$h(x)-$ JACOBSTHAL and $h(x)-$ JACOBSTHAL- LUCAS REPRESENTATION POLYNOMIALS

Nayil Kilic
Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: Primary 05A15, 11B39; Secondary 11B37.
Keywords and phrases: Generating functions, Fibonacci and Lucas numbers and polynomials and generalizations, Recurrences.

Abstract In this paper, we introduce $h(x)$ - Jacobsthal type polynomials and give some properties of them and then using $h(x)$ - Jacobsthal type polynomials, we describe rising and decreasing diagonal functions and give some basic properties of them. Finally, we define augmented $h(x)$ - Jacobsthal- type representation polynomials, we compute generating functions, Binet formulas, summation formulas, Simson formulas and explicit combinatorial form of them.

1 Introduction

Let $h(x)$ be a polynomial with real coefficients. For $n>0$, the $h(x)$-Jacobsthal polynomials $J_{h, n}(x)$, and the $h(x)$-Jacobsthal-Lucas polynomials $j_{h, n}(x)$, are defined by

$$
\begin{equation*}
J_{h, n+1}(x)=J_{h, n}(x)+h(x) J_{h, n-1}(x), \quad J_{h, 0}(x)=0, \quad J_{h, 1}(x)=1 \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{h, n+1}(x)=j_{h, n}(x)+h(x) j_{h, n-1}(x), \quad j_{h, 0}(x)=2, \quad j_{h, 1}(x)=1 \tag{1.2}
\end{equation*}
$$

respectively.
Note that, in particular case where $h(x)=2 x$, (1.1) reduces to the Jacobsthal polynomials and (1.2) reduces to the Jacobsthal-Lucas polynomials.

The solutions of the characteristic equation $z^{2}-z-h(x)=0$ associated to the recurrence relations (1.1) and (1.2) are $\lambda=\frac{1+\sqrt{1+4 h(x)}}{2}$ and $\gamma=\frac{1-\sqrt{1+4 h(x)}}{2}$. Note that:

$$
\begin{equation*}
\lambda+\gamma=1, \quad \lambda \gamma=-h(x), \quad \lambda-\gamma=\sqrt{1+4 h(x)} \tag{1.3}
\end{equation*}
$$

In the literature there are many studies about Jacobsthal-type polynomials. Some of them are as follows: In [5], Horadam studied Jacobsthal representation polynomials. He gave some properties of Jacobsthal representation numbers in [4], including generating functions, Binet formulas, Simson formulas and summation formulas. Also in [6], author introduced convolutions for Jacobsthal type polynomials and gave some important results of them. Also, in [1, 2, 3, 7, 8, 9], authors studied on Jacobsthal- type polynomials and Jacobsthal- type numbers.

2 The $\boldsymbol{h}(\boldsymbol{x})$ - Jacobsthal- Type Polynomials

In the following Tables 1 and 2, we give the first few polynomials of (1.1) and (1.2) of these Jacobsthal-type sequences.

Table 1. $h(x)-$ Jacobsthal Polynomials $\left\{J_{h, n}(x)\right\}: 0 \leq n \leq 10$

$J_{h, 0}(x)=0$	$J_{h, 6}(x)=1+4 h(x)+3 h^{2}(x)$
$J_{h, 1}(x)=1$	$J_{h, 7}(x)=1+5 h(x)+6 h^{2}(x)+h^{3}(x)$
$J_{h, 2}(x)=1$	$J_{h, 8}(x)=1+6 h(x)+10 h^{2}(x)+4 h^{3}(x)$
$J_{h, 3}(x)=1+h(x)$	$J_{h, 9}(x)=1+7 h(x)+15 h^{2}(x)+10 h^{3}(x)+h^{4}(x)$
$J_{h, 4}(x)=1+2 h(x)$	$J_{h, 10}(x)=1+8 h(x)+21 h^{2}(x)+20 h^{3}(x)+5 h^{4}(x)$
$J_{h, 5}(x)=1+3 h(x)+h^{2}(x)$	

Table 2. $h(x)$ - Jacobsthal-Lucas Polynomials $\left\{j_{h, n}(x)\right\}: 0 \leq n \leq 10$

