INSERTION OF A CONTRA- γ —CONTINUOUS FUNCTION BETWEEN TWO COMPARABLE REAL-VALUED FUNCTIONS

Majid Mirmiran

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 54C08, 54C10, 54C50; Secondary 26A15, 54C30.

Keywords and phrases: Insertion, Strong binary relation, Semi-open set, Preopen set, γ -open set, Lower cut set.

This research was partially supported by Centre of Excellence for Mathematics (University of Isfahan).

Abstract A necessary and sufficient condition in terms of lower cut sets are given for the insertion of a contra- γ -continuous function between two comparable real-valued functions.

1 Introduction

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 1964 [5]. A subset A of a topological space (X,τ) is called *preopen* or *locally dense* or *nearly open* if $A\subseteq Int(Cl(A))$. A set A is called *preclosed* if its complement is preopen or equivalently if $Cl(Int(A))\subseteq A$. The term ,preopen, was used for the first time by A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb [21], while the concept of a , locally dense, set was introduced by H.H. Corson and E. Michael [5].

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [18]. A subset A of a topological space (X, τ) is called *semi-open* [11] if $A \subseteq Cl(Int(A))$. A set A is called *semi-closed* if its complement is semi-open or equivalently if $Int(Cl(A)) \subseteq A$.

Recall that a subset A of a topological space (X,τ) is called γ -open if $A\cap S$ is preopen, whenever S is preopen [2]. A set A is called γ -closed if its complement is γ -open or equivalently if $A\cup S$ is preclosed, whenever S is preclosed.

we have that if a set is γ -open then it is semi-open and preopen.

A generalized class of closed sets was considered by Maki in [20]. He investigated the sets that can be represented as union of closed sets and called them V—sets. Complements of V—sets, i.e., sets that are intersection of open sets are called Λ —sets [20].

Recall that a real-valued function f defined on a topological space X is called A-continuous [24] if the preimage of every open subset of $\mathbb R$ belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [6, 12]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

J. Dontchev in [7] introduced a new class of mappings called contra-continuity. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 4, 9, 10, 11, 13, 14, 23].

Hence, a real-valued function f defined on a topological space X is called $contra-\gamma-continuous$ (resp. contra-semi-continuous, contra-precontinuous) if the preimage of every open subset of $\mathbb R$ is $\gamma-closed$ (resp. semi-closed, preclosed) in X[7].

Results of Katětov [15, 16] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [3], are used in order to give a necessary and sufficient conditions for the insertion of a contra- γ -continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \le f$ (resp. g < f) in

```
case g(x) \le f(x) (resp. g(x) < f(x)) for all x in X.
```

The following definitions are modifications of conditions considered in [17].

A property P defined relative to a real-valued function on a topological space is a $c\gamma-property$ provided that any constant function has property P and provided that the sum of a function with property P and any contra- γ -continuous function also has property P. If P_1 and P_2 are $c\gamma$ -property, the following terminology is used:(i) A space X has the weak $c\gamma$ -insertion property for (P_1, P_2) if and only if for any functions g and f on X such that $g \leq f, g$ has property P_1 and f has property P_2 , then there exists a contra- γ -continuous function f such that f if on f if on f if on f if any functions f and f in f in

In this paper, is given a sufficient condition for the weak $c\gamma$ -insertion property. Also for a space with the weak $c\gamma$ -insertion property, we give a necessary and sufficient condition for the space to have the $c\gamma$ -insertion property. Several insertion theorems are obtained as corollaries of these results.

2 The Main Result

Before giving a sufficient condition for insertability of a contra- γ -continuous function, the necessary definitions and terminology are stated.

Let (X,τ) be a topological space, the family of all γ -open, γ -closed, semi-open, semi-closed, preopen and preclosed will be denoted by $\gamma O(X,\tau)$, $\gamma C(X,\tau)$, $sO(X,\tau)$, $sC(X,\tau)$, $pO(X,\tau)$ and $pC(X,\tau)$, respectively.

