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Abstract In this paper, we obtain some binomial sum formulas for (p, q)-Fibonacci and
(p, q)-Lucas quaternions, by using the exponential generating functions. By this way we ex-
amine formulas for Q2n+r, K2n+r, pnQn+r, pnKn+r, Qmn, Kmn and far more than these, where
Qn and Kn are the n-th (p, q)-Fibonacci and (p, q)-Lucas quaternions, respectively with p, q
arbitrary nonzero real numbers.

1 Introduction

The (p, q)-Fibonacci sequence (Un) = (Un(p, q)) and (p, q)-Lucas sequence (Vn) = (Vn(p, q))
are defined by

U0 = 0, U1 = 1, Un = pUn−1 + qUn−2 (1.1)

and
V0 = 2, V1 = p, Vn = pVn−1 + qVn−2 (1.2)

for n ≥ 2, where p, q are arbitrary nonzero real numbers. The terms Un and Vn are called the n-th
(p, q)-Fibonacci and Lucas numbers, respectively. One can find properties of these sequences in

[5, 6, 7, 19]. The roots of the characteristic equation x2 − px − q = 0 are α =
p+
√

∆

2
and

β =
p−
√

∆

2
, where ∆ = p2 + 4q. Thus we can give the following properties; α2 − q = pα,

β2 − q = pβ, α+ β = p, α− β =
√

∆ and αβ = −q. Moreover it can be seen that αn = α Un+
qUn−1 and βn = βUn + qUn−1 for all n ∈ Z.

If ∆ 6= 0, then Binet’s formulas for Un and Vn can be given by

Un =
αn − βn√

∆
and Vn = αn + βn

for all n ≥ 0. William R. Hamilton observed quaternions firstly in 1843. The group of quater-
nions are denoted as H. Although addition is closed and commutative, the quaternion multipli-
cation is not commutative over H. A quaternion q is a hyper complex number of the form

q = a+ ib+ jc+ kd

with real components a, b, c, d and basis 1, i, j,k, where

i2 = j2 = k2= −1, ij = k = −ji, jk = i = −kj, and ki = j = −ik.

The conjugate of quaternion q is defined as q = a− ib− jc− kd in [8].
(p, q)−Fibonacci quaternion Qn is defined by

Qn = Un + iUn+1 + jUn+2 + kUn+3, n ≥ 0

where Un is the n-th (p, q)−Fibonacci number and the (p, q)−Lucas quaternion Kn is defined
by

Kn = Vn + iVn+1 + jVn+2 + kVn+3, n ≥ 0
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where Vn is the n-th (p, q)−Lucas number in [7, 9]. Moreover it is easy to see that

Qn+1 = pQn + qQn−1 (1.3)

and
Kn+1 = pKn + qKn−1, (1.4)

for n ≥ 1.
Binet’s formulas for the (p, q)−Fibonacci quaternions Qn and (p, q)− Lucas quaternions Kn

were discovered by Iakin in [10]. For all n ∈ Z,

Qn =
α̂αn − β̂βn

α− β

and
Kn = α̂αn + β̂βn

where α̂ = 1+ iα+ jα2+kα3 and β̂ = 1+ iβ+jβ2+kβ3.
Quaternions are widely used in many researches as theoretical and application. For example,

in number theory, quaternions are used to prove Lagrange’s theorem which says that every pos-
itive integer is sum of at most four squares [13]. Quaternions are used to express the Lorentz
transform in special and general relativity in physics [3].

In computer graphics, programmers prefer to use spherical linear interpolation technique
based on all unit quaternions that form a unit sphere. By this method they can define the sequence
of rotations which affects the smoothness of the animation in computer games, that prevents
unnatural view, stucking or swinging widely [14]. Also quaternions are used in mechanics to
calculate movement and rotations.

One another application of Hamiltonian quaternion algebra is multi antenna radio transmis-
sion. Moreover the quaternions are widely used in control systems that guide aircraft and rockets,
in modern navigation programmes, besides in electric toothbrushes.

In this study we deal with the combinatorial part of quaternion algebra such as deriving
some sum formulas from exponential generating functions of generalized Fibonacci and Lucas
quaternions.

Ramirez proved Cassini’s identity for k-Fibonacci quaternions and gave a conjecture for
Catalan identity of k-Fibonacci quaternions, in [18]. Then Polatlı and Kesim proved Ramirez’s
conjecture in [16]. Taking p = k and q = 1 in the components of (p, q)-Fibonacci quaternion Qn
and (p, q)-Lucas quaternion Kn, it is obvious that Qn and Kn turn to k−Fibonacci quaternion
and k−Lucas quaternion, respectively.

