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Abstract In the present paper, we study v-semi-slant submersions from almost product Rie-
mannian manifolds onto Riemannian manifolds. We investigate the integrability of distributions,
the geometry of fibers. We also deal with the condition for such maps to be totally geodesic and
give some examples.

1 Introduction

In differential geometry, the notion of Riemannian submersion was first studied by O’Neill [19]
and Gray [12]. Then Watson defined almost Hermitian submersions between Hermitian mani-
folds. Also he showed that the base manifold and each fiber have the same kind of structure as the
total space in most case [29]. Recently, according to the different conditions on Riemannian sub-
mersion, many authors have carried out studies (see [1, 2, 3, 4, 10, 13, 14, 16, 17, 22, 26, 27, 28]).
Sahin investigated slant submersions from almost Hermitian manifolds onto Riemannian mani-
folds [24]. As a generalization of slant submersions, semi invariant submersions, anti-invariant
submersions, Park defined semi-slant submersions from Hermitian manifolds onto Riemannian
manifolds [21]. Also, in [20], Park studied v-semi-slant submersions from Hermitian manifolds
onto Riemannian manifolds and obtained some characterizations. On the other hand it is well-
known that Riemannian submersions are related with physics and have their applications in the
Yang Mills theory [8], Kaluza Klein theory [9], supergravity and superstring theories [15] etc.
Other applications for Riemannian submersions are statistica machine learning process, medical
imaging [18], statistical analysis on manifolds [7] and robotic theory [5].

In the paper we study v-semi-slant submersions from almost product Riemannian manifolds
onto Riemannian manifolds. We investigate the integrability of distributions and the geometry
of fibers. Also we obtain necessary and sufficient conditions for such maps to be totally geodesic
and give some examples.

2 Preliminaries

In this section, we will give some notions for almost product Riemannian manifold and v-semi-
slant submersion.

2.1 Almost product Riemannian manifolds

Let M be a m-dimensional manifold with a tensor F of a type (1, 1) such that

F 2 = I, (F 6= I) (2.1)

Then it is said that M is an almost product manifold with almost product structure F . Here it
can be written

P =
1
2
(I + F ) , Q =

1
2
(I − F ) .
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Thus it is obtained following equations

P +Q = I, P 2 = P, PQ = QP = 0, F = P −Q.

P and Q define two complementary distributions. It can be easily seen that the eigevalues of F
are +1 or −1. If there is a Riemannian metric g on almost product manifold M such that

g (FX,FY ) = g (X,Y ) (2.2)

for any vector fields X and Y on M , then (M, g, F ) is called an almost product Riemannian
manifold. An almost product Riemannian manifold (M, g, F ) is said to be a locally product
Riemannian manifold if it satisfies

∇XF = 0, X ∈ Γ (TM) . (2.3)

where ∇ is the Levi-Civita connection on M with respect to g [30].

2.2 Riemannian submersions

Let (M, g) and (N, g′) be Riemannian manifolds and π : (M, g)→ (N, g′) a C∞ map. The map
π is called a C∞-submersion if π is surjective and the differential (π∗)p has maximal rank for
any p ∈M . A C∞ submersion π is said to be a Riemannian submersion if the differential (π∗)p
preserves the lengths of horizontal vectors for each p ∈M .
For any q ∈ N , π−1(q) is a (m − n)-dimensional submanifold of M , so-called fiber. If a
vector field on M is always tangent (resp. orthogonal) to fibers, then it is called vertical (resp.
horizontal) [23]. A vector field X on M is said to be basic if it is horizontal and π-related to
a vector field X∗ on N , i.e., π∗Xp = X∗π(p) for all p ∈ M . The fundamental tensors of a
Riemannian submersion are defined by the following formulas

TEF = H∇VEVF + V∇VEHF, (2.4)

AEF = V∇HEHF +H∇HEVF, (2.5)

for any vector fields E and F on M , where ∇ is the Levi-Civita connection of (M, g) [19, 11].

Lemma 2.1. ([11]) Let π : (M, g)→ (N, g′) be a Riemannian submersion between Riemannian
manifolds. If X and Y are basic vector fields of M , then

• g(X,Y ) = g′(X∗, Y∗) ◦ π,

• the horizontal part [X,Y ]H of [X,Y ] is a basic vector field and correspond to [X∗, Y∗] i.e.,
π∗

(
[X,Y ]H

)
= [X∗, Y∗],

• [V,X] is vertical for any vertical vector field V ,

• (∇XY )H is the basic vector field corresponding to ∇′X∗
Y∗,

where ∇ and ∇′ are the Levi-Civita connections on M and N , respectively [19].

