and using the condition (3.7), we have

lim inf
t→∞

v(t)∏
t0<tj<t

(1 + γj)
= −∞
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which contradicts our assumption that v(t) > 0.
Secondly, suppose on contrary, (3.2) has an eventually negative solution Ũ(t). Then, for

some τ1 ∈ [t0,∞), we have Ũ(t) < 0, t ≥ τ1. Let ṽ(t) = (Dα−2
+,t )Ũ(t), t ≥ τ1. Using Lemma 3.3

in (3.2), we have 
ṽ′′(t) + a1(t)ṽ′(t) ≥ 0, t 6= tj ,

ṽ′(t+j ) ≥ (1 + βj)ṽ′(tj),

ṽ(t+j ) ≥ (1 + γj)ṽ(tj).

(3.10)

Let ṽ′(t) = −ũ(t) and ṽ′′(t) = −ũ′(t), then we have{
ũ′(t) ≤ −a1(t)ũ(t), t 6= tj ,

ũ(t+j ) ≤ (1 + βj)ũ(tj).

Using Lemma 2.3, we get

ũ(t) ≤ ũ(t0)
∏

t0<tj<t

(1 + βj) exp
(
−
∫ t

t0

a1(σ)dσ

)
.

Using (3.10), we have
−ṽ′(t) ≤ −ṽ′(t0)

∏
t0<tj<t

(1 + βj) exp
(
−
∫ t

t0

a1(σ)dσ

)
,

−ṽ(t+j ) ≤ −(1 + γj)ṽ(tj).

Again using Lemma 2.3, we get

−ṽ(t) ≤ −ṽ(t0)
∏

t0<tj<t

(1 + γj)− ṽ′(t0)W (t)

⇒ ṽ(t)∏
t0<tj<t

(1 + γj)
≥ ṽ(t0) + ṽ′(t0)

W (t)∏
t0<tj<t

(1 + γj)
.

Taking limit supremum and using the condition (3.8), we have

lim sup
t→∞

ṽ(t)∏
t0<tj<t

(1 + γj)
=∞,

which contradicts our assumption that ṽ(t) < 0.

Theorem 3.5. Let (H1)-(H3) hold. We further assume that

(i) (Dα−1
+,t U)(t) > 0, (Dα−2

+,t U)(t) > 0, U(t) > 0, t ≥ τ1.

(ii) (Dα−1
+,t U)(t) < 0, (Dα−2

+,t U)(t) < 0, U(t) < 0, t ≥ τ2.

If

lim inf
t→∞

∏
t0<tj<t

(
1 + βj
1 + γj

)
exp

(
−
∫ t

t0

a1(σ)dσ

)
= −∞ (3.11)

and

lim sup
t→∞

∏
t0<tj<t

(
1 + βj
1 + γj

)
exp

(
−
∫ t

t0

a1(σ)dσ

)
=∞, (3.12)

then all the nonzero solutions of (1.1) oscillate.
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Proof. Let on contrary U(t) be an eventually positive solution of (3.1) and v(t) = (Dα−2
+,t U)(t),

then using Lemma 2.1, we have v′(t) = (Dα−1
+,t U)(t) and v′′(t) = (Dα

+,tU)(t). Using condition
(i) in (3.1), for t ≥ τ1, we have

v′′(t) + a1(t)v′(t) ≤ 0, t 6= tj ,

v′(t+j ) ≤ (1 + βj)v′(tj),

v(t+j ) ≤ (1 + γj)v(tj).

(3.13)

If we define

Z(t) =
v′(t)

v(t)
,

then

Z ′(t) =
v′′(t)

v(t)
−
[
v′(t)

v(t)

]2

.

Using (3.13), we have

Z ′(t) ≤ −a1(t)Z(t)− [Z(t)]
2 ≤ −a1(t)Z(t).

Using the last two inequalities of (3.13), we have{
Z ′(t) ≤ −a1(t)Z(t),

Z(t+j ) ≤
(

1+βj

1+γj

)
Z(tj).

Using Lemma 2.3, we get

Z(t) ≤ Z(t0)
∏

t0<tj<t

(
1 + βj
1 + γj

)
exp

(
−
∫ t

t0

a1(σ)dσ

)
.

Taking limit infimum, we get lim inf
t→∞

Z(t) = −∞, which contradicts our assumption that Z(t) is
an eventually positive.

By using similar arguments, we get a contradiction if we assume U(t) is an eventually nega-
tive solution of (3.2).

Theorem 3.6. Assume that all the assumptions of Theorem 3.5 hold and further, we assume that
there exist real valued continuously differentiable functions Ψ(t, s), φ(t, s) with domain D1 =
{(t, s)|t ≥ s ≥ t0 > 0}, with conditions

(A1) Ψ(t, t) = 0, t ≥ t0, and Ψ(t, s) > 0, t > s ≥ t0;

(A2)
∂

∂t
Ψ(t, s) ≥ 0,

∂

∂s
Ψ(t, s) ≤ 0;

(A3) φ(t, s) =
∂Ψ(t, s)

∂s
− a1(t)Ψ(t, s).