In [2], Demirtürk Bitim and Topal established Cassini’s identity for (p, q)-Fibonacci quater-
nions and (p, q)-Lucas quaternion counterparts of Cassini’s identity. Moreover the authors gave
generating functions of Qmn+r and Kmn+r. These are the more general forms of the theorems
given in [18] by Ramirez and given in [16, 17] by Polatlı and Kesim.

From this point of view, in this paper, firstly we obtained exponential generating functions
of (p, q)−Fibonacci quaternion Qn and (p, q)−Lucas Quaternion Kn. Actually Ipek in [11],
Patel and Ray in [15] gave these exponential generating functions. In [1], Çimen and Ipek
considered Pell quaternions QPn and Pell-Lucas quaternions QPLn which are the special cases
of (p, q)−Fibonacci quaternion Qn and (p, q)−Lucas Quaternion Kn, by taking p = 2 and q = 1

in the identities (1.3) and (1.4). Moreover the authors proved sum formulas
n∑
i=1

QPi,
n∑
i=1

QP2i

and
n∑
i=1

QP2i−1.

Then in [2], Demirtürk Bitim and Topal established the general formula for
n∑
i=1

Qmi+r and

n∑
i=1

Kmi+r. These formulas are also derived by Patel and Ray in [15]. In addition to this, they

gave the formulas
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Qmn =
n∑
j=0

(
n

j

)
qn−jFm

jFm−1
n−jQj

and

Kmn =
n∑
j=0

(
n

j

)
qn−jFm

jFm−1
n−jKj ,

where m, k ∈ Z, n > m ≥ 0 and Fm is the (p, q)−Fibonacci number, by using induction.
We will prove these binomial sum formulas by using the exponential generating functions of
(p, q)−Fibonacci and (p, q)−Lucas quaternions. Moreover we obtain new sum formulas for
Qmn+r and Kmn+r.

Furthermore Ipek proved
n∑
i=0

(
n

i

)
qn−iQ2i+k and

n∑
i=0

(
n

i

)
(−1)iqn−iQ2i+k sum formulas in

[11]. In this study we will give the following more general formulas

n∑
i=0

(
n

i

)
qn−ipiQi+r,

n∑
i=0

(
n

i

)
qn−ipiKi+r,

n∑
i=0

(
n

i

)
(−q)n−iQ2i+r,

n∑
i=0

(
n

i

)
(−q)n−iK2i+r,

and,
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imQi,

n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imKi.

2 Some Identities of Exponential Generating Functions

Firstly, in 1718, Abraham De Moivre used generating functions to determine the Fibonacci re-
currence relations. In 1948, J. Ginzburg proved Lucas’s (1876) formula

n∑
i=0

Fi = Fn+2 − 1,

by using the generating functions. In 1967, V. E. Hoggatt, Jr. and D. A. Lind listed 18 various
generating functions of Fibonacci and Lucas numbers and some of their powers.

Then, R. T. Hansen [4] investigated

∞∑
n=0

Fm+nx
n =

Fm + Fm−1x

1− x− x2

and
∞∑
n=0

Lm+nx
n =

Lm + Lm−1x

1− x− x2

in 1972.
In this paper we consider exponential generating functions of (p, q)−Fibonacci and (p, q)−Lucas

quaternions. In short, we know that ex =
∞∑
n=0

xn

n!
.Moreover it is easy to see that eax =

∞∑
n=0

anxn

n!
.

Thus we can start by giving the known identities from [12], in Lemma 1 and Lemma 2.

Lemma 2.1. Let n ∈ Z. Then
eαx − eβx

α− β
generates the numbers

Fn
n!

and

eαx + eβx generates the numbers
Ln
n!
.
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Proof. Since ex =
∞∑
n=0

xn

n!
, we derive the expected formula

eαx − eβx

α− β
=
∞∑
n=0

Fn
n!
xn,

by using the Binet’s formulas. In a similar way, it follows that

eαx + eβx =
∞∑
n=0

Ln
n!
xn.