Definition 2.1. Let A be a subset of a topological space (X, τ) . We define the subsets A^{Λ} and A^{V} as follows:

```
A^{\Lambda} = \cap \{O : O \supseteq A, O \in (X, \tau)\} and A^{V} = \cup \{F : F \subseteq A, F^{c} \in (X, \tau)\}. In [8, 19, 22], A^{\Lambda} is called the kernel of A.
```

```
We define the subsets \gamma(A^\Lambda), \gamma(A^V), p(A^\Lambda), p(A^V), s(A^\Lambda) and s(A^V) as follows:  \gamma(A^\Lambda) = \cap \{O:O \supseteq A, O \in \gamma O(X,\tau)\}   \gamma(A^V) = \cup \{F:F \subseteq A, F \in \gamma C(X,\tau)\},   p(A^\Lambda) = \cap \{O:O \supseteq A, O \in pO(X,\tau)\},   p(A^V) = \cup \{F:F \subseteq A, F \in pC(X,\tau)\},   s(A^\Lambda) = \cap \{O:O \supseteq A, O \in sO(X,\tau)\}   and  s(A^V) = \cup \{F:F \subseteq A, F \in sC(X,\tau)\}.   \gamma(A^\Lambda) \text{ (resp. } p(A^\Lambda), s(A^\Lambda) \text{ ) is called the } \gamma - kernel \text{ (resp. } prekernel, semi - kernel) \text{ of } A.
```

The following first two definitions are modifications of conditions considered in [15, 16].

Definition 2.2. If ρ is a binary relation in a set S then $\bar{\rho}$ is defined as follows: $x \bar{\rho} y$ if and only if $y \rho v$ implies $x \rho v$ and $u \rho x$ implies $u \rho y$ for any u and v in S.

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a *strong binary relation* in P(X) in case ρ satisfies each of the following conditions:

```
1) If A_i 
ho B_j for any i \in \{1, \ldots, m\} and for any j \in \{1, \ldots, n\}, then there exists a set C in P(X) such that A_i 
ho C and C 
ho B_j for any i \in \{1, \ldots, m\} and any j \in \{1, \ldots, n\}.

2) If A \subseteq B, then A \bar{\rho} B.

3) If A 
ho B, then \gamma(A^{\Lambda}) \subseteq B and A \subseteq \gamma(B^V).
```

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [3] as follows:

Definition 2.4. If f is a real-valued function defined on a space X and if $\{x \in X : f(x) < \ell\} \subseteq A(f,\ell) \subseteq \{x \in X : f(x) \le \ell\}$ for a real number ℓ , then $A(f,\ell)$ is called a *lower indefinite cut* set in the domain of f at the level ℓ .

We now give the following main result:

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which γ -kernel sets are γ -open, with $g \leq f$. If there exists a strong binary relation ρ on the power set of X and if there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level f for each rational number f such that if f and f then f and f then there exists a contra-f-continuous function f defined on f such that f and f and f then there exists a contra-f-continuous function f defined on f such that f and f and f and f are f are f and f are f and f are f and f are f and f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f are f and f are f are f and f are f are f and

Proof. Let g and f be real-valued functions defined on the X such that $g \leq f$. By hypothesis there exists a strong binary relation ρ on the power set of X and there exist lower indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level f for each rational number f such that if f and f are the level f for each rational number f such that if f and f are the exist of f are the exist of f and f are the exist of f and f are the exist of f and f are the exist of f are the exist of f and f are the exist of f and f are the exist of f are the exist of f are the exist of f and f are the exist of f are the exist of f and f are the exist of f are the exist of f and f are the exist of f and f are the exist of f are the exist of f and f are the exis

Define functions F and G mapping the rational numbers $\mathbb Q$ into the power set of X by F(t) = A(f,t) and G(t) = A(g,t). If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then $F(t_1) \ \bar{\rho} \ F(t_2), G(t_1) \ \bar{\rho} \ G(t_2)$, and $F(t_1) \ \rho \ G(t_2)$. By Lemmas 1 and 2 of [16] it follows that there exists a function H mapping $\mathbb Q$ into the power set of X such that if t_1 and t_2 are any rational numbers with $t_1 < t_2$, then $F(t_1) \ \rho \ H(t_2), H(t_1) \ \rho \ H(t_2)$ and $H(t_1) \ \rho \ G(t_2)$.

