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Abstract In this paper we define the Laplacian and signless Laplacian degree product dis-
tance matrix from the well known degree product distance matrix. Further we define Laplacian
degree product distance energy and signless Laplacian degree product distance energy. We ob-
tain the Laplacian degree product distance energy and signless Laplacian degree product distance
energy of some graphs of diameter 2.

1 Introduction

All the graphs considered here are finite simple, connected and undirected.Let G be a connected
graph of order n,the degree of a vertex is the number of edges incident on it and the distance
between two vertices is the length of the shortest path joining them.

The concept of distance valency matrix was introduced in 1999 by O.Ivanciuc [1].The dis-
tance valency matrix for a simple graphG of order n is defined by,Dval(p, q, r) = Dval(p, q, r,G)
as a square n× n matrix with entries [Dval(p, q, r)]ij given by,

[Dval(p, q, r)]ij = dpijval
q
i val

r
j , if i 6= j

= 0, if i = j

where dij is the distance between vertex vi and vj and val means valency or degree of the vertex
with p,q and r being real numbers. Molecular matrices A, D, RD,Dval(−1, 1, 1),Dval(−2, 1, 1),
Dval(−2, 0, 0) have been already discussed. We have discussed Dval(1,1,1) in [2] as DPD(G).

The Zagreb index was first introduced by Gutman and Trinajstic as ,M1(G)=
∑

v∈V d(v)
2.For

more details one can refer [3],[4], [5].

Several results on Laplacian energy of graph G are reported in the literature [6],[7],[8]. Re-
cently signless Laplacian energy is studied in the literature [9],[10],[11]. We consider the ab-
breviation for Laplacian degree product distance matrix as LDPDM , Laplacian degree product
distance energy as LEDPD, signless Laplacian degree product distance matrix as QDPDM , and
signless Laplacian degree product distance energy as, QEDPD. In this paper we define the
Laplacian degree product distance matrix as, LDPD(G) = D2(G) − DPDM(G) and signless
Laplacian degree product distance matrix as, QDPD(G) = D2(G)+DPDM(G), where D2(G)
is square of the degree matrix of G.
The following hold for LDPD(G) and QDPD(G).

• Since the matrix LDPD(G) and QDPD(G) are real symmetric, their eigenvalues are real.

• The sum of eigenvalues of LDPD(G) or QDPD(G) is first Zagreb index of G,since
traceLDPD(G)=traceQDPD(G) =

∑n
i=1 d

2
i .
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• If βi and γi, i=1, 2, 3 . . . n. are eigenvalues of LDPD(G) and QDPD(G) respec-
tively then they can be arranged in non-increasing order as β1 ≥ β2 ≥ . . . ≥ βn and
γ1 ≥ γ2 ≥ . . . ≥ γn.

Definition: Let G be graph of order n and size m.If avd2(G) denotes average square degree of

a graph given by,
∑n

1 d
2
i (G)

n
, then analogous to usual Laplacian and signless Laplacian energy

we define the Laplacian and signless Laplacian degree product distance energy as,

LEDPD(G) =
n∑

i=1

|βi − avd2(G)| =
n∑

i=1

|βi −
4m2 − 2

∑
i<j didj

n
|

and

QEDPD(G) =
n∑

i=1

|γi − avd2(G)| =
n∑

i=1

|γi −
4m2 − 2

∑
i<j didj

n
|

.
The average square degree of G is

9
2
= 4.5

Example: For the graph G given below,

LDPD(G) =


1 −3 −4 −4
−3 9 −6 −6
−4 −6 4 −4
−4 −6 −4 4

 QDPD(G) =


1 3 4 4
3 9 6 6
4 6 4 4
4 6 4 4


Laplacian degree product distance eigen-
values are β1 = 14.1155, β2 = 8, β3 =
5.0233 and β4 = −9.1388

signless Laplacian degree product dis-
tance eigenvalues are γ1 = 19.0609,
γ2 = 1.4842, γ3 = 0 and γ4 = −2.5451

LEDPD(G) = |14.1155−4.5|+|8−4.5|+
|5.0233− 4.5|+ |4.5+ 9.1388| = 27.2776

QEDPD(G) = |19.0609 − 4.5| + |4.5 −
1.4842| + |0 + 4.5| + |4.5 + 2.5451| =
29.1215.

