LAPLACIAN AND SIGNLESS LAPLACIAN DEGREE PRODUCT DISTANCE ENERGY OF SOME GRAPHS

SUDHIR.R.JOG and JEETENDRA.R.GURJAR
Communicated by Ayman Badawi

MSC 2010 Classifications: 05C50.
Keywords and phrases:Average square degree,First Zagreb index,Laplacian degree product distance Energy, signless Laplacian degree product distance Energy,

Abstract

In this paper we define the Laplacian and signless Laplacian degree product distance matrix from the well known degree product distance matrix. Further we define Laplacian degree product distance energy and signless Laplacian degree product distance energy. We obtain the Laplacian degree product distance energy and signless Laplacian degree product distance energy of some graphs of diameter 2 .

1 Introduction

All the graphs considered here are finite simple, connected and undirected.Let G be a connected graph of order n,the degree of a vertex is the number of edges incident on it and the distance between two vertices is the length of the shortest path joining them.

The concept of distance valency matrix was introduced in 1999 by O.Ivanciuc [1].The distance valency matrix for a simple graph G of order n is defined by, $\operatorname{Dval}(p, q, r)=\operatorname{Dval}(p, q, r, G)$ as a square $n \times n$ matrix with entries $[\operatorname{Dval}(p, q, r)]_{i j}$ given by,

$$
\begin{aligned}
{[\operatorname{Dval}(p, q, r)]_{i j} } & =d_{i j}^{p} \text { val }_{i}^{q} v a l_{j}^{r}, \text { if } i \neq j \\
& =0, \text { if } i=j
\end{aligned}
$$

where $d_{i j}$ is the distance between vertex v_{i} and v_{j} and val means valency or degree of the vertex with p, q and r being real numbers. Molecular matrices A, D, RD, $\operatorname{Dval}(-1,1,1), \operatorname{Dval}(-2,1,1)$, $\operatorname{Dval}(-2,0,0)$ have been already discussed. We have discussed Dval $(1,1,1)$ in [2] as $D P D(G)$.

The Zagreb index was first introduced by Gutman and Trinajstic as , $M_{1}(G)=\sum_{v \in V} d(v)^{2}$.For more details one can refer [3],[4], [5].

Several results on Laplacian energy of graph G are reported in the literature [6],[7],[8]. Recently signless Laplacian energy is studied in the literature [9],[10],[11]. We consider the abbreviation for Laplacian degree product distance matrix as $L_{D P D M}$, Laplacian degree product distance energy as $L E_{D P D}$, signless Laplacian degree product distance matrix as $Q_{D P D M}$, and signless Laplacian degree product distance energy as, $Q E_{D P D}$. In this paper we define the Laplacian degree product distance matrix as, $L_{D P D}(G)=D^{2}(G)-D P D M(G)$ and signless Laplacian degree product distance matrix as, $Q_{D P D}(G)=D^{2}(G)+D P D M(G)$, where $D^{2}(G)$ is square of the degree matrix of G.
The following hold for $L_{D P D}(G)$ and $Q_{D P D}(G)$.

- Since the matrix $L_{D P D}(G)$ and $Q_{D P D}(G)$ are real symmetric, their eigenvalues are real.
- The sum of eigenvalues of $L_{D P D}(G)$ or $Q_{D P D}(G)$ is first Zagreb index of G,since
$\operatorname{trace} L_{D P D}(G)=\operatorname{trace} Q_{D P D}(G)=\sum_{i=1}^{n} d_{i}^{2}$.
- If β_{i} and $\gamma_{i}, i=1,2,3$. . n. are eigenvalues of $L_{D P D}(G)$ and $Q_{D P D}(G)$ respectively then they can be arranged in non-increasing order as $\beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{n}$ and $\gamma_{1} \geq \gamma_{2} \geq \ldots \geq \gamma_{n}$.