For any x in X, let $h(x) = \inf\{t \in \mathbb{Q} : x \in H(t)\}.$

We first verify that $g \le h \le f$: If x is in H(t) then x is in G(t') for any t' > t; since x is in G(t') = A(g,t') implies that $g(x) \le t'$, it follows that $g(x) \le t$. Hence $g \le h$. If x is not in H(t), then x is not in F(t') for any t' < t; since x is not in F(t') = A(f,t') implies that f(x) > t', it follows that $f(x) \ge t$. Hence $h \le f$.

Also, for any rational numbers t_1 and t_2 with $t_1 < t_2$, we have $h^{-1}(t_1, t_2) = \gamma(H(t_2)^V) \setminus \gamma(H(t_1)^{\Lambda})$. Hence $h^{-1}(t_1, t_2)$ is γ -closed in X, i.e., h is a contra- γ -continuous function on X.

The above proof used the technique of theorem 1 in [15].

Theorem 2.2. Let P_1 and P_2 be $c\gamma$ —property and X be a space that satisfies the weak $c\gamma$ —insertion property for (P_1, P_2) . Also assume that g and f are functions on X such that g < f, g has property P_1 and f has property P_2 . The space X has the $c\gamma$ —insertion property for (P_1, P_2) if and only if there exist lower cut sets $A(f-g, 3^{-n+1})$ and there exists a decreasing sequence $\{D_n\}$ of subsets of X with empty intersection and such that for each $n, X \setminus D_n$ and $A(f-g, 3^{-n+1})$ are completely separated by contra- γ —continuous functions.

Proof. Assume that X has the weak $c\gamma$ -insertion property for (P_1,P_2) . Let g and f be functions such that g < f,g has property P_1 and f has property P_2 . By hypothesis there exist lower cut sets $A(f-g,3^{-n+1})$ and there exists a sequence (D_n) such that $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and such that for each $n,X\setminus D_n$ and $A(f-g,3^{-n+1})$ are completely separated by contra- γ -continuous functions. Let k_n be a contra- γ -continuous function such that $k_n=0$ on $A(f-g,3^{-n+1})$ and $k_n=1$ on $X\setminus D_n$. Let a function k on X be defined by

$$k(x) = 1/2 \sum_{n=1}^{\infty} 3^{-n} k_n(x).$$

By the Cauchy condition and the properties of contra- γ -continuous functions, the function k is a contra- γ -continuous function. Since $\bigcap_{n=1}^{\infty} D_n = \emptyset$ and since $k_n = 1$ on $X \setminus D_n$, it follows that 0 < k. Also 2k < f - g: In order to see this, observe first that if x is in $A(f - g, 3^{-n+1})$, then $k(x) \le 1/4(3^{-n})$. If x is any point in X, then $x \notin A(f - g, 1)$ or for some n,

$$x \in A(f-g,3^{-n+1}) - A(f-g,3^{-n});$$

in the former case 2k(x) < 1, and in the latter $2k(x) \le 1/2(3^{-n}) < f(x) - g(x)$. Thus if $f_1 = f - k$ and if $g_1 = g + k$, then $g < g_1 < f_1 < f$. Since P_1 and P_2 are $c\gamma$ -properties, then g_1 has property P_1 and f_1 has property P_2 . Since X has the weak $c\gamma$ -insertion property for (P_1, P_2) , then there exists a contra- γ -continuous function h such that $g_1 \le h \le f_1$. Thus g < h < f, it follows that X satisfies the $c\gamma$ -insertion property for (P_1, P_2) . (The technique of this proof is by Katětov[15]).

