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Abstract. In the present paper, we study certain differential inequalities involving Ruscheweyh
operator. As particular cases to our main result, we derive certain results for starlike and convex
functions.

1 Introduction

Let H denote the class of functions f, analytic in the open unit disk E = {z ∈ C : |z| < 1} in
the complex plane C. Let A be the subclass of H, consisting of functions f, analytic in the open
unit disk E and normalized by the conditions f ′(0) = 0 = f ′(0) − 1. A function f ∈ A is said
to be starlike of order α if and only if

<
(
zf ′(z)

f(z)

)
> α, 0 ≤ α < 1, z ∈ E.

The class of such functions is denoted by S∗(α). A function f ∈ A is said to be convex of order
α in E, if and only if

<
(

1 +
zf ′′(z)

f ′(z)

)
> α, 0 ≤ α < 1, z ∈ E.

Let K(α) denote the class of all those functions f ∈ A that are convex of order α in E. Let f and
g be two analytic functions in open unit disk E. Then we say f is subordinate to g in E written as
f ≺ g if there exists a Schwarz function w, analytic in E with w(0) = 0 and |w(z)| < 1, z ∈ E
such that f(z) = g(w(z)), z ∈ E. In case the function g is univalent, the above subordination is
equivalent to f(0) = g(0) and f(E) ⊂ g(E).
The Taylor’s series expansions of f, g ∈ A are given as

f(z) = z +
∞∑
k=2

akz
k and g(z) = z +

∞∑
k=2

bkz
k.

Then the convolution/Hadamard product of f and g is denoted by f ∗ g, and defined as

(f ∗ g)(z) = z +
∞∑
k=2

akbkz
k.

Ruscheweyh [5] introduced a differential operator Rλ, (Known as Ruscheweyh differential op-
erator) for f ∈ A is defined as follows

Rλf(z) =
z

(1− z)λ+1 ∗ f(z), λ ≥ −1, z ∈ E. (1.1)

For λ = n ∈ N0 = N ∪ {0}

Rnf(z) =
z(zn−1f(z))(n)

n!
, z ∈ E.
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Lecko et al. [3] observed that for λ ≥ −1, the expression given in (1.1) becomes

Rλf(z) = z +
∞∑
k=2

(λ+ 1)(λ+ 2) . . . (λ+ k − 1)
(k − 1)!

akz
k, z ∈ E,

and for every λ > −1

R1Rλf(z) = z(Rλf)′(z) = z

(
z

(1− z)λ+1 ∗ f(z)
)′

=
z

(1− z)λ+1 ∗ (zf
′(z)) = Rλ(zf ′(z)) = RλR1f(z), z ∈ E.

We notice that

R−1f(z) = z, R0f(z) = f(z), R1f(z) = zf ′(z) and R2f(z) = zf ′(z) +
z2

2
f ′′(z),

and so on. For λ ≥ −1 and for z ∈ E, we have

z(Rλf)′(z) = (λ+ 1)Rλ+1f(z)− λRλf(z). (1.2)

Ruscheweyh [5] introduced the class Kλ defined as

Kλ =

{
f ∈ A : <

(
Rλ+1f(z)

Rλf(z)

)
>

1
2
, λ ∈ N0, z ∈ E

}
.

He gave coefficient estimates and determined some special elements of Kλ. In 1980, Al-Amiri
[1] introduced and studied the class Sλ(α, β), λ ∈ N0 defined as :

Sλ(α, β) = {f ∈ A : <Pλ(f(z);α, β) > 0, λ ∈ N0, z ∈ E}

where

Pλ(f(z);α, β) =
(
Rλ+1f(z)

Rλf(z)
− 1

2

)α(
Rλ+2f(z)

Rλ+1f(z)
− 1

2

)β
,

and α, β are real numbers. He observed that for every λ ∈ N0, Sλ(α, β) contains many interest-
ing classes of univalent functions; Sλ(1, 0) = Kλ, Sλ(0, 1) = Kλ+1 and S0(α, 0) is contained
in strongly starlike class when |α| ≥ 1. Owa et al. [4] introduced and studied the following
classes:

S∗λ = {f ∈ A : Rλf(z) ∈ S∗, λ ≥ −1}

and
Kλ = {f ∈ A : Rλf(z) ∈ K, λ ≥ −1}.

They established several interesting properties of S∗λ and Kλ.
The results of above nature motivated us for the work of present paper. We, here, study the
following differential inequality∣∣∣∣z(Rλf(z))′Rλf(z)

− 1
∣∣∣∣α ∣∣∣∣z(Rλ+1f(z))′

Rλ+1f(z)
− 1
∣∣∣∣β < M(α, β, µ, λ), z ∈ E,

where α ≥ 0, β ≥ 0, 0 ≤ µ < 1 and λ ≥ 0 and obtain certain results for starlike and convex
functions as special cases of our main result.

2 Preliminary

To prove our main result, we shall make use of the following lemma due to Jack [2].