$J_{h, 0}(x)=2$	$J_{h, 6}(x)=1+6 h(x)+9 h^{2}(x)+2 h^{3}(x)$
$J_{h, 1}(x)=1$	$J_{h, 7}(x)=1+7 h(x)+14 h^{2}(x)+7 h^{3}(x)$
$J_{h, 2}(x)=1+2 h(x)$	$J_{h, 8}(x)=1+8 h(x)+20 h^{2}(x)+16 h^{3}(x)+2 h^{4}(x)$
$J_{h, 3}(x)=1+3 h(x)$	$J_{h, 9}(x)=1+9 h(x)+27 h^{2}(x)+30 h^{3}(x)+9 h^{4}(x)$
$J_{h, 4}(x)=1+4 h(x)+2 h^{2}(x)$	$J_{h, 10}(x)=1+10 h(x)+35 h^{2}(x)+50 h^{3}(x)+25 h^{4}(x)+2 h^{5}(x)$
$J_{h, 5}(x)=1+5 h(x)+5 h^{2}(x)$	

3 Some Properties of the $\boldsymbol{h}(\boldsymbol{x})$ - Jacobsthal- Type Polynomials

The Binet formulas for the $h(x)$ - Jacobsthal and $h(x)$ - Jacobsthal-Lucas polynomials are given by

$$
\begin{equation*}
J_{h, n}(x)=\frac{\lambda^{n}-\gamma^{n}}{\lambda-\gamma}, \quad n \geq 0 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{h, n}(x)=\lambda^{n}+\gamma^{n}, \quad n \geq 0 \tag{3.2}
\end{equation*}
$$

respectively.
The generating functions for the $h(x)$ - Jacobsthal and $h(x)$ - Jacobsthal-Lucas polynomials are given as

$$
\begin{equation*}
\sum_{n=0}^{\infty} J_{h, n+1}(x) z^{n}=\frac{1}{1-z-h(x) z^{2}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} j_{h, n+1}(x) z^{n}=\frac{1+2 h(x) z}{1-z-h(x) z^{2}} \tag{3.4}
\end{equation*}
$$

respectively.

Simson Formulas

From (3.1) and (3.2), we have the following Simson formulas, respectively:

$$
\begin{equation*}
J_{h, n+1}(x) J_{h, n-1}(x)-J_{h, n}^{2}(x)=(-1)^{n}(h(x))^{n-1} \tag{3.5}
\end{equation*}
$$

$$
\begin{align*}
j_{h, n+1}(x) j_{h, n-1}(x)-j_{h, n}^{2}(x) & =[1+4 h(x)](-h(x))^{n-1} \tag{3.6}\\
& =-[1+4 h(x)]\left[J_{h, n+1}(x) J_{h, n-1}(x)-J_{h, n}^{2}(x)\right]
\end{align*}
$$

Summation Formulas

Immediately, from (3.1) and (3.2), we have

$$
\begin{align*}
& \sum_{l=1}^{m} J_{h, l}(x)=\frac{J_{h, m+2}(x)-1}{h(x)} \tag{3.7}\\
& \sum_{l=0}^{m} j_{h, l}(x)=\frac{j_{h, m+2}(x)-1}{h(x)} \tag{3.8}
\end{align*}
$$

Explicit Combinatorial Forms

In the next theorem, we give the explicit combinatorial forms of $J_{h, m}(x)$ and $j_{h, m}(x)$;

Theorem 3.1.

$$
\begin{align*}
& \text { (i) } \quad J_{h, m}(x)=\sum_{l=0}^{\frac{m-1}{2}}\binom{m-l-1}{l}(h(x))^{l}, \tag{3.9}\\
& \text { (ii) } \quad j_{h, m}(x)=\sum_{l=0}^{\frac{m}{2}} \frac{m}{m-l}\binom{m-l}{l}(h(x))^{l} . \tag{3.10}
\end{align*}
$$