Definition: Let G be graph of order n and size m.If $a v d^{2}(G)$ denotes average square degree of a graph given by, $\frac{\sum_{1}^{n} d_{i}^{2}(G)}{n}$, then analogous to usual Laplacian and signless Laplacian energy we define the Laplacian and signless Laplacian degree product distance energy as,

$$
L E_{D P D}(G)=\sum_{i=1}^{n}\left|\beta_{i}-a v d^{2}(G)\right|=\sum_{i=1}^{n}\left|\beta_{i}-\frac{4 m^{2}-2 \sum_{i<j} d_{i} d_{j}}{n}\right|
$$

and

$$
Q E_{D P D}(G)=\sum_{i=1}^{n}\left|\gamma_{i}-a v d^{2}(G)\right|=\sum_{i=1}^{n}\left|\gamma_{i}-\frac{4 m^{2}-2 \sum_{i<j} d_{i} d_{j}}{n}\right|
$$

The average square degree of G is $\frac{9}{2}=4.5$
Example: For the graph G given below,

$L_{D P D}(G)=\left[\begin{array}{cccc}1 & -3 & -4 & -4 \\ -3 & 9 & -6 & -6 \\ -4 & -6 & 4 & -4 \\ -4 & -6 & -4 & 4\end{array}\right]$	$Q_{D P D}(G)=\left[\begin{array}{llll}1 & 3 & 4 & 4 \\ 3 & 9 & 6 & 6 \\ 4 & 6 & 4 & 4 \\ 4 & 6 & 4 & 4\end{array}\right]$
Laplacian degree product distance eigen values are $\beta_{1}=14.1155, \beta_{2}=8, \beta_{3}=$ 5.0233 and $\beta_{4}=-9.1388$	signless Laplacian degree product distance eigenvalues are $\gamma_{1}=19.0609$, $\gamma_{2}=1.4842, \gamma_{3}=0$ and $\gamma_{4}=-2.5451$
$\begin{aligned} & L E_{D P D}(G)=\|14.1155-4.5\|+\|8-4.5\|+ \\ & \|5.0233-4.5\|+\|4.5+9.1388\|=27.2776 \end{aligned}$	$\begin{aligned} & Q E_{D P D}(G)=\|19.0609-4.5\|+\mid 4.5- \\ & 1.4842\|+\|0+4.5\|+\|4.5+2.5451\|= \\ & 29.1215 . \end{aligned}$

2 Bound on largest signless Laplacian degree product distance eigenvalue

Proposition 2.1. The largest signless Laplacian degree product distance eigenvalue is bounded above by,
$\gamma_{1} \leq \frac{M_{1}}{n}+\sqrt{\frac{n-1}{n} M+M_{1}^{2}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}$, where

$$
M=\sum_{i=1}^{n} d_{i}^{4}+\sum_{\substack{i=1 \\ j=1}}^{n}\left(d_{i} d_{j} d_{i j}\right)^{2}
$$