Also, using (2.4) and (2.5), we have

∇VW = TVW + ∇̂VW (2.6)

∇VX = H∇VX + TVX (2.7)

∇XV = AXV + V∇XV (2.8)

∇XY = H∇XY +AXY (2.9)

for X,Y ∈ Γ((kerπ∗)⊥) and V,W ∈ Γ(kerπ∗), where ∇̂VW = V∇VW . The tensor fields T
and A satisfy the equations

TUW = TWU, (2.10)

AXY = −AYX =
1
2
V[X,Y ] (2.11)
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for U,W ∈ Γ(kerπ∗) and X,Y ∈ Γ

(
(kerπ∗)

⊥
)

. On the other hand, it can be easily said that
a Riemannian submersion π : M → N has totally geodesic fibers if and only if T identically
vanishes. Let (M, g) and (N, g′) be Riemannian manifolds and suppose that π : M → N is a
smooth mapping between them. Then the second fundamental form of π is given by

∇π∗(X,Y ) = ∇πXπ∗(Y )− π∗(∇XY ) (2.12)

for X,Y ∈ Γ(TM), where ∇π is the pullback connection and ∇ the Riemannian connections of
the metrics g and g′ [6]. For a Riemannian submersion π, we recall that

(∇π∗) (X,Y ) = 0 (2.13)

whereX,Y ∈ Γ
(
(kerπ∗)⊥

)
. A smooth map π : (M, g)→ (N, g′) is said to be a totally geodesic

map if
(∇π∗) (X,Y ) = 0 (2.14)

for X,Y ∈ Γ (TM).
We call the map π a slant submersion if π is a Riemannian submersion and the angle θ =

θ(X) between FX and the space (kerπ∗)p is constant for nonzero X ∈ (kerπ∗) and p ∈M . We
call the angle θ a slant angle [13, 24].

Also, a Riemannian submersion π is said to be a semi-slant submersion if there is a distribu-
tion D1 ⊂ Γ (kerπ∗) such that

kerπ∗ = D1 ⊕D2, F (D1) = D1

and the angle θ = θ(X) between FX and the space (D2)p is constant for nonzero X ∈ (D2)p
and p ∈ M , where D2 is the orthogonal complement of D1 in Γ (kerπ∗). We call the angle θ a
semi-slant angle [21].

Now, by using [20], we define the v-semi-slant submersions from an almost product Rieman-
nian manifold (M, g, F ) onto a Riemannian manifold (N, g′).

3 V-Semi-Slant Submersions

Definition 3.1. Let π be a Riemannian submersion from an almost product Riemannian manifold
(M, g, F ) onto a Riemannian manifold (N, g′). π is called a v-semi-slant submersion if there are
two orthogonal complementary distributionsD1 andD2 of horizontal distribution (kerπ∗)

⊥ such
that

(kerπ∗)
⊥
= D1 ⊕D2, F (D1) = D1

and the angle θ(X) between FX and the space D2 is constant for non-zero X ∈ (D2)p at each
point p ∈M . The angle θ is called a v-semi-slant angle.

If D2 = (kerπ∗)
⊥, then the map F is said a v-slant submersion and the angle θ v-slant

angle. Also, if θ = π
2 , then the map F is called a v-semi-invariant submersion [20]. Let F :

(M, g, F )→ (N, g′) be a v-semi-slant submersion. Then for X ∈ Γ (kerπ∗), we can write

FX = φX + ωX (3.1)

where φX ∈ Γ (kerπ∗) and ωX ∈ Γ

(
(kerπ∗)

⊥
)

. For Z ∈ Γ

(
(kerπ∗)

⊥
)

we obtain

FZ = BZ + CZ (3.2)

where BZ ∈ Γ (kerπ∗) and CZ ∈ Γ

(
(kerπ∗)

⊥
)

. For U ∈ Γ (TM), we have

U = VU +HU

where VU ∈ Γ (kerπ∗) and HU ∈ Γ

(
(kerπ∗)

⊥
)

. Then

kerπ∗ = BD2 ⊕ µ,
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where µ is the orthogonal complement of BD2 in kerπ∗ and is invariant under F . On the other
hand we obtain

CD1 = D1, BD1 = 0, CD2 ⊂ D2, φ
2 +Bw = id,

C2 + ωB = id, ωφ+ Cω = 0, BC + φB = 0.