Lemma 2.1. Suppose w(z) be a non-constant analytic function in E, with w(0) = 0. If |w(z)|
attains its maximum value at a point z0 ∈ E on the circle |z| = r < 1, then z0w

′(z0) = kw(z0),
where k ≥ 1, is some real number.
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3 Main Results

Theorem 3.1. Let α, β and µ be real numbers such that α ≥ 0, β ≥ 0, 0 ≤ µ < 1. If f ∈ A
satisfies ∣∣∣∣z(Rλf(z))′Rλf(z)

− 1
∣∣∣∣α ∣∣∣∣z(Rλ+1f(z))′

Rλ+1f(z)
− 1
∣∣∣∣β < M(α, β, µ, λ), z ∈ E, (3.1)

where

M(α, β, µ, λ) =

(1− µ)α+β
(

1 + 1
2(1+λ−µ)

)β
, 0 ≤ µ ≤ 1/2,

(1− µ)α+β
(

1 + µ
µ+λ

)β
, 1/2 ≤ µ < 1.

then

<
(
z(Rλf(z))′

Rλf(z)

)
> µ, λ ≥ 0, z ∈ E.

Proof. Case(i) Let 0 ≤ µ ≤ 1
2 . Define

z(Rλf(z))′

Rλf(z)
=

1 + (1− 2µ)w(z)
1− w(z)

, z ∈ E. (3.2)

Here w(z) is analytic in E, w(0) = 0 and w(z) 6= 1 in E. Using (1.2), we get

Rλ+1f(z)

Rλf(z)
=

(1 + λ) + (1− 2µ− λ)w(z)
(1 + λ)(1− w(z))

On differentiating above equation logarithmically, we get

z(Rλ+1f(z))′

Rλ+1f(z)
− z(Rλf(z))′

Rλf(z)
=

2(1− µ)zw′(z)
[(1 + λ) + (1− 2µ− λ)w(z)][1− w(z)]

(3.3)

By making use of (3.2), the above equation reduces to

z(Rλ+1f(z))′

Rλ+1f(z)
=

1 + (1− 2µ)w(z)
1− w(z)

+
2(1− µ)zw′(z)

[(1 + λ) + (1− 2µ− λ)w(z)][1− w(z)]
.

Now, from (3.1), we have∣∣∣∣∣z(Rλf(z))′Rλf(z)
− 1

∣∣∣∣∣
α∣∣∣∣∣z(Rλ+1f(z))′

Rλ+1f(z)
− 1

∣∣∣∣∣
β

=

∣∣∣∣∣2(1− µ)w(z)1− w(z)

∣∣∣∣∣
α∣∣∣∣∣2(1− µ)w(z)1− w(z)

+
2(1− µ)zw′(z)

[(1 + λ) + (1− 2µ− λ)w(z)][1− w(z)]

∣∣∣∣∣
β

=

∣∣∣∣∣2(1− µ)w(z)1− w(z)

∣∣∣∣∣
α+β∣∣∣∣∣1 +

zw′(z)

w(z)[(1 + λ) + (1− 2µ− λ)w(z)]

∣∣∣∣∣
β

We need to prove |w(z)| < 1 for all z ∈ E. If |w(z)| ≮ 1 then there exists a point z0 ∈ E such
that max

|z|≤|z0|
|w(z)| = |w(z0)| = 1. Then by Lemma 2.1, we have w(z0) = eiθ, 0 < θ ≤ 2π and

z0w
′(z0) = kw(z0), k ≥ 1. Hence∣∣∣∣∣z0(Rλf(z0))′

Rλf(z0)
− 1

∣∣∣∣∣
α∣∣∣∣∣z0(Rλ+1f(z0))′

Rλ+1f(z0)
− 1

∣∣∣∣∣
β

=

∣∣∣∣∣2(1− µ)w(z0)

1− w(z0)

∣∣∣∣∣
α+β∣∣∣∣∣1 +

z0w
′(z0)

w(z0)[(1 + λ) + (1− 2µ− λ)w(z0)]

∣∣∣∣∣
β

=
2α+β(1− µ)α+β

|1− eiθ|β+α

∣∣∣∣1 +
k

(1 + λ) + (1− 2µ− λ)eiθ

∣∣∣∣β
≥ (1− µ)α+β

(
1 +

k

2(1 + λ− µ)

)β
≥ (1− µ)α+β

(
1 +

1
2(1 + λ− µ)

)β
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which contradicts (3.1) for 0 ≤ µ ≤ 1
2 . Thus, we must have |w(z)| < 1 for all z ∈ E and hence

the result follows.