with $d_{i j}=d\left(v_{i}, v_{j}\right), M_{1}=M_{1}(G)$ first Zagrab index of G.
Proof. The trace of $Q_{D P D}(G)$ is $\sum_{1}^{n} \gamma_{i}=\sum d_{i}^{2}=M_{1}$ so that, $\sum_{2}^{n} \gamma_{i}=M_{1}-\gamma_{1}, \sum_{1}^{n} \gamma_{i}^{2}=$ trace $L_{D P D}^{2}=M$ we have, $\gamma_{1}^{2}+\sum_{2}^{n} \gamma_{i}^{2}=M, \sum_{2}^{n} \gamma_{i}^{2}=M-\gamma_{1}^{2}$,
$\left(\sum_{2}^{n} \gamma_{i}\right)^{2} \leq(n-1) \sum_{2}^{n} \gamma_{1}^{2}$,
$\left(M_{1}-\gamma_{1}\right)^{2} \leq(n-1)\left(M-\gamma_{1}^{2}\right)$,
$M_{1}^{2}-2 M_{1} \gamma_{1}+\gamma_{1}^{2} \leq(n-1) M-(n-1) \gamma_{1}^{2}$,
$n \gamma_{1}^{2}-2 M_{1} \gamma_{1} \leq(n-1) M-M_{1}^{2}$,
$\gamma_{1}^{2}-\frac{2 M_{1}}{n} \gamma_{1} \leq \frac{(n-1)}{n} M-\frac{M_{1}^{2}}{n}$,
$\gamma_{1}^{2}-\frac{2 M_{1}}{n} \gamma_{1}+\frac{M_{1}^{2}}{n^{2}} \leq \frac{n-1}{n} M-\frac{M_{1}}{n}+\frac{M_{1}^{2}}{n^{2}}$,
$\gamma_{1}-\frac{M_{1}}{n} \leq \sqrt{\frac{n-1}{n} M+M_{1}^{2}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}$
Hence, $\gamma_{1} \leq \frac{M_{1}}{n}+\sqrt{\frac{n-1}{n} M+M_{1}^{2}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}$.
Since the largest Laplacian degree product distance eigenvalue of any matrix is smaller than largest signless Laplacian eigenvalue, the above bound also holds for Laplacian eigenvalue.
For the graph G in figure $1 ; n=4, M_{1}=18$ and $M=514$ giving $\gamma_{1}=15.7852$.
$\frac{M_{1}}{n}+\sqrt{\frac{n-1}{n} M+M_{1}^{2}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}=22.52083$.
Obviously for a graph with maximum pendent vertices such as star bound is close. For the graph $K_{1.4}, n=1, M_{1}=20$ and $M=436$ giving $\gamma_{1}=20.6788$.
$\frac{M_{1}}{n}+\sqrt{\frac{n-1}{n} M+M_{1}^{2}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}=20.8760184$.
Corollary 2.2. If G is a r-regular graph of order n, then
$\gamma_{1} \leq r^{2}+\sqrt{\frac{n-1}{n} M+r^{4}\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}$.
For cycle $C_{n}, r=2$ bound becomes $\gamma_{1} \leq 4+\sqrt{\frac{n-1}{n} M+16\left(\frac{1}{n^{2}}-\frac{1}{n}\right)}$.
Solving for M_{1} we have bound for first Zagrab index in terms of eigenvalues of $Q_{D P D}$ given by,
$M_{1} \leq \gamma_{1}+\sqrt{(n-1) \sum_{2}^{n} \gamma_{i}^{2}}$.
Lemma 2.3. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of any matrix P of order n then the eigenvalues of the matrix $k I_{n} \pm P$ are $k \pm \lambda_{1}, k \pm \lambda_{2}, . ., k \pm \lambda_{n}$.

Lemma 2.4. Let a and b be two arbitrary constants, I is the identity matrix and J is $n \times n$ matrix whose all entries 1^{\prime} s.If $A=(a-b) I+b J$ then the characteristic polynomial of A, is $|\lambda I-A|=[\lambda-a+b]^{n-1}[\lambda-a-(n-1) b]$.

Using Lemma[2.3] one can directly obtain the Laplacian and signless Laplacian degree product distance eigenvalues from its degree product distance eigenvalues for a regular graph G.The degree product distance energy is already discussed by the present authors in [2].
In general the Laplacian degree product distance energy and signless Laplacian degree product distance energy are equal for a regular graph G.This is consistent with the equality of Laplacian and signless Laplacian energy for regular graph G.

Hence we discuss graphs which are not regular.

$3 L E_{D P D}$ of some graphs of diameter 2

Theorem 3.1. The Laplacian degree product distance energy of the complete bipartite graph $K_{m, n}$ is, $L E_{D P D}\left(K_{m, n}\right)=\left|m n-3 n^{2}(m-1)\right|+\left|m n-n^{2}+2 n^{2}(m-1)\right|+\left|m n-\beta_{1}\right|+\left|m n-\beta_{2}\right|$, where β_{1} and β_{2} are the roots of the equation, $\left[\beta^{2}-\left(m^{2}-2 m^{2}(n-1)+n^{2}-2 n^{2}(m-1)\right) \beta+\right.$ $\left.\left(m^{2}-2 m^{2}(n-1)\right)\left(n^{2}-2 n^{2}(m-1)\right)-m^{3} n^{3}\right]=0$.