Lemma 3.2. Let (M, g, F ) be almost product Riemannian manifold and (N, g′) a Riemannian
manifold. Let π : (M, g, F )→ (N, g′) be a v-semi-slant submersion. Then for U, V ∈ Γ (kerπ∗),
we have

∇̂UφV + TUωV = φ∇̂UV +BTUV

TUφV +H∇UωV = ω∇̂UV + CTUV.

For X,Y ∈ Γ

(
(kerπ∗)

⊥
)

we get

V∇XBY +AXCY = φAXY +BH∇XY
AXBY +H∇XCY = ωAXY + CH∇XY.

Also, for U ∈ Γ (kerπ∗) and X ∈ Γ

(
(kerπ∗)

⊥
)

we have

∇̂UBX + TUCX = φTUX +BH∇UX
TUBX +H∇UCX = ωTUX + CH∇UX.

Example 3.3. We define an almost product structure F on R6 as follows:

F (x1, x2, x3, x4, x5, x6) = (x2, x1, x5, x6, x3, x4) .

Given a map π : R6 → R4 by

π (x1, x2, x3, x4, x5, x6) = (x1, x3 sinα− x4 cosα, x2, x5 cosβ − x6 sinβ) .

Then we have

kerπ∗ =
{
V1 = cosα

∂

∂x3
+ sinα

∂

∂x4
, V2 = sinβ

∂

∂x5
+ cosβ

∂

∂x6

}
,

(kerπ∗)
⊥
={H1 =

∂

∂x1
, H2 =

∂

∂x2
, H3 = sinα

∂

∂x3
− cosα

∂

∂x4
,

H4 = cosβ
∂

∂x5
− sinβ

∂

∂x6
}.

Thus the map π is a v-semi-slant submersion such that

D1 =

{
H1 =

∂

∂x1
, H2 =

∂

∂x2

}
and

D2 =

{
H3 = sinα

∂

∂x3
− cosα

∂

∂x4
, H4 = cosβ

∂

∂x5
− sinβ

∂

∂x6

}
with the v-semi-slant angle cos θ = sin (α+ β).

Example 3.4. We determine an almost product structure F on R8 as follows:

F (x1, x2, x3, x4, x5, x6, x7, x8) = (x3, x4, x1, x2, x7, x8, x5, x6) .

Define a map π : R8 → R4 by

π (x1, x2, ..., x8) =

(
x2 + x8√

2
, cosαx3 − sinαx5,

x4 + x6√
2

, x1

)
.
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Then we obtain

kerπ∗ ={V1 =
∂

∂x2
− ∂

∂x8
, V2 = sinα

∂

∂x3
+ cosα

∂

∂x5
,

V3 =
∂

∂x4
− ∂

∂x6
, V4 =

∂

∂x7
}

(kerπ∗)
⊥
={H1 =

∂

∂x1
, H2 =

∂

∂x2
+

∂

∂x8
, H3 = cosα

∂

∂x3
− sinα

∂

∂x5
,

H4 =
∂

∂x4
+

∂

∂x6
}.

Therefore the map π is a v-semi-slant submersion such that

D1 =

{
H2 =

∂

∂x2
+

∂

∂x8
, H4 =

∂

∂x4
+

∂

∂x6

}
and

D2 =

{
H1 =

∂

∂x1
, H3 = cosα

∂

∂x3
− sinα

∂

∂x5

}
with the v-semi-slant angle θ = α.

Theorem 3.5. Let π be a Riemannian submersion from an almost product Reimannian manifold
(M, g, F ) onto a Riemannian manifold (N, g′). Then π is a v-semi-slant submersion if and only
if

C2X = λX

for X ∈ Γ(D2), where λ = cos2 θ and θ is the v-semi-slant angle of D2.

Proof. Since cosθ = ‖CX‖
‖FX‖ , we can write

cos θ =
g (FX,CX)

‖CX‖‖FX‖

⇒ cos2 θ =
g
(
X,C2X

)
‖X‖2

for X ∈ Γ (D2). Therefore, for X ∈ Γ (D2), we arrive

C2X = cos2 θX

which prove the theorem.