Lemma 2.2. LetA (x) =
∞∑
n=0

an
xn

n!
andB (x) =

∞∑
n=0

bn
xn

n!
, where (an) and (bn) are any number

sequences, then we obtain

A (x)B (x) =
∞∑
n=0

[
n∑
i=0

(
n

i

)
anbn−i

]
xn

n!
(2.1)

and

A (x)B (−x) =
∞∑
n=0

[
n∑
i=0

(
n

i

)
(−1)n−ianbn−i

]
xn

n!
. (2.2)

Lemma 2.3. Letm,n, r ∈ Z and x be any nonzero real number. Then the exponential generating
functions of the quaternions Qmn+r and Kmn+r are given by

∞∑
n=0

Qmn+r
xn

n!
=
α̂αreα

mx − β̂βreβmx

α− β
(2.3)

and
∞∑
n=0

Kmn+r
xn

n!
= α̂αreα

mx + β̂βreβ
mx. (2.4)

Proof. If we consider Binet’s formulas, then we get

∞∑
n=0

Qmn+r
xn

n!
=

∞∑
n=0

α̂αmn+r − β̂βmn+r

α− β
xn

n!

=
α̂αr

α− β

∞∑
n=0

(αm)
n x

n

n!
− β̂βr

α− β

∞∑
n=0

(
β̂m
)n xn

n!

=
α̂αr

α− β
eα

mx − β̂βr

α− β
eβ

mx

=
α̂αreα

mx − β̂βreβmx

α− β

and
∞∑
n=0

Kmn+r
xn

n!
=

∞∑
n=0

[
α̂αmn+r + β̂βm+r

] xn
n!

= α̂αr
∞∑
n=0

(αm)
n x

n

n!
+ β̂βr

∞∑
n=0

(βm)
n x

n

n!

= α̂αreα
mx + β̂βreβ

mx.
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Theorem 2.4. Let n ∈ N and r ∈ Z. Then it follows that

n∑
i=0

(
n

i

)
qn−ipiQi+r = Q2n+r (2.5)

and
n∑
i=0

(
n

i

)
qn−ipiKi+r = K2n+r. (2.6)

Proof. If we use the fact that pα+ q = α2 and pβ + q = β2 with Binet’s formulas, then we get

eqx
αrα̂epαx − βrβ̂epβx

α− β
=
αrα̂eα

2x − βrβ̂eβ2x

α− β
=

α̂αr

α− β
eα

2x − β̂βr

α− β
eβ

2x

=
α̂αr

α− β

∞∑
n=0

(
α2)n xn

n!
− β̂βr

α− β

∞∑
n=0

(
β2)n xn

n!

=
∞∑
n=0

α̂α2n+r − β̂β2n+r

α− β
xn

n!
=
∞∑
n=0

Q2n+r
xn

n!
. (2.7)

Beside this, we have

eqx
αrα̂epαx − βrβ̂epβx

α− β
=

[ ∞∑
n=0

qn
xn

n!

][ ∞∑
n=0

pn
αrα̂αn − βrβ̂βn

α− β
xn

n!

]

=

[ ∞∑
n=0

qn
xn

n!

][ ∞∑
n=0

pnQn+r
xn

n!

]
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
qn−ipiQi+r

]
xn

n!
(2.8)

by taking an = qn and bn = pnQn+r in (2.1). If we consider the equalities (2.7) and (2.8), then
we get

∞∑
n=0

Q2n+r
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
qn−ipiQi+r

]
xn

n!
,

which gives (2.5). On the other hand, calculating

eqx
[
αrα̂epαx + βrβ̂epβx

]
= αrα̂eα

2x + βrβ̂eβ
2x

= α̂αr
∞∑
n=0

(
α2)n xn

n!
+ β̂βr

∞∑
n=0

(
β2)n xn

n!

=
∞∑
n=0

[
α̂α2n+r + β̂β2n+r

] xn
n!

=
∞∑
n=0

K2n+r
xn

n!

and

eqx
[
αrα̂epαx + βrβ̂epβx

]
=

[ ∞∑
n=0

qn
xn

n!

][ ∞∑
n=0

pn
[
α̂αn+r + β̂βn+r

] xn
n!

]

=

[ ∞∑
n=0

qn
xn

n!

][ ∞∑
n=0

pnKn+r
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
qn−ipiKi+r

]
xn

n!
,

we achieve (2.6).
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Theorem 2.5. Let n ∈ N and r ∈ Z. Then it follows that

n∑
i=0

(
n

i

)
(−q)n−iQ2i+r = pnQn+r (2.9)

and
n∑
i=0

(
n

i

)
(−q)n−iK2i+r = pnKn+r. (2.10)

Proof. If we use the facts α2 − q = pα and β2 − q = pβ with Binet’s formulas, then we get

e−qx
αrα̂eα

2x − βrβ̂eβ2x

α− β
=

α̂αr

α− β
epαx − β̂βr

α− β
epβx

=
α̂αr

α− β

∞∑
n=0

pnαn
xn

n!
− β̂βr

α− β

∞∑
n=0

pnβn
xn

n!