Proof. In $K_{m, n}, m$ vertices have degree n and n vertices have degree m. The diameter being 2 the structure of the degree product distance matrix is,
$L_{D P D}\left(K_{m, n}\right)=\left(\begin{array}{cc}n^{2} I_{m}-2 n^{2} A\left(K_{m}\right) & -m n J_{m \times n} \\ -m n J_{n \times m} & m^{2} I_{n}-2 m^{2} A\left(K_{n}\right)\end{array}\right)$
where J is matrix of all 1 's and A the adjacency matrix. The Laplacian degree product distance polynomial is then given by,
$\left|\beta I-L_{D P D}\left(K_{m, n}\right)\right|=\left|\begin{array}{cc}\left(\beta-n^{2}\right) I_{m}+2 n^{2} A\left(K_{m}\right) & m n J_{m \times n} \\ m n J_{n \times m} & \left(\beta-m^{2}\right) I_{n}+2 m^{2} A\left(K_{n}\right)\end{array}\right|$
Using Lemma 2.4 with, $a=\beta-m^{2}-\frac{m^{3} n^{2}}{\beta-n^{2}+2 n^{2}(m-1)}$ and $b=2 m^{2}-\frac{m^{3} n^{2}}{\beta-n^{2}+2 n^{2}(m-1)}$. $\left|\beta I-L_{D P D}\left(K_{m, n}\right)\right|=\left[\beta-3 n^{2}\right]^{m-1}\left[\beta-n^{2}+2 n^{2}(m-1)\right]\left[\beta^{2}-\left(m^{2}-2 m^{2}(n-1)+n^{2}-2 n^{2}(m-\right.\right.$ 1)) $\left.\beta+\left(m^{2}-2 m^{2}(n-1)\right)\left(n^{2}-2 n^{2}(m-1)\right)-m^{3} n^{3}\right]$.

So that $\beta=m+2 m^{2}(n-1)$ times, $n-2 n^{2}(m-1)$ times and remaining two given by roots of, $\left[\beta^{2}-\left(m^{2}-2 m^{2}(n-1)+n^{2}-2 n^{2}(m-1)\right) \beta+\left(m^{2}-2 m^{2}(n-1)\right)\left(n^{2}-2 n^{2}(m-1)\right)-m^{3} n^{3}\right]=0$.
Since the average square degree of $K_{m, n}$ is $\frac{m n^{2}+n m^{2}}{m+n}=m n$, theorem follows.

Corollary 3.2. If $m=1$ we get star graph $K_{1, n}$ whose Laplacian degree product distance energy is, $L E_{D P D}\left(K_{1, n}\right)=n^{2}+\left|n-\beta_{1}\right|+\left|n-\beta_{2}\right|$, where β_{1} and β_{2} are roots of the equation, $\left[\beta^{2}-\left(n^{2}-2 n+3\right) \beta+\left(n^{2}-2(n-1) n^{2}-n^{3}\right)\right]=0$.

Consider $K_{n}+e$ and $K_{n}-e$ graphs of diameter 2 obtained by adding or deleting an edge e respectively from the complete graph K_{n}.

Theorem 3.3. The $L E_{D P D}$ of $K_{n}+e$ is, $L E_{D P D}\left(K_{n}+e\right)=$
$\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-2(n-1)^{2}\right| \times(n-2)+\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-\beta_{1}\right|+$ $\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-\beta_{2}\right|+\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-\beta_{3}\right|$, where β_{1}, β_{2} and β_{3} are roots of the equation, $\left[\beta^{3}+\left((n-1)^{2}(n-3)-\left(n^{2}+1\right)\right) \beta^{2}-\left((n-1)^{2}(n-3)\left(n^{2}+1\right)+\left(n^{2}+\right.\right.\right.$ 4) $\left.\left.(n-1)^{3}\right) \beta+9 n^{2}(n-1)^{3}\right]=0$.

