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Abstract In this paper, we introduce h(x)− Jacobsthal type polynomials and give some
properties of them and then using h(x)− Jacobsthal type polynomials, we describe rising and
decreasing diagonal functions and give some basic properties of them. Finally, we define aug-
mented h(x)− Jacobsthal- type representation polynomials, we compute generating functions,
Binet formulas, summation formulas, Simson formulas and explicit combinatorial form of them.

1 Introduction

Let h(x) be a polynomial with real coefficients. For n > 0, the h(x)-Jacobsthal polynomials
Jh,n(x), and the h(x)-Jacobsthal-Lucas polynomials jh,n(x), are defined by

Jh,n+1(x) = Jh,n(x) + h(x)Jh,n−1(x), Jh,0(x) = 0, Jh,1(x) = 1, (1.1)

and

jh,n+1(x) = jh,n(x) + h(x)jh,n−1(x), jh,0(x) = 2, jh,1(x) = 1, (1.2)

respectively.
Note that, in particular case where h(x) = 2x, (1.1) reduces to the Jacobsthal polynomials and
(1.2) reduces to the Jacobsthal-Lucas polynomials.

The solutions of the characteristic equation z2 − z − h(x) = 0 associated to the recurrence

relations (1.1) and (1.2) are λ =
1+
√

1+4h(x)
2 and γ =

1−
√

1+4h(x)
2 .

Note that:

λ+ γ = 1, λγ = −h(x), λ− γ =
√

1 + 4h(x) (1.3)

In the literature there are many studies about Jacobsthal-type polynomials. Some of them are as
follows: In [5], Horadam studied Jacobsthal representation polynomials. He gave some proper-
ties of Jacobsthal representation numbers in [4], including generating functions, Binet formulas,
Simson formulas and summation formulas. Also in [6], author introduced convolutions for Ja-
cobsthal type polynomials and gave some important results of them. Also, in [1, 2, 3, 7, 8, 9],
authors studied on Jacobsthal- type polynomials and Jacobsthal- type numbers.

2 The h(x)− Jacobsthal- Type Polynomials

In the following Tables 1 and 2, we give the first few polynomials of (1.1) and (1.2) of these
Jacobsthal-type sequences.
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Table 1. h(x)− Jacobsthal Polynomials {Jh,n(x)}: 0 ≤ n ≤ 10

Jh,0(x) = 0 Jh,6(x) = 1 + 4h(x) + 3h2(x)

Jh,1(x) = 1 Jh,7(x) = 1 + 5h(x) + 6h2(x) + h3(x)

Jh,2(x) = 1 Jh,8(x) = 1 + 6h(x) + 10h2(x) + 4h3(x)

Jh,3(x) = 1 + h(x) Jh,9(x) = 1 + 7h(x) + 15h2(x) + 10h3(x) + h4(x)

Jh,4(x) = 1 + 2h(x) Jh,10(x) = 1 + 8h(x) + 21h2(x) + 20h3(x) + 5h4(x)

Jh,5(x) = 1 + 3h(x) + h2(x)

Table 2. h(x)− Jacobsthal-Lucas Polynomials {jh,n(x)}: 0 ≤ n ≤ 10

Jh,0(x) = 2 Jh,6(x) = 1 + 6h(x) + 9h2(x) + 2h3(x)

Jh,1(x) = 1 Jh,7(x) = 1 + 7h(x) + 14h2(x) + 7h3(x)

Jh,2(x) = 1 + 2h(x) Jh,8(x) = 1 + 8h(x) + 20h2(x) + 16h3(x) + 2h4(x)

Jh,3(x) = 1 + 3h(x) Jh,9(x) = 1 + 9h(x) + 27h2(x) + 30h3(x) + 9h4(x)

Jh,4(x) = 1 + 4h(x) + 2h2(x) Jh,10(x) = 1 + 10h(x) + 35h2(x) + 50h3(x) + 25h4(x) + 2h5(x)

Jh,5(x) = 1 + 5h(x) + 5h2(x)

3 Some Properties of the h(x)− Jacobsthal- Type Polynomials

The Binet formulas for the h(x)− Jacobsthal and h(x)− Jacobsthal-Lucas polynomials are given
by

Jh,n(x) =
λn − γn

λ− γ
, n ≥ 0 (3.1)

and

jh,n(x) = λn + γn, n ≥ 0 (3.2)

respectively.