Proof. (i) We use induction on m :
Verification of (3.9) for $m=1,2,3$ is straightforward. Assume it is true for all $m \leq k$,

$$
\begin{aligned}
& J_{h, k}(x)+h(x) J_{h, k-1}(x) \\
& =\sum_{l=0}^{\frac{k-1}{2}}\binom{k-l-1}{l}(h(x))^{l}+\sum_{l=0}^{\frac{k-2}{2}}\binom{k-l-2}{l}(h(x))^{l+1} \\
& =\binom{k-1}{0}+\binom{k-2}{1} h(x)+\ldots+\binom{\frac{k-1}{2}}{\frac{k-1}{2}}(h(x))^{\frac{k-1}{2}} \\
& +\binom{k-2}{0} h(x)+\binom{k-3}{1} h^{2}(x)+\ldots+\binom{\frac{k-2}{2}}{\frac{k-2}{2}}(h(x))^{\frac{k}{2}} \\
& =\sum_{l=0}^{\frac{k}{2}}\binom{k-l}{l}(h(x))^{l} \quad \text { by } \text { Pascal's }^{\prime} \quad \text { formula } \\
& =J_{h, k+1}(x) .
\end{aligned}
$$

(ii) The proof of $(i i)$ is similar to the proof of (i), so it is omitted.

Interrelationships

From (3.1) and (3.2), we obtain

$$
\begin{equation*}
j_{h, n}(x) J_{h, n}(x)=J_{h, 2 n}(x) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{h, n}(x)=J_{h, n+1}(x)+h(x) J_{h, n-1}(x) \tag{3.12}
\end{equation*}
$$

Using (3.1), (3.2) and (1.3), we get

$$
\begin{equation*}
[1+4 h(x)] J_{h, n}(x)=j_{h, n+1}(x)+h(x) j_{h, n-1}(x) \tag{3.13}
\end{equation*}
$$

An immediate consequence of (3.1), (3.2), (1.3) and (1.1) is

$$
\begin{equation*}
J_{h, n}(x)+j_{h, n}(x)=2 J_{h, n+1}(x) \tag{3.14}
\end{equation*}
$$

By (3.1), (3.2) and (3.12), we have

$$
\begin{equation*}
[1+4 h(x)] J_{h, n}(x)+j_{h, n}(x)=2 j_{h, n+1}(x) \tag{3.15}
\end{equation*}
$$

From (3.1), (3.2) and (1.3), we arrive at

$$
\begin{equation*}
\sqrt{1+4 h(x)} J_{h, n}(x)+j_{h, n}(x)=2 \lambda^{n} \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{1+4 h(x)} J_{h, n}(x)-j_{h, n}(x)=-2 \gamma^{n} \tag{3.17}
\end{equation*}
$$

Using (3.1) and (3.2), we obtain

$$
\begin{equation*}
J_{h, m}(x) j_{h, n}(x)=J_{h, n}(x) j_{h, m}(x)=2 J_{h, n+m}(x) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{h, m}(x) j_{h, n}(x)+(1+4 h(x)) J_{h, m}(x) J_{h, n}(x)=2 j_{h, n+m}(x) \tag{3.19}
\end{equation*}
$$

In particular, if we put $m=n$ in (3.18), we obtain (3.11). If we take $m=n$ in (3.19), then we have

$$
\begin{equation*}
j_{h, m}^{2}(x)+(1+4 h(x)) J_{h, m}^{2}=2 j_{h, 2 m}(x) \tag{3.20}
\end{equation*}
$$

Using (3.3) and (3.4), we have

$$
\begin{equation*}
j_{h, n+1}(x)=J_{h, n+1}(x)+2 h(x) J_{h, n}(x) \tag{3.21}
\end{equation*}
$$

(3.21) is also obtained from (3.1) and (3.2).

In the following equations, we obtain the derivative of $h(x)$ - Jacobsthal and $h(x)-$ JacobsthalLucas polynomials with respect to x :

$$
\begin{equation*}
\frac{d j_{h, n}(x)}{d x}=n h^{\prime}(x) J_{h, n-1}(x) \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
[1+4 h(x)] \frac{d J_{h, n}(x)}{d x}=h^{\prime}(x) n j_{h, n-1}(x)-2 h^{\prime}(x) J_{h, n}(x) \tag{3.23}
\end{equation*}
$$