If

lim inf
t≥t0

 1
Ψ(t, t0)

∫ t

t0

∏
t0≤tj<s

(
1 + βj
1 + γj

)−1
φ2(t, s)

Ψ(t, s)
ds

 = −∞,

then each nonzero solution of (1.1) is oscillatory in Ω.

Proof. To complete the proof, it is sufficient to show that each solution of (3.1) is eventually
negative. If we assume that (3.1) has an eventually positive solution, then following the proof of
Theorem 3.5, we have {

Z ′(t) + a1(t)Z(t) + [Z(t)]
2 ≤ 0,

Z(t+j ) ≤
(

1+βj

1+γj

)
Z(tj).

(3.14)
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Define

H(t) =
∏

t0≤tj<t

(
1 + βj
1 + γj

)−1

Z(t).

Using second inequality of (3.14), we get

H(t+j ) =
∏

t0≤ti≤tj

(
1 + βj
1 + γj

)−1

Z(t+j ) ≤
∏

t0≤ti<tj

(
1 + βj
1 + γj

)−1

Z(tj) = H(tj)

which implies that H(t) is continuous on [t0,∞).
From (3.14), we have

H ′(t) + a1(t)H(t) +
∏

t0≤tj<t

(
1 + βj
1 + γj

)
H2(t) ≤ 0.

Multiplying by Ψ(t, s), and integrating from t0 to t, we get∫ t

t0

Ψ(t, s)H ′(s)ds+

∫ t

t0

Ψ(t, s)a1(s)H(s)ds

+

∫ t

t0

∏
t0≤tj<s

(
1 + βj
1 + γj

)
Ψ(t, s)H2(s)ds ≤ 0.

Since ∫ t

t0

Ψ(t, s)H ′(s)ds = −Ψ(t, t0)H(t0)−
∫ t

t0

∂Ψ(t, s)

∂s
H(s)ds.

Therefore, we have∫ t

t0

∏
t0≤tj<s

(
1 + βj
1 + γj

)
Ψ(t, s)H2(s)ds+

∫ t

t0

Ψ(t, s)a1(s)H(s)ds

−Ψ(t, t0)H(t0)−
∫ t

t0

∂Ψ(t, s)

∂s
H(s)ds ≤ 0.

Using condition (A3), we get∫ t

t0

∏
t0≤tj<s

(
1 + βj
1 + γj

)
Ψ(t, s)H2(s)ds−

∫ t

t0

φ(t, s)H(s)ds ≤ Ψ(t, t0)H(t0).

Using the inequality λABλ−1 −Aλ ≤ (λ− 1)Bλ, λ ≥ 1, we get

−
∫ t

t0

∏
t0≤tj<s

(
1 + βj
1 + γj

)−1
φ2(t, s)

Ψ(t, s)
ds ≤ 4Ψ(t, t0)H(t0).

⇒ lim inf
t≥t0

 1
Ψ(t, t0)

∫ t

t0

∏
t0≤tj<s

(
1 + βj
1 + γj

)−1
φ2(t, s)

Ψ(t, s)
ds

 ≥ −4H(t0)

which leads to a contradiction.

4 Application

In this section, we consider the following example to illustrate the main results:
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Example 4.1. Consider the following system of fractional impulsive differential equations:

D
11
5
+,tu(z, t) +

1
t2
D

6
5
+,tu(z, t) + tD

1
5
+,tu(z, t)

+
1
t
g

(∫ ∞
t

(s− t)− 1
5u(z, s)ds

)
= 0, t 6= tj ,

D
6
5
+,tu(z, t

+
j )−D

6
5
+,tu(z, t

−
j ) = tj

−5 sin(z)D
6
5
+,tu(z, tj),

D
1
5
+,tu(z, t

+
j )−D

1
5
+,tu(z, t

−
j ) = tj

−3 sin(z)D
1
5
+,tu(z, tj),

j = 1, 2, 3, . . . , (z, t) ∈ (0, π2 )×R+ = D.

(4.1)

Here, we easily see that∫ ∞
τ

exp
(
−
∫ s

t0

a2(σ)

a1(σ)
dσ

)
ds =

∫ ∞
τ

exp
(
−
∫ s

t0

1
σ
dσ

)
ds =

∫ ∞
τ

t0
s
ds =∞.

Furthermore, we have

lim sup
t→∞

∫ t

t0

∏
t0<tj<s

(1 + βj)
∏

s<tj<t

(1 + γj) exp
(
−
∫ s

t0

a1(σ)dσ

)
ds∏

t0<tj<t

(1 + γj)
=∞

and

lim inf
t→∞

∫ t

t0

∏
t0<tj<s

(1 + βj)
∏

s<tj<t

(1 + γj) exp
(
−
∫ s

t0

a1(σ)dσ

)
ds∏

t0<tj<t

(1 + γj)
= −∞.

Thus all the conditions of Theorem 3.4 are satisfied. Therefore each nonzero solution of the
problem (4.1) oscillates.
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