The generating functions for the h(x)− Jacobsthal and h(x)− Jacobsthal-Lucas polynomials
are given as

∞∑
n=0

Jh,n+1(x)z
n =

1
1− z − h(x)z2 (3.3)

and
∞∑
n=0

jh,n+1(x)z
n =

1 + 2h(x)z
1− z − h(x)z2 (3.4)

respectively.
Simson Formulas
From (3.1) and (3.2), we have the following Simson formulas, respectively:

Jh,n+1(x)Jh,n−1(x)− J2
h,n(x) = (−1)n(h(x))n−1, (3.5)

jh,n+1(x)jh,n−1(x)− j2
h,n(x) = [1 + 4h(x)](−h(x))n−1 (3.6)

= −[1 + 4h(x)][Jh,n+1(x)Jh,n−1(x)− J2
h,n(x)].

Summation Formulas
Immediately, from (3.1) and (3.2), we have
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m∑
l=1

Jh,l(x) =
Jh,m+2(x)− 1

h(x)
, (3.7)

m∑
l=0

jh,l(x) =
jh,m+2(x)− 1

h(x)
. (3.8)

Explicit Combinatorial Forms
In the next theorem, we give the explicit combinatorial forms of Jh,m(x) and jh,m(x);

Theorem 3.1.

(i) Jh,m(x) =

m−1
2∑
l=0

(
m− l − 1

l

)
(h(x))l, (3.9)

(ii) jh,m(x) =

m
2∑
l=0

m

m− l

(
m− l
l

)
(h(x))l. (3.10)

Proof. (i) We use induction on m:
Verification of (3.9) for m = 1, 2, 3 is straightforward. Assume it is true for all m ≤ k,

Jh,k(x) + h(x)Jh,k−1(x)

=

k−1
2∑
l=0

(
k − l − 1

l

)
(h(x))l +

k−2
2∑
l=0

(
k − l − 2

l

)
(h(x))l+1

=

(
k − 1

0

)
+

(
k − 2

1

)
h(x) + ...+

(k−1
2

k−1
2

)
(h(x))

k−1
2

+

(
k − 2

0

)
h(x) +

(
k − 3

1

)
h2(x) + ...+

(k−2
2

k−2
2

)
(h(x))

k
2

=

k
2∑
l=0

(
k − l
l

)
(h(x))l by Pascal′s formula

= Jh,k+1(x).

(ii) The proof of (ii) is similar to the proof of (i), so it is omitted.2

Interrelationships
From (3.1) and (3.2 ), we obtain

jh,n(x)Jh,n(x) = Jh,2n(x) (3.11)

and

jh,n(x) = Jh,n+1(x) + h(x)Jh,n−1(x). (3.12)

Using (3.1), (3.2 ) and (1.3), we get

[1 + 4h(x)]Jh,n(x) = jh,n+1(x) + h(x)jh,n−1(x). (3.13)

An immediate consequence of (3.1), (3.2 ), (1.3) and (1.1) is

Jh,n(x) + jh,n(x) = 2Jh,n+1(x). (3.14)
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By (3.1), (3.2 ) and (3.12), we have

[1 + 4h(x)]Jh,n(x) + jh,n(x) = 2jh,n+1(x). (3.15)

From (3.1), (3.2 ) and (1.3), we arrive at

√
1 + 4h(x)Jh,n(x) + jh,n(x) = 2λn (3.16)

and √
1 + 4h(x)Jh,n(x)− jh,n(x) = −2γn. (3.17)

Using (3.1) and (3.2 ), we obtain

Jh,m(x)jh,n(x) = Jh,n(x)jh,m(x) = 2Jh,n+m(x) (3.18)

and

jh,m(x)jh,n(x) + (1 + 4h(x))Jh,m(x)Jh,n(x) = 2jh,n+m(x). (3.19)

In particular, if we put m = n in (3.18), we obtain (3.11). If we take m = n in (3.19), then we
have

j2
h,m(x) + (1 + 4h(x))J2

h,m = 2jh,2m(x). (3.20)

Using (3.3) and (3.4 ), we have

jh,n+1(x) = Jh,n+1(x) + 2h(x)Jh,n(x), (3.21)

(3.21) is also obtained from (3.1) and (3.2).
In the following equations, we obtain the derivative of h(x)− Jacobsthal and h(x)− Jacobsthal-
Lucas polynomials with respect to x:

djh,n(x)

dx
= nh′(x)Jh,n−1(x) (3.22)

and

[1 + 4h(x)]
dJh,n(x)

dx
= h′(x)njh,n−1(x)− 2h′(x)Jh,n(x). (3.23)