Theorem 3.6. Let π be a v-semi-slant submersion from a locally product Reimannian manifold
(M, g, F ) onto a Riemannian manifold (N, g′). Then the distribution D1 is integrable if and only
if

g (AXFY −AY FX,BZ) = g (H∇Y FX −H∇XFY,CZ)

for X,Y ∈ Γ (D1) and Z ∈ Γ (D2).

Proof. Using the equations (2.2), (2.3), (2.9) and (3.2), we get

g ([X,Y ] , Z) =g (∇XFY, FZ)− g (∇Y FX,FZ)
=g (AXFY,BZ) + g (H∇XFY,CZ)
− g (AY FX,BZ)− g (H∇Y FX,CZ)

for X,Y ∈ Γ (D1) and Z ∈ Γ (D2). Then we arrive

g ([X,Y ] , Z) =g (AXFY −AY FX,BZ)
+ g (H∇XFY −H∇Y FX,CZ) .

Thus we have the result.
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Theorem 3.7. Let π be a v-semi-slant submersion from a locally product Reimannian manifold
(M, g, F ) onto a Riemannian manifold (N, g′). Then the distribution D2 is integrable if and only
if

g (AZBW −AWBZ,FX) = g (AWBCZ −AZBCW,X)

for Z,W ∈ Γ (D2) and X ∈ Γ (D1).

Proof. From (2.2), (2.3) and (3.2) we have

g ([Z,W ] , X) = g (∇ZFW,FX)− g (∇WFZ,FX)

= g (∇ZBW,FX) + g (∇ZCW,FX)

− g (∇WBZ,FW )− g (∇WCZ,FX)

for Z,W ∈ Γ (D2) and X ∈ Γ (D1). By using (2.8) and Theorem 3.5, we can write

g ([Z,W ] , X) =g (AZBW −AWBZ,FX) + g (∇ZBCW −∇WBCZ,X)

+ cos2 θg (∇ZW −∇WZ,X)

⇒ sin2 g ([Z,W ] , X) =g (AZBW −AWBZ,FX) + g (AZBCW −AWBCZ,X) .

Therefore, the proof is completed.

Theorem 3.8. Let π be a v-semi-slant submersion from a locally product Reimannian mani-
fold (M, g, F ) onto a Riemannian manifold (N, g′). Then the distribution D1 defines a totally
geodesic foliation on M if and only if

g (AXFY,BZ) = −g (AXY,BCZ)

and

g (AXFY, φU) = −g (H∇XFY, ωU)

for X,Y ∈ Γ (D1) , Z ∈ Γ (D2) and U ∈ Γ (kerπ∗).

Proof. By using (2.2), (2.3), (3.2) and Theorem 3.5, we obtain

g (∇XY,Z) = g (∇XFY,BZ) + g (F∇XY,CZ)

= g (∇XFY,BZ) + cos2 θg (∇XY, Z) + g (∇XY,BCZ)

for X,Y ∈ Γ (D1) and Z ∈ Γ (D2). From (2.9), we get

sin2 θg (∇XY, Z) = g (AXFY,BZ) + g (AXY,BCZ) .

Thus we obtain the first equation.
On the other hand, for U ∈ Γ (kerπ∗) we have

g (∇XY,U) =g (∇XFY, FU)
=g (AXFY +H∇XFY, FU) .

Then using (3.1) we write

g (∇XY, U) = g (AXFY, φU) + g (H∇XFY, ωU) .

Thus the proof is completed.

Theorem 3.9. Let π be a v-semi-slant submersion from a locally product Reimannian mani-
fold (M, g, F ) onto a Riemannian manifold (N, g′). Then the distribution D2 defines a totally
geodesic foliation on M if and only if

g (AZBW,FX) = −g (AZBCW,X)

and

−g (AZBW,ωU) = g (V∇ZBW,φU) + g (V∇ZBCW,U)

for Z,W ∈ Γ (D2) , X ∈ Γ (D1) and U ∈ Γ (kerπ∗).
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Proof. Using the equations (2.2), (2.3) and (3.2), we get

g (∇ZW,X) = g (∇ZBW,FX) + g (F∇ZCW,X)

for Z,W ∈ Γ (D2) , X ∈ Γ (D1). From (2.8) and Theorem 3.5, we obtain

g (∇ZW,X) = g (∇ZBW,FX) + g (∇ZBCW,X) + cos2 θg (∇ZW,X)

or

⇒ sin2 θg (∇ZW,X) = g (AZBW,FX) + g (AZBCW,X) .