Suppose we describe the $t^{t h}$ associated sequences $\left\{J_{h, n}^{(t)}(x)\right\}$ and $\left\{j_{h, n}^{(t)}(x)\right\}$ of $\left\{J_{h, n}(x)\right\}$ and $\left\{j_{h, n}(x)\right\}$ to be, respectively $(t \geq 1)$,

$$
\begin{equation*}
J_{h, n}^{(t)}(x)=J_{h, n+1}^{(t-1)}(x)+h(x) J_{h, n-1}^{(t-1)}(x) \tag{3.24}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{h, n}^{(t)}(x)=j_{h, n+1}^{(t-1)}(x)+h(x) j_{h, n-1}^{(t-1)}(x) \tag{3.25}
\end{equation*}
$$

where $J_{h, n}^{(0)}(x)=J_{h, n}(x)$ and $j_{h, n}^{(0)}(x)=j_{h, n}(x)$. From (3.24) and (3.12), we obtain

$$
\begin{equation*}
J_{h, n}^{(1)}(x)=j_{h, n}(x) \tag{3.26}
\end{equation*}
$$

By (3.25) and (3.13), we have that

$$
\begin{equation*}
j_{h, n}^{(1)}(x)=[1+4 h(x)] J_{h, n}(x) . \tag{3.27}
\end{equation*}
$$

We generalize above formulas as follows:

$$
\begin{align*}
& J_{h, n}^{(2 m)}(x)=j_{h, n}^{(2 m-1)}(x)=(1+4 h(x))^{m} J_{h, n}(x) \tag{3.28}\\
& J_{h, n}^{(2 m+1)}(x)=j_{h, n}^{(2 m)}(x)=(1+4 h(x))^{m} j_{h, n}(x) \tag{3.29}
\end{align*}
$$

When the structure of $\left\{R_{h, l}(x)\right\}$ and $\left\{r_{h, l}(x)\right\}$ is examined, it is seen that rising and descending diagonals will be obtained.

4 Rising Diagonal Functions

In Tables 1 and 2, imagine parallel upward-slanting lines, in Tables 1 and 2 there exist the rising diagonal functions $\left\{R_{h, l}(x)\right\}$ and $\left\{r_{h, l}(x)\right\}$, respectively. Some of the rising diagonal functions are, say,

$$
\begin{array}{r}
R_{h, 0}(x)=0, \quad R_{h, 1}(x)=R_{h, 2}(x)=R_{h, 3}(x)=1, \quad R_{h, 4}(x)=1+h(x) \tag{4.1}\\
R_{h, 5}(x)=1+2 h(x), \ldots, \quad R_{h, 10}(x)=1+7 h(x)+10 h^{2}(x)+h^{3}(x)
\end{array}
$$

and

$$
\begin{array}{r}
r_{h, 0}(x)=2, \quad r_{h, 1}(x)=r_{h, 2}(x)=1, \quad r_{h, 3}(x)=1+2 h(x) \tag{4.2}\\
r_{h, 4}(x)=1+3 h(x), \ldots, \quad r_{h, 10}(x)=1+9 h(x)+20 h^{2}(x)+7 h^{3}(x)
\end{array}
$$

The generating functions for rising diagonal functions are

$$
\begin{align*}
\sum_{l=1}^{\infty} R_{h, l}(x) t^{l-1} & =\frac{1}{1-t-h(x) t^{3}} \tag{4.3}\\
\sum_{l=0}^{\infty} r_{h, l}(x) t^{l} & =\frac{2-t}{1-t-h(x) t^{3}} \tag{4.4}
\end{align*}
$$

From (4.3) and (4.4), we write the following equation:

$$
\begin{equation*}
r_{h, n}(x)=2 R_{h, n+1}(x)-R_{h, n}(x) \tag{4.5}
\end{equation*}
$$

For $n \geq 3$, by the aid of (4.3) and (4.4), the recurrence relations for rising diagonal functions are given by

$$
\begin{equation*}
R_{h, n}(x)=R_{h, n-1}(x)+h(x) R_{h, n-3}(x) \tag{4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{h, n}(x)=r_{h, n-1}(x)+h(x) r_{h, n-3}(x) . \tag{4.7}
\end{equation*}
$$

We now give the explicit combinatorial form of rising diagonal functions:

Theorem 4.1.

$$
\begin{align*}
& \text { (i) } \quad R_{h, m}(x)=\sum_{l=0}^{\frac{m-1}{3}}\binom{m-2 l-1}{l}(h(x))^{l}, \tag{i}\\
& \text { (ii) } \quad r_{h, m}(x)=1+\sum_{l=0}^{\frac{m}{3}} \frac{m-l}{l}\binom{m-2 l-1}{l-1}(h(x))^{l} .
\end{align*}
$$