Conversely, let g and f be functions on X such that g has property P_1 , f has property P_2 and g < f. By hypothesis, there exists a contra- γ -continuous function h such that g < h < f. We follow an idea contained in Lane [17]. Since the constant function 0 has property P_1 , since f - h has property P_2 , and since X has the $c\gamma$ -insertion property for (P_1, P_2) , then there exists a contra- γ -continuous function k such that 0 < k < f - h. Let $A(f - g, 3^{-n+1})$ be any lower cut set for f - g and let $D_n = \{x \in X : k(x) < 3^{-n+2}\}$. Since k > 0 it follows that $\bigcap_{n=1}^{\infty} D_n = \emptyset$. Since

$$A(f-g,3^{-n+1}) \subseteq \{x \in X : (f-g)(x) \le 3^{-n+1}\} \subseteq \{x \in X : k(x) \le 3^{-n+1}\}$$

and since $\{x \in X : k(x) \le 3^{-n+1}\}$ and $\{x \in X : k(x) \ge 3^{-n+2}\} = X \setminus D_n$ are completely separated by contra- γ -continuous functions $\sup\{3^{-n+1},\inf\{k,3^{-n+2}\}\}$, it follows that for each $n, A(f-g,3^{-n+1})$ and $X \setminus D_n$ are completely separated by contra- γ -continuous functions.

3 Applications

The abbreviations $c\gamma c$, cpc and csc are used for contra- γ -continuous, contra-precontinuous and contra-semi-continuous, respectively.

Before stating the consequences of theorems 2.1, 2.2, we suppose that X is a topological space whose γ -kernel sets are γ -open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 of X, there exist γ -closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the weak $c\gamma$ -insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on X, such that f and g are cpc (resp. csc), and $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $p(A^{\Lambda}) \subseteq p(B^V)$ (resp. $s(A^{\Lambda}) \subseteq s(B^V)$), then by hypothesis ρ is a strong binary relation in the power set of X. If t_1 and t_2 are any elements of $\mathbb Q$ with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a preopen (resp. semi-open) set and since $\{x \in X : g(x) < t_2\}$ is a preclosed (resp. semi-closed) set, it follows that $p(A(f,t_1)^{\Lambda}) \subseteq p(A(g,t_2)^{V})$ (resp. $s(A(f,t_1)^{\Lambda}) \subseteq s(A(g,t_2)^{V})$). Hence $t_1 < t_2$ implies that $A(f,t_1) \ \rho \ A(g,t_2)$. The proof follows from Theorem 2.1.

Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 , there exist γ -closed sets F_1 and F_2 such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then every contraprecontinuous (resp. contra-semi-continuous) function is contra- γ -continuous.

Proof. Let f be a real-valued contra-precontinuous (resp. contra-semi-continuous) function defined on X. Set g = f, then by Corollary 3.1, there exists a contra- γ -continuous function h such that g = h = f.

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 of X, there exist γ -closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1$, $G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X has the $c\gamma$ -insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are cpc (resp. csc), and g < f. Set h = (f+g)/2, thus g < h < f, and by Corollary 3.2, since g and f are contra- γ -continuous functions hence h is a contra- γ -continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is semi—open, there exist γ —closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$ then X have the weak $c\gamma$ —insertion property for (cpc, csc) and (csc, cpc).

Proof. Let g and f be real-valued functions defined on X, such that g is cpc (resp. csc) and f is csc (resp. cpc), with $g \leq f$. If a binary relation ρ is defined by $A \rho B$ in case $s(A^{\Lambda}) \subseteq p(B^{V})$ (resp. $p(A^{\Lambda}) \subseteq s(B^{V})$), then by hypothesis ρ is a strong binary relation in the power set of X.

If t_1 and t_2 are any elements of \mathbb{Q} with $t_1 < t_2$, then

$$A(f, t_1) \subseteq \{x \in X : f(x) \le t_1\} \subseteq \{x \in X : g(x) < t_2\} \subseteq A(g, t_2);$$

since $\{x \in X : f(x) \le t_1\}$ is a semi-open (resp. preopen) set and since $\{x \in X : g(x) < t_2\}$ is a preclosed (resp. semi-closed) set, it follows that $s(A(f,t_1)^{\Lambda}) \subseteq p(A(g,t_2)^{V})$ (resp. $p(A(f,t_1)^{\Lambda}) \subseteq s(A(g,t_2)^{V})$). Hence $t_1 < t_2$ implies that $A(f,t_1) \cap A(g,t_2)$. The proof follows from Theorem 2.1.