Suppose we describe the tth associated sequences {J (t)
h,n(x)} and {j(t)h,n(x)} of {Jh,n(x)} and

{jh,n(x)} to be, respectively (t ≥ 1),

J
(t)
h,n(x) = J

(t−1)
h,n+1(x) + h(x)J

(t−1)
h,n−1(x) (3.24)

and

j
(t)
h,n(x) = j

(t−1)
h,n+1(x) + h(x)j

(t−1)
h,n−1(x) (3.25)

where J (0)
h,n(x) = Jh,n(x) and j(0)h,n(x) = jh,n(x). From (3.24) and (3.12), we obtain

J
(1)
h,n(x) = jh,n(x). (3.26)

By (3.25) and (3.13), we have that

j
(1)
h,n(x) = [1 + 4h(x)]Jh,n(x). (3.27)

We generalize above formulas as follows:

J
(2m)
h,n (x) = j

(2m−1)
h,n (x) =

(
1 + 4h(x)

)m
Jh,n(x), (3.28)

J
(2m+1)
h,n (x) = j

(2m)
h,n (x) =

(
1 + 4h(x)

)m
jh,n(x). (3.29)

When the structure of {Rh,l(x)} and {rh,l(x)} is examined, it is seen that rising and descending
diagonals will be obtained.
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4 Rising Diagonal Functions

In Tables 1 and 2, imagine parallel upward-slanting lines, in Tables 1 and 2 there exist the rising
diagonal functions {Rh,l(x)} and {rh,l(x)}, respectively. Some of the rising diagonal functions
are , say,

Rh,0(x) = 0, Rh,1(x) = Rh,2(x) = Rh,3(x) = 1, Rh,4(x) = 1 + h(x), (4.1)

Rh,5(x) = 1 + 2h(x), ..., Rh,10(x) = 1 + 7h(x) + 10h2(x) + h3(x)

and

rh,0(x) = 2, rh,1(x) = rh,2(x) = 1, rh,3(x) = 1 + 2h(x), (4.2)

rh,4(x) = 1 + 3h(x), ..., rh,10(x) = 1 + 9h(x) + 20h2(x) + 7h3(x).

The generating functions for rising diagonal functions are
∞∑
l=1

Rh,l(x)t
l−1 =

1
1− t− h(x)t3

, (4.3)

∞∑
l=0

rh,l(x)t
l =

2− t
1− t− h(x)t3

. (4.4)

From (4.3) and (4.4) , we write the following equation:

rh,n(x) = 2Rh,n+1(x)−Rh,n(x). (4.5)

For n ≥ 3, by the aid of (4.3) and (4.4), the recurrence relations for rising diagonal functions are
given by

Rh,n(x) = Rh,n−1(x) + h(x)Rh,n−3(x) (4.6)

and

rh,n(x) = rh,n−1(x) + h(x)rh,n−3(x). (4.7)

We now give the explicit combinatorial form of rising diagonal functions:

Theorem 4.1.

(i) Rh,m(x) =

m−1
3∑
l=0

(
m− 2l − 1

l

)
(h(x))l, (4.8)

(ii) rh,m(x) = 1 +

m
3∑
l=0

m− l
l

(
m− 2l − 1

l − 1

)
(h(x))l. (4.9)

Proof. The proof can be done similar to the proof of Theorem 3.1. 2

By (4.5) and (4.6), we have

rh,n(x) = Rh,n(x) + 2h(x)Rh,n−2(x). (4.10)

By using (4.5) and (4.10), we obtain the following result:

r2
h,n(x)−R2

h,n(x) = 4h(x)Rh,n+1(x)Rh,n−2(x). (4.11)

Partially differential equations of the first order are readily described from (4.3) and (4.4).