=
∞∑
n=0

pn
α̂αn+r − β̂βn+r

α− β
xn

n!
=
∞∑
n=0

pnQn+r
xn

n!
.

Moreover, taking an = (−q)n and bn = Q2n+r in equality (2.1), we have

e−qx
αrα̂eα

2x − βrβ̂eβ2x

α− β
=

[ ∞∑
n=0

(−q)n
xn

n!

][ ∞∑
n=0

α̂α2n+r − β̂β2n+r

α− β
xn

n!

]

=

[ ∞∑
n=0

(−q)n
xn

n!

][ ∞∑
n=0

Q2n+r
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(−q)n−iQ2i+r

]
xn

n!
.

Thus it follows that

∞∑
n=0

pnQn+r
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(−q)n−iQ2i+r

]
xn

n!
,

which gives (2.9). On the other hand, we obtain

e−qx
[
αrα̂eα

2x + βrβ̂eβ
2x
]

= αrα̂epαx + βrβ̂epβx

= α̂αr
∞∑
n=0

pnαn
xn

n!
+ β̂βr

∞∑
n=0

pnβn
xn

n!

=
∞∑
n=0

pn
[
α̂αn+r + β̂βn+r

] xn
n!

=
∞∑
n=0

pnKn+r
xn

n!

and considering an = (−q)n and bn = K2n+r in equality (2.1), it is seen that

e−qx
[
αrα̂eα

2x + βrβ̂eβ
2x
]

=

[ ∞∑
n=0

(−q)n
xn

n!

][ ∞∑
n=0

(
α̂α2n+r + β̂β2n+r

) xn
n!

]

=

[ ∞∑
n=0

(−q)n
xn

n!

][ ∞∑
n=0

K2n+r
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(−q)n−iK2i+r

]
xn

n!
.
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Thus it follows that
∞∑
n=0

pnKn+r
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(−q)n−iK2i+r

]
xn

n!
,

which gives the equality (2.10).

Theorem 2.6. Let n ∈ N. We have
n∑
i=0

(
n

i

)
Vn−iQi =

n∑
i=0

(
n

i

)
Qn−iVi = 2nQn + pnQ0 (2.11)

and
n∑
i=0

(
n

i

)
Un−iKi =

n∑
i=0

(
n

i

)
Kn−iUi = 2nQn − pnQ0. (2.12)

Proof. Using the fact that α+ β = p with Binet’s formulas, it follows that(
α̂eαx − β̂eβx

α− β

)(
eαx + eβx

)
=

α̂e2αx − β̂e2βx

α− β
+
α̂epx − β̂epx

α− β

=
∞∑
n=0

2n
α̂αn − β̂βn

α− β
xn

n!
+
∞∑
n=0

pn
α̂− β̂
α− β

xn

n!

=
∞∑
n=0

[2nQn + pnQ0]
xn

n!
.

Moreover taking an = Qn and bn = Vn in equality (2.1), we get(
α̂eαx − β̂eβx

α− β

)(
eαx + eβx

)
=

[ ∞∑
n=0

Qn
xn

n!

][ ∞∑
n=0

Vn
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Vn−iQi

]
xn

n!
.

Thus equality (2.11) follows from

∞∑
n=0

[2nQn + pnQ0]
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Vn−iQi

]
xn

n!
.

Similarly, we have

(
α̂eαx + β̂eβx

)(eαx − eβx
α− β

)
=

α̂e2αx − β̂e2βx

α− β
−
epx
(
α̂− β̂

)
α− β

=
∞∑
n=0

2n
[
α̂αn − β̂βn

αβ

]
xn

n!
− α̂− β̂
α− β

∞∑
n=0

pn
xn

n!

=
∞∑
n=0

[2nQn − pnQ0]
xn

n!
.

If we take an = Kn and bn = Un in equality (2.1), then we have(
α̂eαx + β̂eβx

)(eαx − eβx
α− β

)
=

[ ∞∑
n=0

Kn
xn

n!

][ ∞∑
n=0

Un
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Un−iKi

]
xn

n!
.
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Then it follows that
∞∑
n=0

[2nQn − pnQ0] =
∞∑
n=0

[
n∑
i=0

(
n

i

)
Un−iKi

]
xn

n!
,

which gives the equality (2.12).

Theorem 2.7. Let n ∈ N. Then we have
n∑
i=0

(
n

i

)
Un−iQi =

n∑
i=0

(
n

i

)
Qn−iUi =

2nKn − pnK0

∆

and
n∑
i=0

(
n

i

)
Vn−iKi =

n∑
i=0

(
n

i

)
Kn−iVi = 2nKn + pnK0.