Proof. The proof can be done similar to the proof of Theorem 3.1.
By (4.5) and (4.6), we have

$$
\begin{equation*}
r_{h, n}(x)=R_{h, n}(x)+2 h(x) R_{h, n-2}(x) . \tag{4.10}
\end{equation*}
$$

By using (4.5) and (4.10), we obtain the following result:

$$
\begin{equation*}
r_{h, n}^{2}(x)-R_{h, n}^{2}(x)=4 h(x) R_{h, n+1}(x) R_{h, n-2}(x) \tag{4.11}
\end{equation*}
$$

Partially differential equations of the first order are readily described from (4.3) and (4.4). Let $R_{h}=R_{h}(x, t)=\sum_{l=1}^{\infty} R_{h, l}(x) t^{l-1}$ and $r_{h}=r_{h}(x, t)=\sum_{l=0}^{\infty} r_{h, l}(x) t^{l}$. These are

$$
\begin{equation*}
h^{\prime}(x) t^{3} \frac{\partial R_{h}}{\partial t}-\left(1+3 t^{2}\right) \frac{\partial R_{h}}{\partial x}=0 \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{\prime}(x) t^{3}\left(\frac{\partial r_{h}}{\partial t}+R_{h}\right)-\left(1+3 t^{2}\right) \frac{\partial r_{h}}{\partial x}=0 \tag{4.13}
\end{equation*}
$$

5 Descending Diagonal Functions

Imagine parallel downward-slanting lines in Tables 1 and 2 in which there exist the descending diagonal functions $\left\{D_{h, i}(x)\right\}$ and $\left\{d_{h, i}(x)\right\}$, respectively. Some of descending diagonal functions are, say,

$$
\begin{align*}
& D_{h, 0}(x)=0, \quad D_{h, 1}(x)=1, \quad D_{h, 2}(x)=1+h(x), \ldots \tag{5.1}\\
& D_{h, 5}(x)=1+4 h(x)+6 h^{2}(x)+4 h^{3}(x)+h^{4}(x)
\end{align*}
$$

and

$$
\begin{align*}
& d_{h, 0}(x)=2, \quad d_{h, 1}(x)=1+2 h(x), \quad d_{h, 2}(x)=1+3 h(x)+2 h^{2}(x), \ldots \tag{5.2}\\
& d_{h, 5}(x)=1+6 h(x)+14 h^{2}(x)+16 h^{3}(x)+9 h^{4}(x)+2 h^{5}(x)
\end{align*}
$$

The generating functions for descending diagonal functions are

$$
\begin{equation*}
\sum_{l=1}^{\infty} D_{h, l}(x) t^{l}=\frac{1}{1-(1+h(x)) t} \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{l=1}^{\infty} d_{h, l}(x) t^{l-1}=\frac{1+2 h(x)}{1-(1+h(x)) t} \tag{5.4}
\end{equation*}
$$

therefore $(l \geq 1)$

$$
\begin{equation*}
D_{h, l}(x)=(1+h(x))^{l-1} \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{h, l}(x)=(1+2 h(x))(1+h(x))^{l-1} . \tag{5.6}
\end{equation*}
$$

From (5.5) and (5.6), we obtain

$$
\begin{equation*}
d_{h, l}(x)=(1+2 h(x)) D_{h, l}(x) \tag{5.7}
\end{equation*}
$$

For $(l \geq 2)$

$$
\begin{equation*}
\frac{D_{h, l}(x)}{D_{h, l-1}(x)}=\frac{d_{h, l}(x)}{d_{h, l-1}(x)}=1+h(x) \tag{5.8}
\end{equation*}
$$

By (5.8), we get

$$
\begin{equation*}
D_{h, l}(x) d_{h, l-1}(x)=D_{h, l-1}(x) d_{h, l}(x) \tag{5.9}
\end{equation*}
$$