Similarly, for Z,W ∈ Γ (D2) and U ∈ Γ (kerπ∗)

g (∇ZW,U) =g (∇ZFW,FU)

=g (∇ZBW,FU) + g (∇ZBCW,U) + cos2 θg (∇ZW,U) .

Thus we arrive

sin2 θg (∇ZW,U) =g (AZBW,ωU) + g (V∇ZBW,φU)
+ g (V∇ZBCW,U) .

Then the proof is completed.

Theorem 3.10. Let π be a v-semi-slant submersion from a locally product Reimannian manifold
(M, g, F ) onto a Riemannian manifold (N, g′). Then π is a totally geodesic map if and only if

ω
(
TUωV + ∇̂UφV

)
+ C (TUφV +H∇UωV ) = 0

CTUBZ + ω∇̂UBZ + TUBCZ + cos2 θH∇UZ = 0

ωTUFX + CH∇UFX = 0

for U, V ∈ Γ (kerπ∗), X ∈ Γ (D1) and Z ∈ Γ (D2).

Proof. Since π is a Riemannian submersion, for X1, X2 ∈ Γ

(
(kerπ∗)

⊥
)

(∇π∗) (X1, X2) = 0.

From (2.12) we have

(∇π∗) (U, V ) = −π∗ (F∇UFV )

for U, V ∈ Γ (kerπ∗). By using (2.6) and (2.7) we obtain

(∇π∗) (U, V ) = −π∗
(
F
(
TUφV + ∇̂UφV

)
+ F (TUωV +H∇UωV )

)
.

Thus, using (3.1) and (3.2), we get

(∇π∗) (U, V ) = −π∗
(
ω
(
TUωV + ∇̂UφV

)
+ C (TUφV +H∇UωV )

)
= 0.

If π is a totally geodesic map, we arrive

ω
(
TUωV + ∇̂UφV

)
+ C (TUφV +H∇UωV ) = 0.

Similarly, we can write

(∇π∗) (U,X) = −π∗ (F∇UFX)

for U ∈ Γ (kerπ∗) and X ∈ Γ (D1). Using (2.7) we get

(∇π∗) (U,X) = −π∗ (F (TUFX +H∇UFX)) .
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Then we have

ωTUFX + CH∇UFX = 0.

Also we obtain

(∇π∗) (U,Z) = −π∗ (F∇UFZ)

for U ∈ Γ (kerπ∗) and Z ∈ Γ (D2). From Theorem 3.5 we get

(∇π∗) (U,Z) =− π∗
(
F
(
TUBZ + ∇̂UBZ

)
+∇UBCZ +∇UC2Z

)
=− π∗(BTUBZ + CTUBZ + φ∇̂UBZ + ω∇̂UBZ

+ TUBCZ + ∇̂UBCZ + cos2 θ (TUZ +H∇UZ)).

Therefore we have

CTUBZ + ω∇̂UBZ + TUBCZ + cos2 θH∇UZ = 0

which prove the theorem.

We recall a fiber of a Riemannian submersion π : (M, g)→ (N, g′) is called totally umbilical
if

TUV = g(U, V )H

for U ∈ Γ (kerπ∗), where H is the mean curvature vector field of the fiber.
Then we give the following theorem

Theorem 3.11. Let π be a v-semi-slant submersion with totally umbilical fibers from a locally
product Reimannian manifold (M, g, F ) onto a Riemannian manifold (N, g′). Then we obtain

H ⊥ Γ(D1)

Proof. From the equations (2.3) and (2.6) we have

TUFV + ∇̂UFV = ∇UFV = F∇UV

for U, V ∈ Γ (µ). For X ∈ Γ (D1), we get

g (U,FV ) g (H,X) = g (U, V ) g (H,FX)

If U and V are replaced, we find

g (V, FU) g (H,X) = g (V,U) g (H,FX)

Then we obtain

g (U, V ) g (H,FX) = 0.

Therefore the proof is completed.
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