2 Bound on largest signless Laplacian degree product distance eigenvalue

Proposition 2.1. The largest signless Laplacian degree product distance eigenvalue is bounded
above by,

γ1 ≤
M1

n
+

√
n− 1
n

M +M2
1 (

1
n2 −

1
n
), where

M =
n∑

i=1

d4
i +

n∑
i=1
j=1

(didjdij)
2

with dij = d(vi, vj), M1 =M1(G) first Zagrab index of G.

Proof. The trace of QDPD(G) is
∑n

1 γi =
∑
d2
i = M1 so that,

∑n
2 γi = M1 − γ1,

∑n
1 γ

2
i =

traceL2
DPD =M we have, γ2

1 +
∑n

2 γ
2
i =M ,

∑n
2 γ

2
i =M − γ2

1 ,
(
∑n

2 γi)
2 ≤ (n− 1)

∑n
2 γ

2
1 ,

(M1 − γ1)2 ≤ (n− 1)(M − γ2
1),

M2
1 − 2M1γ1 + γ2

1 ≤ (n− 1)M − (n− 1)γ2
1 ,

nγ2
1 − 2M1γ1 ≤ (n− 1)M −M2

1 ,
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γ2
1 −

2M1

n
γ1 ≤

(n− 1)
n

M −
M2

1
n

,

γ2
1 −

2M1

n
γ1 +

M2
1

n2 ≤
n− 1
n

M − M1

n
+
M2

1
n2 ,

γ1 −
M1

n
≤
√
n− 1
n

M +M2
1 (

1
n2 −

1
n
)

Hence, γ1 ≤
M1

n
+

√
n− 1
n

M +M2
1 (

1
n2 −

1
n
). 2

Since the largest Laplacian degree product distance eigenvalue of any matrix is smaller than
largest signless Laplacian eigenvalue, the above bound also holds for Laplacian eigenvalue.
For the graph G in figure 1; n = 4, M1 = 18 and M = 514 giving γ1 = 15.7852.
M1

n
+

√
n− 1
n

M +M2
1 (

1
n2 −

1
n
) = 22.52083.

Obviously for a graph with maximum pendent vertices such as star bound is close. For the graph
K1.4 ,n = 1, M1 = 20 and M = 436 giving γ1 = 20.6788.
M1

n
+

√
n− 1
n

M +M2
1 (

1
n2 −

1
n
) = 20.8760184.

Corollary 2.2. If G is a r-regular graph of order n, then

γ1 ≤ r2 +

√
n− 1
n

M + r4(
1
n2 −

1
n
).

For cycle Cn, r = 2 bound becomes γ1 ≤ 4 +

√
n− 1
n

M + 16(
1
n2 −

1
n
).

Solving for M1 we have bound for first Zagrab index in terms of eigenvalues of QDPD given
by,

M1 ≤ γ1 +
√
(n− 1)

∑n
2 γ

2
i .

Lemma 2.3. If λ1, λ2, ..., λn are the eigenvalues of any matrix P of order n then the eigenvalues
of the matrix kIn ± P are k ± λ1, k ± λ2, .., k ± λn.

Lemma 2.4. Let a and b be two arbitrary constants, I is the identity matrix and J is n×n matrix
whose all entries 1′s.If A = (a− b)I + bJ then the characteristic polynomial of A, is
|λI −A| = [λ− a+ b]n−1[λ− a− (n− 1)b].

Using Lemma[2.3] one can directly obtain the Laplacian and signless Laplacian degree prod-
uct distance eigenvalues from its degree product distance eigenvalues for a regular graph G.The
degree product distance energy is already discussed by the present authors in [2].
In general the Laplacian degree product distance energy and signless Laplacian degree product
distance energy are equal for a regular graph G.This is consistent with the equality of Laplacian
and signless Laplacian energy for regular graph G.

Hence we discuss graphs which are not regular.

3 LEDPD of some graphs of diameter 2

Theorem 3.1. The Laplacian degree product distance energy of the complete bipartite graph
Km,n is, LEDPD(Km,n)= |mn−3n2(m−1)|+ |mn−n2+2n2(m−1)|+ |mn−β1|+ |mn−β2|,
where β1 and β2 are the roots of the equation, [β2 − (m2 − 2m2(n− 1) + n2 − 2n2(m− 1))β +
(m2 − 2m2(n− 1))(n2 − 2n2(m− 1))−m3n3] = 0.