For $(l \geq 1)$

$$
\begin{gather*}
\frac{d_{h, l}(x)}{D_{h, l}(x)}=1+2 h(x) \tag{5.10}\\
d_{h, l}(x)=D_{h, l+1}(x)+h(x) D_{h, l}(x) \tag{5.11}\\
(1+2 h(x))^{2} D_{h, l}(x)=d_{h, l+1}(x)+h(x) d_{h, l}(x) \tag{5.12}\\
J_{h, 5}(x) D_{h, l-1}(x)=D_{h, l+1}(x)+h(x) D_{h, l-1}(x) \tag{5.13}\\
J_{h, 5}(x) d_{h, l-1}(x)=d_{h, l+1}(x)+h(x) d_{h, l-1}(x) \tag{5.14}
\end{gather*}
$$

6 Differential Equations

Let

$$
\begin{equation*}
D_{h} \equiv D_{h}(x, t)=\sum_{l=1}^{\infty} D_{h, l}(x) t^{l-1}=\frac{1}{1-(1+h(x)) t} \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{h} \equiv d_{h}(x, t)=\sum_{l=1}^{\infty} d_{h, l}(x) t^{l-1}=\frac{1+2 h(x)}{1-(1+h(x)) t} . \tag{6.2}
\end{equation*}
$$

It is easy to get from (5.5), (5.6), (6.1) and (6.2),

$$
\begin{gather*}
h^{\prime}(x) t \frac{\partial D_{h}}{\partial t}-[1+h(x)] \frac{\partial D_{h}}{\partial x}=0, \tag{6.3}\\
h^{\prime}(x) t \frac{\partial d_{h}}{\partial t}-[1+h(x)]\left[\frac{\partial d_{h}}{\partial x}-2 h^{\prime} D_{h}\right]=0, \tag{6.4}\\
{[1+h(x)] \frac{d D_{h, n}(x)}{d x}=(n-1) h^{\prime} D_{h, n}(x),} \tag{6.5}\\
\frac{d d_{h, n}(x)}{d x}=h^{\prime}(x)\left[D_{h, n-1}(x)+n d_{h, n-1}(x)\right] \tag{6.6}\\
\frac{d^{n-1} D_{h, n}(x)}{d x^{n-1}}=(n-1)!\left(h^{\prime}(x)\right)^{n-1} . \tag{6.7}
\end{gather*}
$$

7 Augmented $\boldsymbol{h}(\boldsymbol{x})$-Jacobsthal-Type Representation Polynomials

In [5], Horadam introduces the augmented Jacobsthal representation polynomial sequence $\left\{\mathfrak{T}_{n}(x)\right\}$ defined by

$$
\begin{equation*}
\mathfrak{T}_{n+2}(x)=\mathfrak{T}_{n+1}(x)+2 x \mathfrak{T}_{n}(x)+3, \quad \mathfrak{T}_{0}(x)=0, \quad \mathfrak{T}_{1}(x)=1 \tag{7.1}
\end{equation*}
$$

and the augmented Jacobsthal-Lucas representation polynomial sequence $\left\{\tau_{n}(x)\right\}$ defined by

$$
\begin{equation*}
\tau_{n+2}(x)=\tau_{n+1}(x)+2 x \tau_{n}(x)+5, \quad \tau_{0}(x)=0, \quad \tau_{1}(x)=1 \tag{7.2}
\end{equation*}
$$

We, now, introduce the augmented $h(x)$-Jacobsthal-type representation polynomial sequence $\left\{\mathfrak{T}_{h, n}(x)\right\}$ defined by

$$
\begin{equation*}
\mathfrak{T}_{h, n+2}(x)=\mathfrak{T}_{h, n+1}(x)+h(x) \mathfrak{T}_{h, n}(x)+3, \quad \mathfrak{T}_{h, 0}(x)=0, \quad \mathfrak{T}_{h, 1}(x)=1 \tag{7.3}
\end{equation*}
$$

and the augmented $h(x)$-Jacobsthal-Lucas representation polynomial sequence $\left\{\tau_{h, n}(x)\right\}$ defined by

$$
\begin{equation*}
\tau_{h, n+2}(x)=\tau_{h, n+1}(x)+h(x) \tau_{h, n}(x)+5, \quad \tau_{h, 0}(x)=0, \quad \tau_{h, 1}(x)=1 \tag{7.4}
\end{equation*}
$$

Example 7.1.