Proof. In $K_{n}+e$ one vertex having n degrees, one vertex having degree 1 remaining having $n-1$ degree then we get the matrix structure as,

$$
\begin{aligned}
& L_{D P D}\left(K_{n}+e\right)= \\
& {\left[\begin{array}{ccccccc}
n^{2} & -n & -n(n-1) & \ldots & -n(n-1) & \ldots & -n(n-1) \\
-n & 1 & -2(n-1) & \ldots & -2(n-1) & \ldots & -2(n-1) \\
-n(n-1) & -2(n-1) & (n-1)^{2} & \ldots & -(n-1)^{2} & \ldots & -(n-1)^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
-n(n-1) & -2(n-1) & -(n-1)^{2} & \ldots & (n-1)^{2} & \ldots & -(n-1)^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
-n(n-1) & -2(n-1) & -(n-1)^{2} & \ldots & -(n-1)^{2} & \ldots & (n-1)^{2}
\end{array}\right]} \\
& \left|\beta I-L_{D P D}\left(K_{n}+e\right)\right|= \\
& \left.\begin{array}{ccccccc}
\beta-n^{2} & n & n(n-1) & \ldots & n(n-1) & \ldots & n(n-1) \\
n & \beta-1 & 2(n-1) & \ldots & 2(n-1) & \ldots & 2(n-1) \\
n(n-1) & 2(n-1) & \beta-(n-1)^{2} & \ldots & (n-1)^{2} & \ldots & (n-1)^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
n(n-1) & 2(n-1) & (n-1)^{2} & \ldots & \beta-(n-1)^{2} & \ldots & (n-1)^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
n(n-1) & 2(n-1) & (n-1)^{2} & \ldots & (n-1)^{2} & \ldots & \beta-(n-1)^{2}
\end{array} \right\rvert\,
\end{aligned}
$$

Performing the operations, $C_{1}-\frac{n(n-1) \sum_{3}^{n+1} C_{i}}{\beta-(n-1)^{2}+(n-1)^{2}(n-2)}$
$C_{2}-\frac{2(n-1) \sum_{3}^{n+1} C_{i}}{\beta-(n-1)^{2}+(n-1)^{2}(n-2)}$, where $i=1,2, \ldots n$.
$\left|\beta I-L_{D P D}\left(K_{n}+e\right)\right|=$

$$
\left|\begin{array}{cc}
\beta-n^{2}-\frac{n^{2}(n-1)^{2}}{\beta-(n-1)+(n-1)^{2}(n-2)} & n-\frac{2 n(n-1)^{3}}{\beta-(n-1)+(n-1)^{2}(n-2)} \\
n-\frac{2 n(n-1)^{3}}{\beta-(n-1)+(n-1)^{2}(n-2)} & \beta-1-\frac{4(n-1)^{2}}{\beta-(n-1)+(n-1)^{2}(n-2)}
\end{array}\right|
$$

Laplacian degree product distance polynomial of $L_{D P D}\left(K_{n}+e\right)$ is,
$\left|\beta I-L_{D P D}\left(K_{n}+e\right)\right|=\left[\beta-2(n-1)^{2}\right]^{n-2}\left[\beta^{3}+\left((n-1)^{2}(n-3)-\left(n^{2}+1\right)\right) \beta^{2}-\left((n-1)^{2}(n-\right.\right.$ 3) $\left.\left.\left(n^{2}+1\right)+\left(n^{2}+4\right)(n-1)^{3}\right) \beta+9 n^{2}(n-1)^{3}\right]$. Extracting the eigenvalues and using the average square degree $=\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}$, theorem follows.