Proof. In Km,n, m vertices have degree n and n vertices have degree m. The diameter being 2
the structure of the degree product distance matrix is,

LDPD(Km,n) =

(
n2Im − 2n2A(Km) −mnJm×n
−mnJn×m m2In − 2m2A(Kn)

)
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where J is matrix of all 1’s and A the adjacency matrix. The Laplacian degree product distance
polynomial is then given by,

|βI − LDPD(Km,n)| =

∣∣∣∣∣ (β − n2)Im + 2n2A(Km) mnJm×n

mnJn×m (β −m2)In + 2m2A(Kn)

∣∣∣∣∣
Using Lemma 2.4 with, a = β−m2− m3n2

β − n2 + 2n2(m− 1)
and b = 2m2− m3n2

β − n2 + 2n2(m− 1)
.

|βI−LDPD(Km,n)|=[β−3n2]m−1[β−n2+2n2(m−1)][β2−(m2−2m2(n−1)+n2−2n2(m−
1))β + (m2 − 2m2(n− 1))(n2 − 2n2(m− 1))−m3n3].
So that β = m+2m2 (n−1) times, n−2n2 (m−1) times and remaining two given by roots of,
[β2−(m2−2m2(n−1)+n2−2n2(m−1))β+(m2−2m2(n−1))(n2−2n2(m−1))−m3n3] = 0.

Since the average square degree of Km,n is
mn2 + nm2

m+ n
= mn, theorem follows. 2

Corollary 3.2. Ifm = 1 we get star graphK1,n whose Laplacian degree product distance energy
is, LEDPD(K1,n) = n2 + |n − β1| + |n − β2|, where β1 and β2 are roots of the equation,
[β2 − (n2 − 2n+ 3)β + (n2 − 2(n− 1)n2 − n3)] = 0.

Consider Kn + e and Kn − e graphs of diameter 2 obtained by adding or deleting an edge e
respectively from the complete graph Kn.

Theorem 3.3. The LEDPD of Kn + e is, LEDPD(Kn + e)=

|(n− 2)(n− 1)2 + n2 + 1
n+ 1

− 2(n− 1)2| × (n− 2) + |(n− 2)(n− 1)2 + n2 + 1
n+ 1

− β1|+

|(n− 2)(n− 1)2 + n2 + 1
n+ 1

− β2| + |
(n− 2)(n− 1)2 + n2 + 1

n+ 1
− β3|, where β1, β2 and β3 are

roots of the equation,[β3 + ((n− 1)2(n− 3)− (n2 + 1))β2 − ((n− 1)2(n− 3)(n2 + 1) + (n2 +
4)(n− 1)3)β + 9n2(n− 1)3] = 0.

Proof. In Kn + e one vertex having n degrees , one vertex having degree 1 remaining having
n− 1 degree then we get the matrix structure as,
LDPD(Kn + e)=

n2 −n −n(n− 1) . . . −n(n− 1) . . . −n(n− 1)
−n 1 −2(n− 1) . . . −2(n− 1) . . . −2(n− 1)

−n(n− 1) −2(n− 1) (n− 1)2 . . . −(n− 1)2 . . . −(n− 1)2

...
...

...
. . .

...
...

...
−n(n− 1) −2(n− 1) −(n− 1)2 . . . (n− 1)2 . . . −(n− 1)2

...
...

...
...

...
. . .

...
−n(n− 1) −2(n− 1) −(n− 1)2 . . . −(n− 1)2 . . . (n− 1)2


.

|βI − LDPD(Kn + e)|=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β − n2 n n(n− 1) . . . n(n− 1) . . . n(n− 1)
n β − 1 2(n− 1) . . . 2(n− 1) . . . 2(n− 1)

n(n− 1) 2(n− 1) β − (n− 1)2 . . . (n− 1)2 . . . (n− 1)2

...
...

...
. . .

...
...

...
n(n− 1) 2(n− 1) (n− 1)2 . . . β − (n− 1)2 . . . (n− 1)2

...
...

...
...

...
. . .

...
n(n− 1) 2(n− 1) (n− 1)2 . . . (n− 1)2 . . . β − (n− 1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Performing the operations, C1 −
n(n− 1)

∑n+1
3 Ci

β − (n− 1)2 + (n− 1)2(n− 2)

C2 −
2(n− 1)

∑n+1
3 Ci

β − (n− 1)2 + (n− 1)2(n− 2)
, where i = 1, 2, . . n.

|βI − LDPD(Kn + e)|=
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∣∣∣∣∣∣∣∣
β − n2 − n2(n− 1)2

β − (n− 1) + (n− 1)2(n− 2)
n− 2n(n− 1)3

β − (n− 1) + (n− 1)2(n− 2)

n− 2n(n− 1)3

β − (n− 1) + (n− 1)2(n− 2)
β − 1− 4(n− 1)2

β − (n− 1) + (n− 1)2(n− 2)

∣∣∣∣∣∣∣∣ .