$$
\begin{equation*}
\mathfrak{T}_{h, 0}(x)=0, \quad \mathfrak{T}_{h, 1}(x)=1, \ldots, \mathfrak{T}_{h, 8}(x)=7 h^{3}(x)+40 h^{2}(x)+102 h(x)+22 \tag{7.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{h, 0}(x)=0, \quad \tau_{h, 1}(x)=1, \ldots, \tau_{h, 8}(x)=9 h^{3}(x)+60 h^{2}(x)+81 h(x)+36 \tag{7.6}
\end{equation*}
$$

8 Some properties of $\left\{\mathfrak{T}_{h, n}(x)\right\}$ and $\left\{\tau_{h, n}(x)\right\}$

Generating Functions

$$
\begin{align*}
\sum_{l=1}^{\infty} \mathfrak{T}_{h, l}(x) y^{l-1} & =\frac{1+2 y}{1-2 y-(h(x)-1) y^{2}+h(x) y^{3}} \tag{8.1}\\
\sum_{l=1}^{\infty} \tau_{h, l}(x) y^{l-1} & =\frac{1+4 y}{1-2 y-(h(x)-1) y^{2}+h(x) y^{3}} . \tag{8.2}
\end{align*}
$$

Binet Formulas

Theorem 8.1. For $n \geq 0$

$$
\begin{align*}
& \text { (i) } \mathfrak{T}_{h, n}(x)=\frac{J_{h, n+2}(x)+2 J_{h, n+1}(x)-3}{h(x)}, \tag{8.3}\\
& \text { (ii) } \quad \tau_{h, n}(x)=\frac{J_{h, n+2}(x)+4 J_{h, n+1}(x)-5}{h(x)} . \tag{8.4}
\end{align*}
$$

Proof. (i) We use induction on n, verification of (8.3) for $n=0,1,2,3$ is straightforward. Assume (8.3) is true for $n=k$, so

$$
\mathfrak{T}_{h, k}(x)=\frac{J_{h, k+2}(x)+2 J_{h, k+1}(x)-3}{h(x)}
$$

Now

$$
\begin{aligned}
\mathfrak{T}_{h, k+1}(x) & =\mathfrak{T}_{h, k}(x)+h(x) \mathfrak{T}_{h, k-1}(x)+3 \\
& =\frac{J_{h, k+2}(x)+h(x) J_{h, k+1}(x)+2\left[J_{h, k+1}(x)+2 J_{h, k}(x)\right]-3}{h(x)} \\
& =\frac{J_{h, k+3}(x)+2 J_{h, k+2}(x)-3}{h(x)} .
\end{aligned}
$$

Thus, (8.3) is true for $n=k+1$. This completes induction.
(ii) The proof of (ii) is similar to (i), so it is omitted.

From (8.3), (8.4) and (3.1), Binet formulas for $\mathfrak{T}_{h, n}(x)$ and $\tau_{h, n}(x)$ are derivable:

$$
\begin{equation*}
\mathfrak{T}_{h, n}(x)=\frac{\frac{\lambda^{n+2}-\gamma^{n+2}}{\lambda-\gamma}+2\left(\frac{\lambda^{n+1}-\gamma^{n+1}}{\lambda-\gamma}\right)-3}{h(x)} \tag{8.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{h, n}(x)=\frac{\frac{\lambda^{n+2}-\gamma^{n+2}}{\lambda-\gamma}+4\left(\frac{\lambda^{n+1}-\gamma^{n+1}}{\lambda-\gamma}\right)-5}{h(x)} . \tag{8.6}
\end{equation*}
$$

Simson Formulas

$$
\begin{align*}
\mathfrak{T}_{h, n+1}(x) \mathfrak{T}_{h, n-1}(x)-\mathfrak{T}_{h, n}^{2}(x)= & (-h(x))^{n-2}[h(x)-6] \tag{8.7}\\
& -3\left[J_{h, n-1}(x)+2 J_{h, n-2}(x)\right], \\
\tau_{h, n+1}(x) \tau_{h, n-1}(x)-\tau^{2}{ }_{h, n}(x)= & (-h(x))^{n-2}[h(x)-20] \tag{8.8}\\
& -5\left[J_{h, n-1}(x)+4 J_{h, n-2}(x)\right] .
\end{align*}
$$