Theorem 3.4. The $L E_{D P D}$ of $K_{n}-e$ is,
$L E_{D P D}\left(K_{n}-e\right)=\left|\frac{(n-2)\left(n^{2}-3\right)}{n}-2(n+1)^{2}\right| \times(n-3)+\left|\frac{(n-2)\left(n^{2}-3\right)}{n}-(n-2)^{2}\right|+$ $\left|\frac{(n-2)\left(n^{2}-3\right)}{n}-\beta_{1}\right|+\left|\frac{(n-2)\left(n^{2}-3\right)}{n}-\beta_{2}\right|$, where β_{1} and β_{2} are roots of the equation, $\left[\beta^{2}-\left((n-1)^{2}(n-3)+(n-2)^{2}-(n-1)^{2}\right) \beta+(n-2)^{2}(n-1)^{2}(n-4)-2(n-2)^{3}(n-1)^{2}\right]=0$.
Proof.The graph $K_{n}-e$ is of diameter 2 and has two vertices with distance two remaining at distance one. So that the Laplacian degree product distance polynomial of $K_{n}-e$ is denoted by, $\left|\beta I-L_{D P D}\left(K_{n}-e\right)\right|=\left[\beta-2(n+1)^{2}\right]^{n-3}\left[\beta-(n-2)^{2}\right]\left[\beta^{2}-\left((n-1)^{2}(n-3)+(n-2)^{2}-\right.\right.$ $\left.\left.(n-1)^{2}\right) \beta+(n-2)^{2}(n-1)^{2}(n-4)-2(n-2)^{3}(n-1)^{2}\right]=0$. Extracting the eigenvalues and using the average square degree $=\frac{(n-2)\left(n^{2}-3\right)}{n}$, theorem follows.

Noe we consider another pair of graphs of diameter 2.

Let K_{n} be a complete graph of order n then the vertex coalescence of K_{n} with K_{n} will be denoted by $K_{n} O_{v} K_{n}$ and the edge coalescence by $K_{n} O_{e} K_{n} . K_{n} O_{v} K_{n}$ has $2 n-1$ vertices and $(2 n) C_{2}$ edges whereas $K_{n} O_{e} K_{n}$ has $2 n-2$ vertices and ($2 n$) $C_{2}-1$ edges.
Theorem 3.5. The $L E_{D P D}$ of $K_{n} O_{v} K_{n}$ is, $L E_{D P D}\left(K_{n} O_{v} K_{n}\right)=\left\lvert\, \frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}-\right.$ $2(n-1)^{2}\left|\times n+\left|\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}-6(n-1)^{2}\right| \times(n-3)+\left|\beta_{1}-\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}\right|+\right.$ $\left|\beta_{2}-\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}\right|$, where β_{1} and β_{2} are the roots of the equation, $\left[\beta^{2}+(n-1)^{2}(3 n-9) \beta-4(n-1)^{4}(5 n-7)\right]=0$.
Proof.The graph $K_{n} O_{v} K_{n}$ is of diameter 2 has two sets of vertices one at a distance 2 from each other and other at 1 .There is one vertex of degree $(2 n-2)$ and remaining $(2 n-2)$ of degree $(n-1)$. Since the average degree square of $K_{n} O_{v} K_{n}$ is, $a v d^{2}\left(K_{n} O_{v} K_{n}\right)=\frac{2(n-1)^{2}+2(n-1)^{3}}{n}$. With suitable labeling the $L_{D P D}$ of $K_{n} O_{v} K_{n}$ takes the form,
$L_{D P D}\left(K_{n} O_{v} K_{n}\right)=$

So that the Laplacian degree product distance polynomial of $K_{n} O_{v} K_{n}$ is denoted by,
$\left|\beta I-L_{D P D}\left(K_{n} O_{v} K_{n}\right)\right|$. Simplifying finally we arrive at
$\left|\beta I-L_{D P D}\left(K_{n} O_{v} K_{n}\right)\right|=$
$[\beta-2(n-1)]^{n}\left[\beta-6(n-1)^{2}\right]^{n-3}\left[\beta^{2}+(n-1)^{2}(3 n-9) \beta-4(n-1)^{4}(5 n-7)\right]$. Using the average degree $=\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}$, theorem follows.