Case(ii) For 1
2 ≤ µ < 1, define w as

z(Rλf(z))′

Rλf(z)
=

µ

µ− (1− µ)w(z)
, z ∈ E, (3.4)

where w(z) 6= µ
1−µ in E. Then w(z) is analytic in E and w(0) = 0. In view of (1.2) and

proceeding as in Case(i), we obtain∣∣∣∣∣z(Rλf(z))′Rλf(z)
− 1

∣∣∣∣∣
α∣∣∣∣∣z(Rλ+1f(z))′

Rλ+1f(z)
− 1

∣∣∣∣∣
β

=

∣∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

∣∣∣∣∣
α∣∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

+
µ(1− µ)zw′(z)

[µ(1 + λ)− λ(1− µ)w(z)][µ− (1− µ)w(z)]

∣∣∣∣∣
β

=

∣∣∣∣∣ (1− µ)w(z)
µ− (1− µ)w(z)

∣∣∣∣∣
α+β∣∣∣∣∣1 +

µzw′(z)

w(z)[µ(1 + λ)− λ(1− µ)w(z)]

∣∣∣∣∣
β

.

We need to show that |w(z)| < 1 for all z ∈ E. On the contrary, suppose that there exists a point
z0 ∈ E such that max

|z|≤|z0|
|w(z)| = |w(z0)| = 1. Then by Lemma 2.1, we have w(z0) = eiθ, 0 <

θ ≤ 2π and z0w
′(z0) = kw(z0), k ≥ 1. Therefore∣∣∣∣∣z0(Rλf(z0))′

Rλf(z0)
− 1

∣∣∣∣∣
α∣∣∣∣∣z0(Rλ+1f(z0))′

Rλ+1f(z0)
− 1

∣∣∣∣∣
β

=

∣∣∣∣∣ (1− µ)w(z0)

µ− (1− µ)w(z0)

∣∣∣∣∣
α+β∣∣∣∣∣1 +

µkw(z0)

w(z0)[µ(1 + λ)− λ(1− µ)w(z0)]

∣∣∣∣∣
β

≥ (1− µ)α+β
(

1 +
kµ

µ+ λ

)β

≥ (1− µ)α+β
(

1 +
µ

µ+ λ

)β
,

which contradicts (3.1) for 1
2 ≤ µ < 1. Thus, we must have |w(z)| < 1 for all z ∈ E, hence we

conclude in view of (3.4) that

<
(
z(Rλf(z))′

Rλf(z)

)
> µ, z ∈ E.

Setting λ = 0 in Theorem 3.1, we obtain result of Singh et al. [6]:

Corollary 3.2. Let α, β and µ be real numbers such that α ≥ 0, β ≥ 0, and 0 ≤ µ < 1, with
β + α > 0. If f ∈ A satisfies∣∣∣∣zf ′(z)f(z)

− 1
∣∣∣∣α ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣β <
{
(1− µ)α( 3

2 − µ)
β , 0 ≤ µ ≤ 1/2,

(1− µ)α+β2β , 1/2 ≤ µ < 1,

then

<
(
zf ′(z)

f(z)

)
> µ, z ∈ E.

Hence f ∈ S∗(µ).
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Taking λ = 0 and replacing f(z) with zf ′(z) in Theorem 3.1, we get the following result of
Singh et al.[6]:

Corollary 3.3. Let α, β and µ be real numbers such that α ≥ 0, β ≥ 0, 0 ≤ µ < 1 with
β + α > 0. If f ∈ A satisfies∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣α ∣∣∣∣2zf ′′(z) + z2f ′′′(z)

f ′(z) + zf ′′(z)

∣∣∣∣β <
{
(1− µ)α( 3

2 − µ)
β , 0 ≤ µ ≤ 1/2,

(1− µ)α+β2β , 1/2 ≤ µ < 1,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> µ, z ∈ E.

Hence f ∈ K(µ).

Setting λ = 1 in Theorem 3.1, we obtain:

Corollary 3.4. Let α, β and µ be real numbers such that α ≥ 0, β ≥ 0, 0 ≤ µ < 1 with
β + α > 0. If f ∈ A satisfies

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣α ∣∣∣∣3zf ′′(z) + z2f ′′′(z)

2f ′(z) + zf ′′(z)

∣∣∣∣β <
(1− µ)α+β

(
5−2µ
4−2µ

)β
, 0 ≤ µ ≤ 1/2,

(1− µ)α+β
(

2µ+1
µ+1

)β
, 1/2 ≤ µ < 1,

then

<
(

1 +
zf ′′(z)

f ′(z)

)
> µ, z ∈ E.

ı.e. f ∈ K(µ).

Selecting α = 0 and β = 1 in Theorem 3.1, we have:

Corollary 3.5. Let µ be a real number such that 0 ≤ µ < 1. If f ∈ A satisfies

z(Rλ+1f(z))′

Rλ+1f(z)
≺

{
1 + (1− µ)z + (1−µ)z

2(1+λ−µ) , 0 ≤ µ ≤ 1/2,

1 + (1− µ)z + µ(1−µ)z
µ+λ , 1/2 ≤ µ < 1.

then
z(Rλf(z))′

Rλf(z)
≺ 1 + (1− 2µ)z

1− z
, z ∈ E,

hence

<
(
z(Rλf(z))′

Rλf(z)

)
> µ.
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