Summation Formulas

$$
\begin{align*}
& \sum_{l=1}^{n} \mathfrak{T}_{h, l}(x)=\frac{\mathfrak{T}_{h, n+2}(x)-3 n-4}{h(x)} \tag{8.9}\\
& \sum_{l=1}^{n} \tau_{h, l}(x)=\frac{\tau_{h, n+2}(x)-5 n-6}{h(x)} \tag{8.10}
\end{align*}
$$

Explicit Combinatorial Forms

Theorem 8.2.

$$
\begin{align*}
& \text { (i) } \quad \mathfrak{T}_{h, n}(x)=J_{h, n}(x)+3 \sum_{l=0}^{\frac{n-1}{2}}\binom{n-1-l}{l+1} h(x)^{l}, \tag{8.11}\\
& \text { (ii) } \quad \tau_{h, n}(x)=J_{h, n}(x)+5 \sum_{l=0}^{\frac{n-1}{2}}\binom{n-1-l}{l+1} h(x)^{l} . \tag{8.12}
\end{align*}
$$

Proof. (i) We use induction on n, checking validates the case $n=1,2,3$. Suppose (8.11) is true for $n=1,2,3, \ldots, k-1, k$. Then, by using (1.1) and the hypothesis,

$$
\begin{aligned}
& \mathfrak{T}_{h, k}(x)+h(x) \mathfrak{T}_{h, k-1}(x)+3 \\
& =J_{h, k}(x)+h(x) J_{h, k-1}(x) \\
& +3\left[\sum_{l=0}^{\frac{k-1}{2}}\binom{k-1-l}{l+1} h(x)^{l}+\sum_{l=0}^{\frac{k-2}{2}}\binom{k-2-l}{l+1} h(x)^{l+1}+1\right] \\
& =J_{h, k+1}(x)+3 \sum_{l=0}^{\frac{k}{2}}\binom{k-l}{l+1} h(x)^{l} \quad \text { by Pascal's formula } \\
& =\mathfrak{T}_{h, k+1}(x) .
\end{aligned}
$$

Thus, (8.11) is true for $n=k+1$, and so for all n.
(ii) The proof of $(i i)$ is similar to the proof of (i) and so it is omitted.

Now, there is a connection between (8.3) and (8.4):

$$
\begin{equation*}
\tau_{h, n}(x)-\mathfrak{T}_{h, n}(x)=\frac{2\left(J_{h, n+1}(x)-1\right)}{h(x)} \tag{8.13}
\end{equation*}
$$

References

[1] P. Catarino and M. L. Morgado, On generalized Jacobsthal and Jacobsthal- Lucas polynomials, An. Şt Univ. Ovidius Constanţa 24(3), 61-78 (2016).
[2] Gospava B. Djordjević, Generalized Jacobsthal polynomials, The Fibonacci Quarterly 38(3), 239-243 (2000).
[3] V. E. Hoggatt, Jr. and M. Bicknell-Johnson, Convolution Arrays for Jacobsthal and Fibonacci Polynomials, The Fibonacci Quarterly 16(5), 385-402 (1978).
[4] A. F. Horadam, Jacobsthal Representation Numbers, The Fibonacci Quarterly 34(1), 40-54 (1996).
[5] A. F. Horadam, Jacobsthal Representation Polynomials, The Fibonacci Quarterly 35(2), 137-148 (1997).
[6] A. F. Horadam, Convolutions for Jacobsthal-Type Polynomials, The Fibonacci Quarterly 40(3), 212-222 (2002).
[7] N. Kilic, On split k - Jacobsthal and k - Jacobsthal Lucas quaternions, Ars Combinatoria 142, 129-139 (2019).
[8] N. Kilic, On k-Jacobsthal and k-Jacobsthal-Lucas Octonions, JP Journal of Algebra, Number Theory and Applications 41(1), 1-17 (2019).
[9] Agnieszka Tereszkiewicz and Izabela Wawreniuk, Generalized Jacobsthal polynomials and special points for them, Applied Mathematics and Computation 268, 806-814 (2015).

Author information

Nayil Kilic, Department of Mathematical Education, Hasan Ali Yucel Education Faculty, Istanbul UniversityCerrahpasa, 34470, Fatih, Istanbul, Turkey.
E-mail: nayilkilic@gmail.com
Received: March 8, 2019.
Accepted: May 28, 2019.