On similar lines we get the Laplacian degree product distance energy of $K_{n} O_{e} K_{n}$.

Theorem 3.6. The $L E_{D P D}$ of the edge coalescence of two complete graphs K_{n} is given by,
$L E_{D P D}\left(K_{n} O_{e} K_{n}\right)=\left|\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}-2(n-1)^{2}\right| \times(2 n-6)+$ $\left|\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}-2(2 n-3)^{2}\right|+\left\lvert\, \frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}-(n-1)^{2}-\right.$ $(n-1)^{3}\left|+\left|\beta_{1}-\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}\right|+\left|\beta_{2}-\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}\right|\right.$, where β_{1} and β_{2} are roots of the equation, $\left[\beta^{2}+(n-1)^{2}(3 n-8) \beta-4(2 n-3)^{2}(n-1)^{2}(n-2)\right]=0$.

$4 Q E_{D P D}$ of some graphs of diameter 2

We now state without proof results on $Q E_{D P D}$ which follow on similar lines like $L E_{D P D}$ proved in previous section.

Theorem 4.1. The signless Laplacian degree product distance energy of the complete bipartite graph $K_{m, n}$ is, $L E_{D P D}\left(K_{m, n}\right)=\left|m n+n^{2}(m-1)\right|+\left|m n+m^{2}(n-1)\right|+\left|m n-\gamma_{1}\right|+\left|m n-\gamma_{2}\right|$, where γ_{1} and γ_{2} are the roots of the equation, $\left[\gamma^{2}-\left(2 m n(m+n)-m^{2}-n^{2}\right) \gamma+m^{2} n^{2}(4 m n-\right.$ $\left.2 m-2 n+1)-m^{3} n^{3}\right]=0$.

Corollary 4.2. If $m=1$ we get star graph $K_{1, n}$ whose signless Laplacian degree product distance energy is, $Q E_{D P D}\left(K_{1, n}\right)=|n-3(n-1)|+|n-2(n-1)(n-2)|+\left|n-\gamma_{1}\right|+\left|n-\gamma_{2}\right|$, where γ_{1} and γ_{1} are roots of the equation, $\left[\gamma^{2}-\left(n^{2}-2 n-3\right) \gamma+3\left(n^{2}-n^{3}\right)\right]=0$.

Theorem 4.3. The $Q E_{D P D}$ of $K_{n}-e$ is, $Q E_{D P D}\left(K_{n}-e\right)=$
$\left|\frac{(n-2)\left(n^{2}-3\right)}{n}\right| \times(n-3)+\left|\frac{(n-2)\left(n^{2}-3\right)}{n}+(n-1)^{2}\right|+\left|\gamma_{1}-\frac{(n-2)\left(n^{2}-3\right)}{n}\right|+\mid \gamma_{2}-$ $\left.\frac{(n-2)\left(n^{2}-3\right)}{n} \right\rvert\,$, where γ_{1} and γ_{2} are roots of the equation, $\left[\gamma^{2}-\left(3(n-2)^{2}+(n-1)^{2}(n-\right.\right.$ 2)) $\left.\gamma+(n-1)^{2}(n-2)^{3}\right]=0$.

Theorem 4.4. The $Q E_{D P D}$ of $K_{n}+e$ is, $Q E_{D P D}\left(K_{n}+e\right)=$
$\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}\right| \times(n-3)+\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-\gamma_{1}\right|+\left\lvert\, \frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-\right.$
$\gamma_{2}\left|+\left|\frac{(n-2)(n-1)^{2}+n^{2}+1}{n+1}-\gamma_{3}\right|\right.$, where γ_{1}, γ_{2} and γ_{3} are roots of the equation, $\left[\gamma^{3}+\left[\left(n^{2}+\right.\right.\right.$ $\left.\left.1)+(n-1)^{2}(n-2)\right] \gamma^{2}+\left[(n-1)^{2}(n-2)\left(1-n^{2}\right)\right] \gamma+n^{2}(n-1)^{4}(n-2)\right]=0$.