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.

- **Lemma 3.1.** The following conditions on the space X are equivalent: (i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is semi—open,
- there exist γ -closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \varnothing$. (ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed
- (resp. semi-closed) subset F of X, then there exists a γ -closed subset H of X such that $G \subseteq H \subseteq \gamma(H^{\Lambda}) \subseteq F$. **Proof.** (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are semi-open (resp. preopen)
- **Proof.** (i) \Rightarrow (ii) Suppose that $G \subseteq F$, where G and F are semi—open (resp. preopen) and preclosed (resp. semi—closed) subsets of X, respectively. Hence, F^c is a preopen (resp. semi—open) and $G \cap F^c = \emptyset$.
 - By (i) there exists two disjoint γ -closed subsets F_1, F_2 such that $G \subseteq F_1$ and $F^c \subseteq F_2$. But

$$F^c \subseteq F_2 \Rightarrow F_2^c \subseteq F$$
,

and

$$F_1 \cap F_2 = \varnothing \Rightarrow F_1 \subseteq F_2^c$$

hence

$$G \subseteq F_1 \subseteq F_2^c \subseteq F$$

and since F_2^c is a γ -open subset containing F_1 , we conclude that $\gamma(F_1^{\Lambda}) \subseteq F_2^c$, i.e.,

$$G \subseteq F_1 \subseteq \gamma(F_1^{\Lambda}) \subseteq F$$
.

By setting $H = F_1$, condition (ii) holds.

(ii) \Rightarrow (i) Suppose that G_1, G_2 are two disjoint subsets of X, such that G_1 is preopen and G_2 is semi-open.

This implies that $G_2 \subseteq G_1^c$ and G_1^c is a preclosed subset of X. Hence by (ii) there exists a γ -closed set H such that $G_2 \subseteq H \subseteq \gamma(H^{\Lambda}) \subseteq G_1^c$.

But

$$H \subseteq \gamma(H^{\Lambda}) \Rightarrow H \cap \gamma((H^{\Lambda})^c) = \varnothing$$

and

$$\gamma(H^{\Lambda}) \subseteq G_1^c \Rightarrow G_1 \subseteq \gamma((H^{\Lambda})^c).$$

Furthermore, $\gamma((H^{\Lambda})^c)$ is a γ -closed subset of X. Hence $G_2 \subseteq H, G_1 \subseteq \gamma((H^{\Lambda})^c)$ and $H \cap \gamma((H^{\Lambda})^c) = \emptyset$. This means that condition (i) holds.

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is preopen and G_2 is semi—open, can be separated by γ —closed subsets of X then there exists a contra- γ —continuous function $h: X \to [0,1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Suppose G_1 and G_2 are two disjoint subsets of X, where G_1 is preopen and G_2 is semi-open. Since $G_1 \cap G_2 = \emptyset$, hence $G_2 \subseteq G_1^c$. In particular, since G_1^c is a preclosed subset of X containing the semi-open subset G_2 of X, by Lemma 3.1, there exists a γ -closed subset $H_{1/2}$ such that

$$G_2 \subseteq H_{1/2} \subseteq \gamma(H_{1/2}^{\Lambda}) \subseteq G_1^c$$
.

Note that $H_{1/2}$ is also a preclosed subset of X and contains G_2 , and G_1^c is a preclosed subset of X and contains the semi-open subset $\gamma(H_{1/2}^{\Lambda})$ of X. Hence, by Lemma 3.1, there exists γ -closed subsets $H_{1/4}$ and $H_{3/4}$ such that

$$G_2 \subseteq H_{1/4} \subseteq \gamma(H_{1/4}^{\Lambda}) \subseteq H_{1/2} \subseteq \gamma(H_{1/2}^{\Lambda}) \subseteq H_{3/4} \subseteq \gamma(H_{3/4}^{\Lambda}) \subseteq G_1^c$$
.