Proof. Using the fact that α+ β = p with Binet’s formulas, it follows that[
α̂eαx − β̂eβx

α− β

] [
eαx − eβx

α− β

]
=

α̂e2αx + β̂e2βx

(α− β)2 − α̂+ β̂

(α− β)2 e
px

=
∞∑
n=0

[
2nKn

∆

]
xn

n!
−
∞∑
n=0

[
pnK0

∆

]
xn

n!

=
∞∑
n=0

[
2nKn − pnK0

∆

]
xn

n!
.

Also taking an = Qn and bn = Un in equality (2.1), then we have[
α̂eαx − β̂eβx

α− β

] [
eαx − eβx

α− β

]
=

[ ∞∑
n=0

Qn
xn

n!

][ ∞∑
n=0

Un
xn

n!

]
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Un−iQi

]
xn

n!
.

Thus it follows that
∞∑
n=0

[
2nKn − pnK0

∆

]
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Un−iQi

]
xn

n!
.

On the other hand,[
α̂eαx + β̂eβx

] [
eαx + eβx

]
= α̂e2αx + β̂e2βx + α̂epx + β̂epx

=
∞∑
n=0

2n Kn
xn

n!
+
∞∑
n=0

pn
[
α̂+ β̂

] xn
n!

=
∞∑
n=0

[2nKn + pnK0]
xn

n!

and taking an = Kn and bn = Vn in equality (2.1), we obtain

[
α̂eαx + β̂eβx

] [
eαx + eβx

]
=

[ ∞∑
n=0

Kn
xn

n!

][ ∞∑
n=0

Vn
xn

n!

]
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Vn−iKi

]
xn

n!
.

Thus it follows that
∞∑
n=0

[2nKn + pnK0]
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
Vn−iKi

]
xn

n!
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Theorem 2.8. Let n ∈ N and m ∈ Z. Then we have
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imQi = Qmn

and
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imKi = Kmn.

Proof. Considering the facts Umα + qUm−1 = αm and Umβ + qUm−1 = βm with Binet’s
formulas, we get

eqUm−1x
α̂eUmαx − β̂eUmβx

α− β
=
α̂e(Umα+qUm−1)x − β̂e(Umβ+qUm−1)x

α− β

=
α̂eα

mx − β̂eβmx

α− β
=

α̂

α− β

∞∑
n=0

(αm)
n x

n

n!
− β̂

α− β

∞∑
n=0

(βm)
n x

n

n!

=
∞∑
n=0

[
α̂αmn − β̂βmn

α− β

]
xn

n!
=
∞∑
n=0

Qmn
xn

n!

and taking an = (qUm−1)
n and bn = UnmQn in equality (2.1), we have

eqUm−1x
α̂eUmαx − β̂eUmβx

α− β
=

[ ∞∑
n=0

(qUm−1)
n x

n

n!

][ ∞∑
n=0

UnmQn
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imQi

]
xn

n!
.

Thus it follows that
∞∑
n=0

Qmn
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imQi

]
xn

n!
,

which gives the formula
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imQi = Qmn.

On the other hand, we have

eqUm−1x
[
α̂eUmαx + β̂eUmβx

]
=

[
α̂e(Umα+qUm−1)x + β̂e(Umβ+qUm−1)x

]
=

[
α̂eα

mx + β̂eβ
mx
]

=
∞∑
n=0

α̂ (αm)
n x

n

n!
+
∞∑
n=0

β̂ (βm)
n x

n

n!

=
∞∑
n=0

[
α̂αmn + β̂βmn

] xn
n!

=
∞∑
n=0

Kmn
xn

n!
,

and taking an = (qUm−1)
n and bn = UnmKn in equality (2.1), we get

eqUm−1x
[
α̂eUmαx + β̂eUmβx

]
=

[ ∞∑
n=0

(qUm−1)
n x

n

n!

][ ∞∑
n=0

UnmKn
xn

n!

]

=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imKi

]
xn

n!
.
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Then it follows that

∞∑
n=0

Kmn
xn

n!
=
∞∑
n=0

[
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imKi

]
xn

n!
,

which gives the formula
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imKi = Kmn.

Furthermore, starting with the expressions

eqUm−1x
α̂αreUmαx − β̂βreUmβx

α− β

and
eqUm−1x

(
α̂αreUmαx + β̂βreUmβx

)
we obtain the most general formulas

n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imQi+r = Qmn+r

and
n∑
i=0

(
n

i

)
(qUm−1)

n−i
U imKi+r = Kmn+r,

respectively.
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