Theorem 4.5. The $Q E_{D P D}$ of $K_{n} O_{v} K_{n}$ is, $Q E_{D P D}\left(K_{n} O_{v} K_{n}\right)=$
$\left|\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}\right| \times n+\left|\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}-(2 n-2)^{2}\right|+\left|\gamma_{1}-\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}\right|+$ $\left|\gamma_{2}-\frac{2(n-1)^{2}+2(n-1)^{3}}{2 n-1}\right|$, where γ_{1} and γ_{2} are roots of the equation, $\left[\gamma^{2}-(n-1)^{2}(3 n+\right.$ 1) $\left.\gamma+4(n-1)^{5}\right]=0$.

Theorem 4.6. The $Q E_{D P D}$ of $K_{n} O_{e} K_{n}$ is given by, $Q E_{D P D}\left(K_{n} O_{e} K_{n}\right)=$ $\left|\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}\right| \times(2 n-5)+\left\lvert\, \frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}-(n-1)^{2}+(n-\right.$ $1)^{3}\left|+\left|\gamma_{1}-\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}\right|+\left|\gamma_{2}-\frac{2(2 n-3)^{2}+(2 n-4)(n-1)^{2}}{2 n-2}\right|\right.$, where γ_{1} and γ_{2} are the roots of equation, $\left[\gamma^{2}-\left(3 n^{3}-4 n^{2}-9 n-12\right) \gamma+2(n-1)^{2}(n-2)(2 n-3)^{2}\right]=0$.

5 Conclusion

We defined the $L_{D P D}$ and $Q_{D P D}$ of a graph G, obtained expressions for energy of some graphs of diameter 2.

References

[1] O.Ivanciuc,Design of Topological Indices. Part 14. Distance-Valency Matrices and Structural Descriptors for Vertex- and Edge-Weighted Molecular Graphs.
[2] Sudhir.R.Jog and Jeetendra.R.Gurjar, Degree distance energy of some graphs, Asian Journal of Mathematics and Computer Research 24(1), 42-49 (2018).
[3] I. Gutman and N. Trinajstic, Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17, 535-538 (1972).
[4] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50, 83-92 (2004).
[5] Y. Huang. B. Liu, M. Zhang, On Comparing the variable Zagreb indices, MATCH Commun. Math. Comput. Chem. 63, 453-460 (2010).
[6] R. Li, Some lower bounds for Laplacian energy of graphs, International Journal of Contemporary Mathematical Sciences, vol. 4, 5, 219-223 (2009).
[7] Z. Liu, Energy, Laplacian energy and Zagreb index of line graph, middle graph and total graph, International Journal of Contemporary Mathematical Sciences, vol. 5, 18, 895-900 (2010).
[8] B. Mohar, The Laplacian spectrum of graphs, Graph Theory,Combinatorics and Applications, Y. Alavi, G. Chartrand, O. E.Ollerman, and A. J. Schwenk, Eds.,871-898 (1991).
[9] D. Cvetkovic, Signless Laplacians and line graphs Bulletin,Classe des Sciences Mathématiques et Naturelles, Sciences Mathematiques Naturelles/Sciences Mathematiques, vol. 131,30, 85-92 (2005).
[10] D. Cvetkovic, P. Rowlinson, and S. K. Simic, Signless Laplacians of finite graphs,Linear Algebra and Its Applications, vol. 423, 1, 155-171 (2007).
[11] D. Cvetkovic, P. Rowlinson, and S. K. Simic, Eigenvalue bounds for the signless Laplacian, Publications de l Institut Mathematique vol. 81, 95, 11-27 (2007).

Author information

SUDHIR.R.JOG and JEETENDRA.R.GURJAR, Department of Mathematics, Gogte Institute of Technology, Address: Udyambag Belagavi Karnataka, 590008, INDIA.
E-mail: sudhir@git.edu AND jeetendra.g8@gmail.com

Received: April 12, 2019.
Accepted: September 19, 2019.