Let Rh = Rh(x, t) =
∞∑
l=1

Rh,l(x)tl−1 and rh = rh(x, t) =
∞∑
l=0

rh,l(x)tl. These are

h′(x)t3
∂Rh
∂t
− (1 + 3t2)

∂Rh
∂x

= 0 (4.12)

and

h′(x)t3
(∂rh
∂t

+Rh
)
− (1 + 3t2)

∂rh
∂x

= 0. (4.13)
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5 Descending Diagonal Functions

Imagine parallel downward-slanting lines in Tables 1 and 2 in which there exist the descending
diagonal functions {Dh,i(x)} and {dh,i(x)}, respectively. Some of descending diagonal func-
tions are, say,

Dh,0(x) = 0, Dh,1(x) = 1, Dh,2(x) = 1 + h(x), ..., (5.1)

Dh,5(x) = 1 + 4h(x) + 6h2(x) + 4h3(x) + h4(x)

and

dh,0(x) = 2, dh,1(x) = 1 + 2h(x), dh,2(x) = 1 + 3h(x) + 2h2(x), ..., (5.2)

dh,5(x) = 1 + 6h(x) + 14h2(x) + 16h3(x) + 9h4(x) + 2h5(x).

The generating functions for descending diagonal functions are

∞∑
l=1

Dh,l(x)t
l =

1
1− (1 + h(x))t

(5.3)

and
∞∑
l=1

dh,l(x)t
l−1 =

1 + 2h(x)
1− (1 + h(x))t

(5.4)

therefore (l ≥ 1)

Dh,l(x) = (1 + h(x))l−1 (5.5)

and

dh,l(x) = (1 + 2h(x))(1 + h(x))l−1. (5.6)

From (5.5) and (5.6), we obtain

dh,l(x) = (1 + 2h(x))Dh,l(x). (5.7)

For (l ≥ 2)

Dh,l(x)

Dh,l−1(x)
=

dh,l(x)

dh,l−1(x)
= 1 + h(x). (5.8)

By (5.8), we get

Dh,l(x)dh,l−1(x) = Dh,l−1(x)dh,l(x). (5.9)

For (l ≥ 1)

dh,l(x)

Dh,l(x)
= 1 + 2h(x). (5.10)

dh,l(x) = Dh,l+1(x) + h(x)Dh,l(x), (5.11)

(1 + 2h(x))2Dh,l(x) = dh,l+1(x) + h(x)dh,l(x), (5.12)

Jh,5(x)Dh,l−1(x) = Dh,l+1(x) + h(x)Dh,l−1(x), (5.13)

Jh,5(x)dh,l−1(x) = dh,l+1(x) + h(x)dh,l−1(x). (5.14)
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6 Differential Equations

Let

Dh ≡ Dh(x, t) =
∞∑
l=1

Dh,l(x)t
l−1 =

1
1− (1 + h(x))t

(6.1)

and

dh ≡ dh(x, t) =
∞∑
l=1

dh,l(x)t
l−1 =

1 + 2h(x)
1− (1 + h(x))t

. (6.2)

It is easy to get from (5.5), (5.6), (6.1) and (6.2),

h′(x)t
∂Dh

∂t
− [1 + h(x)]

∂Dh

∂x
= 0, (6.3)

h′(x)t
∂dh
∂t
− [1 + h(x)][

∂dh
∂x
− 2h′Dh] = 0, (6.4)

[1 + h(x)]
dDh,n(x)

dx
= (n− 1)h′Dh,n(x), (6.5)

ddh,n(x)

dx
= h′(x)[Dh,n−1(x) + ndh,n−1(x)], (6.6)

dn−1Dh,n(x)

dxn−1 = (n− 1)!(h′(x))n−1. (6.7)

7 Augmented h(x)-Jacobsthal-Type Representation Polynomials

In [5], Horadam introduces the augmented Jacobsthal representation polynomial sequence {Tn(x)}
defined by

Tn+2(x) = Tn+1(x) + 2xTn(x) + 3, T0(x) = 0, T1(x) = 1 (7.1)

and the augmented Jacobsthal-Lucas representation polynomial sequence {τn(x)} defined by

τn+2(x) = τn+1(x) + 2xτn(x) + 5, τ0(x) = 0, τ1(x) = 1. (7.2)

We, now, introduce the augmented h(x)-Jacobsthal-type representation polynomial sequence
{Th,n(x)} defined by

Th,n+2(x) = Th,n+1(x) + h(x)Th,n(x) + 3, Th,0(x) = 0, Th,1(x) = 1 (7.3)

and the augmented h(x)-Jacobsthal-Lucas representation polynomial sequence {τh,n(x)} de-
fined by

τh,n+2(x) = τh,n+1(x) + h(x)τh,n(x) + 5, τh,0(x) = 0, τh,1(x) = 1. (7.4)

Example 7.1.