Laplacian degree product distance polynomial of LDPD(Kn + e) is,
|βI −LDPD(Kn+ e)|=[β− 2(n− 1)2]n−2[β3 +((n− 1)2(n− 3)− (n2 + 1))β2− ((n− 1)2(n−
3)(n2+1)+(n2+4)(n−1)3)β+9n2(n−1)3]. Extracting the eigenvalues and using the average

square degree=
(n− 2)(n− 1)2 + n2 + 1

n+ 1
, theorem follows. 2

Theorem 3.4. The LEDPD of Kn − e is,

LEDPD(Kn − e)= |
(n− 2)(n2 − 3)

n
− 2(n+ 1)2| × (n− 3) + |(n− 2)(n2 − 3)

n
− (n− 2)2|+

|(n− 2)(n2 − 3)
n

− β1| + |
(n− 2)(n2 − 3)

n
− β2|, where β1 and β2 are roots of the equation,

[β2−((n−1)2(n−3)+(n−2)2−(n−1)2)β+(n−2)2(n−1)2(n−4)−2(n−2)3(n−1)2] = 0.

Proof.The graph Kn − e is of diameter 2 and has two vertices with distance two remaining at
distance one. So that the Laplacian degree product distance polynomial of Kn− e is denoted by,
|βI − LDPD(Kn − e)| = [β − 2(n+ 1)2]n−3[β − (n− 2)2][β2 − ((n− 1)2(n− 3) + (n− 2)2 −
(n− 1)2)β+ (n− 2)2(n− 1)2(n− 4)− 2(n− 2)3(n− 1)2] = 0. Extracting the eigenvalues and

using the average square degree=
(n− 2)(n2 − 3)

n
, theorem follows. 2

Noe we consider another pair of graphs of diameter 2.

Let Kn be a complete graph of order n then the vertex coalescence of Kn with Kn will be
denoted by KnOvKn and the edge coalescence by KnOeKn. KnOvKn has 2n− 1 vertices and
(2n)C2 edges whereas KnOeKn has 2n− 2 vertices and (2n)C2 − 1 edges.

Theorem 3.5. The LEDPD of KnOvKn is, LEDPD(KnOvKn) = |2(n− 1)2 + 2(n− 1)3

2n− 1
−

2(n−1)2|×n+ |2(n− 1)2 + 2(n− 1)3

2n− 1
−6(n−1)2|×(n−3)+ |β1−

2(n− 1)2 + 2(n− 1)3

2n− 1
|+

|β2 −
2(n− 1)2 + 2(n− 1)3

2n− 1
|, where β1 and β2 are the roots of the equation,

[β2 + (n− 1)2(3n− 9)β − 4(n− 1)4(5n− 7)] = 0.

Proof.The graph KnOvKn is of diameter 2 has two sets of vertices one at a distance 2 from each
other and other at 1.There is one vertex of degree (2n− 2) and remaining (2n− 2) of degree

(n−1). Since the average degree square ofKnOvKn is, avd2(KnOvKn) =
2(n− 1)2 + 2(n− 1)3

n
. With suitable labeling the LDPD of KnOvKn takes the form,
LDPD(KnOvKn)=∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2n − 2)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2

−2(n − 1)2 (n − 1)2 −(n − 1)2 . . . −(n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2

−2(n − 1)2 −(n − 1)2 (n − 1)2 . . . −2(n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−2(n − 1)2 −(n − 1)2 −(n − 1)2 . . . (n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2

−2(n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2 (n − 1)2 −(n − 1)2 . . . −(n − 1)2

−2(n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2 −(n − 1)2 (n − 1)2 . . . −(n − 1)2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

−2(n − 1)2 −2(n − 1)2 −2(n − 1)2 . . . −2(n − 1)2 −(n − 1)2 −(n − 1)2 . . . (n − 1)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