Th,0(x) = 0, Th,1(x) = 1, ...,Th,8(x) = 7h3(x) + 40h2(x) + 102h(x) + 22. (7.5)

and

τh,0(x) = 0, τh,1(x) = 1, ..., τh,8(x) = 9h3(x) + 60h2(x) + 81h(x) + 36. (7.6)
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8 Some properties of {Th,n(x)} and {τh,n(x)}

Generating Functions

∞∑
l=1

Th,l(x)y
l−1 =

1 + 2y
1− 2y − (h(x)− 1)y2 + h(x)y3 , (8.1)

∞∑
l=1

τh,l(x)y
l−1 =

1 + 4y
1− 2y − (h(x)− 1)y2 + h(x)y3 . (8.2)

Binet Formulas

Theorem 8.1. For n ≥ 0

(i) Th,n(x) =
Jh,n+2(x) + 2Jh,n+1(x)− 3

h(x)
, (8.3)

(ii) τh,n(x) =
Jh,n+2(x) + 4Jh,n+1(x)− 5

h(x)
. (8.4)

Proof. (i) We use induction on n, verification of (8.3) for n = 0, 1, 2, 3 is straightforward.
Assume (8.3) is true for n = k, so

Th,k(x) =
Jh,k+2(x) + 2Jh,k+1(x)− 3

h(x)

Now

Th,k+1(x) = Th,k(x) + h(x)Th,k−1(x) + 3

=
Jh,k+2(x) + h(x)Jh,k+1(x) + 2

[
Jh,k+1(x) + 2Jh,k(x)

]
− 3

h(x)

=
Jh,k+3(x) + 2Jh,k+2(x)− 3

h(x)
.

Thus, (8.3) is true for n = k + 1. This completes induction.
(ii) The proof of (ii) is similar to (i), so it is omitted. 2

From (8.3), (8.4) and (3.1), Binet formulas for Th,n(x) and τh,n(x) are derivable:

Th,n(x) =

λn+2−γn+2

λ−γ + 2(λ
n+1−γn+1

λ−γ )− 3
h(x)

, (8.5)

and

τh,n(x) =

λn+2−γn+2

λ−γ + 4(λ
n+1−γn+1

λ−γ )− 5
h(x)

. (8.6)

Simson Formulas

Th,n+1(x)Th,n−1(x)− T2
h,n(x) =(−h(x))n−2[h(x)− 6] (8.7)

− 3[Jh,n−1(x) + 2Jh,n−2(x)],

τh,n+1(x)τh,n−1(x)− τ 2
h,n(x) =(−h(x))n−2[h(x)− 20] (8.8)

− 5[Jh,n−1(x) + 4Jh,n−2(x)].
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Summation Formulas

n∑
l=1

Th,l(x) =
Th,n+2(x)− 3n− 4

h(x)
, (8.9)

n∑
l=1

τh,l(x) =
τh,n+2(x)− 5n− 6

h(x)
. (8.10)

Explicit Combinatorial Forms

Theorem 8.2.

(i) Th,n(x) = Jh,n(x) + 3

n−1
2∑
l=0

(
n− 1− l
l+ 1

)
h(x)l, (8.11)

(ii) τh,n(x) = Jh,n(x) + 5

n−1
2∑
l=0

(
n− 1− l
l+ 1

)
h(x)l. (8.12)

Proof.(i) We use induction on n, checking validates the case n = 1, 2, 3. Suppose (8.11) is true
for n = 1, 2, 3, ..., k − 1, k. Then, by using (1.1) and the hypothesis,

Th,k(x) + h(x)Th,k−1(x) + 3

= Jh,k(x) + h(x)Jh,k−1(x)

+ 3
[ k−1

2∑
l=0

(
k − 1− l
l+ 1

)
h(x)l +

k−2
2∑
l=0

(
k − 2− l
l+ 1

)
h(x)l+1 + 1

]

= Jh,k+1(x) + 3

k
2∑
l=0

(
k − l
l+ 1

)
h(x)l by Pascal′s formula

= Th,k+1(x).

Thus, (8.11) is true for n = k + 1, and so for all n.
(ii) The proof of (ii) is similar to the proof of (i) and so it is omitted. 2
Now, there is a connection between (8.3) and (8.4):

τh,n(x)− Th,n(x) =
2(Jh,n+1(x)− 1)

h(x)
(8.13)

References
[1] P. Catarino and M. L. Morgado, On generalized Jacobsthal and Jacobsthal- Lucas polynomials, An. Şt
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