So that the Laplacian degree product distance polynomial of KnOvKn is denoted by,
|βI − LDPD(KnOvKn)|. Simplifying finally we arrive at
|βI − LDPD(KnOvKn)|=
[β − 2(n − 1)]n[β − 6(n − 1)2]n−3[β2 + (n − 1)2(3n − 9)β − 4(n − 1)4(5n − 7)]. Using the

average degree=
2(n− 1)2 + 2(n− 1)3

2n− 1
, theorem follows.2

On similar lines we get the Laplacian degree product distance energy of KnOeKn.
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Theorem 3.6. The LEDPD of the edge coalescence of two complete graphs Kn is given by,

LEDPD(KnOeKn)= |
2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
− 2(n− 1)2| × (2n− 6) +

|2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
− 2(2n− 3)2|+ |2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
− (n− 1)2−

(n−1)3|+|β1−
2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
|+|β2−

2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
|, where

β1 and β2 are roots of the equation, [β2 + (n− 1)2(3n− 8)β − 4(2n− 3)2(n− 1)2(n− 2)] = 0.

4 QEDPD of some graphs of diameter 2

We now state without proof results onQEDPD which follow on similar lines like LEDPD proved
in previous section.

Theorem 4.1. The signless Laplacian degree product distance energy of the complete bipartite
graph Km,n is, LEDPD(Km,n)= |mn+n2(m−1)|+ |mn+m2(n−1)|+ |mn−γ1|+ |mn−γ2|,
where γ1 and γ2 are the roots of the equation, [γ2 − (2mn(m+ n)−m2 − n2)γ+m2n2(4mn−
2m− 2n+ 1)−m3n3] = 0.

Corollary 4.2. If m = 1 we get star graph K1,n whose signless Laplacian degree product dis-
tance energy is, QEDPD(K1,n) = |n− 3(n− 1)|+ |n− 2(n− 1)(n− 2)|+ |n− γ1|+ |n− γ2|,
where γ1 and γ1 are roots of the equation, [γ2 − (n2 − 2n− 3)γ + 3(n2 − n3)] = 0 .

Theorem 4.3. The QEDPD of Kn − e is, QEDPD(Kn − e)=

|(n− 2)(n2 − 3)
n

| × (n− 3) + |(n− 2)(n2 − 3)
n

+ (n− 1)2|+ |γ1 −
(n− 2)(n2 − 3)

n
|+ |γ2 −

(n− 2)(n2 − 3)
n

|, where γ1 and γ2 are roots of the equation, [γ2 − (3(n − 2)2 + (n − 1)2(n −
2))γ + (n− 1)2(n− 2)3] = 0.

Theorem 4.4. The QEDPD of Kn + e is, QEDPD(Kn + e)=

|(n− 2)(n− 1)2 + n2 + 1
n+ 1

|×(n−3)+|(n− 2)(n− 1)2 + n2 + 1
n+ 1

−γ1|+|
(n− 2)(n− 1)2 + n2 + 1

n+ 1
−

γ2|+ |
(n− 2)(n− 1)2 + n2 + 1

n+ 1
−γ3|, where γ1, γ2 and γ3 are roots of the equation,[γ3+[(n2+

1) + (n− 1)2(n− 2)]γ2 + [(n− 1)2(n− 2)(1− n2)]γ + n2(n− 1)4(n− 2)] = 0.

Theorem 4.5. The QEDPD of KnOvKn is, QEDPD(KnOvKn)=

|2(n− 1)2 + 2(n− 1)3

2n− 1
|×n+|2(n− 1)2 + 2(n− 1)3

2n− 1
−(2n−2)2|+|γ1−

2(n− 1)2 + 2(n− 1)3

2n− 1
|+

|γ2 −
2(n− 1)2 + 2(n− 1)3

2n− 1
|, where γ1 and γ2 are roots of the equation, [γ2 − (n − 1)2(3n +

1)γ + 4(n− 1)5] = 0.

Theorem 4.6. The QEDPD of KnOeKn is given by, QEDPD(KnOeKn) =

|2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
|×(2n−5)+|2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
−(n−1)2+(n−

1)3|+ |γ1−
2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
|+ |γ2−

2(2n− 3)2 + (2n− 4)(n− 1)2

2n− 2
|, where γ1

and γ2 are the roots of equation, [γ2− (3n3−4n2−9n−12)γ+2(n−1)2(n−2)(2n−3)2] = 0.

5 Conclusion

We defined the LDPD and QDPD of a graph G, obtained expressions for energy of some graphs
of diameter 2.
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