By continuing this method for every $t \in D$, where $D \subseteq [0,1]$ is the set of rational numbers that their denominators are exponents of 2, we obtain γ -closed subsets H_t with the property that if $t_1, t_2 \in D$ and $t_1 < t_2$, then $H_{t_1} \subseteq H_{t_2}$. We define the function h on X by $h(x) = \inf\{t : x \in H_t\}$ for $x \notin G_1$ and h(x) = 1 for $x \in G_1$.

Note that for every $x \in X, 0 \le h(x) \le 1$, i.e., h maps X into [0,1]. Also, we note that for any $t \in D, G_2 \subseteq H_t$; hence $h(G_2) = \{0\}$. Furthermore, by definition, $h(G_1) = \{1\}$. It remains only to prove that h is a contra- γ -continuous function on X. For every $\alpha \in \mathbb{R}$, we have if $\alpha \le 0$ then $\{x \in X : h(x) < \alpha\} = \emptyset$ and if $0 < \alpha$ then $\{x \in X : h(x) < \alpha\} = \bigcup \{H_t : t < \alpha\}$, hence, they are γ -closed subsets of X. Similarly, if $\alpha < 0$ then $\{x \in X : h(x) > \alpha\} = X$ and if $0 \le \alpha$ then $\{x \in X : h(x) > \alpha\} = \bigcup \{\gamma((H_t^{\Lambda})^c) : t > \alpha\}$ hence, every of them is a γ -closed subset. Consequently h is a contra- γ -continuous function.

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi—open and preopen subsets of X can be separated by γ —closed subsets of X. The following conditions are equivalent:

- (i) Every countable convering of semi-closed (resp. preclosed) subsets of X has a refinement consisting of preclosed (resp. semi-closed) subsets of X such that for every $x \in X$, there exists a γ -closed subset of X containing x such that it intersects only finitely many members of the refinement.
- (ii) Corresponding to every decreasing sequence $\{G_n\}$ of semi—open (resp. preopen) subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of preclosed (resp. semi—closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$.
- **Proof.** (i) \Rightarrow (ii) Suppose that $\{G_n\}$ is a decreasing sequence of semi—open (resp. preopen) subsets of X with empty intersection. Then $\{G_n^c:n\in\mathbb{N}\}$ is a countable covering of semi—closed (resp. preclosed) subsets of X. By hypothesis (i) and Lemma 3.1, this covering has a refinement $\{V_n:n\in\mathbb{N}\}$ such that every V_n is a γ -closed subset of X and $\gamma(V_n^{\Lambda})\subseteq G_n^c$. By setting $F_n=\gamma((V_n^{\Lambda})^c)$, we obtain a decreasing sequence of γ -closed subsets of X with the required properties.
- (ii) \Rightarrow (i) Now if $\{H_n: n \in \mathbb{N}\}$ is a countable covering of semi-closed (resp. preclosed) subsets of X, we set for $n \in \mathbb{N}, G_n = (\bigcup_{i=1}^n H_i)^c$. Then $\{G_n\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\{F_n\}$ consisting of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}, G_n \subseteq F_n$. Now we define the subsets W_n of X in the following manner:

 W_1 is a γ -closed subset of X such that $F_1^c \subseteq W_1$ and $\gamma(W_1^{\Lambda}) \cap G_1 = \emptyset$.

 W_2 is a γ -closed subset of X such that $\gamma(W_1^{\Lambda}) \cup F_2^c \subseteq W_2$ and $\gamma(W_2^{\Lambda}) \cap G_2 = \emptyset$, and so on. (By Lemma 3.1, W_n exists).

Then since $\{F_n^c: n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n: n \in \mathbb{N}\}$ is a covering for X consisting of γ -closed sets. Moreover, we have

```
(i) \gamma(W_n^{\Lambda}) \subseteq W_{n+1}
```

(ii) $F_n^c \subseteq W_n$

(iii) $W_n \subseteq \bigcup_{i=1}^n H_i$.

Now setting $S_1 = W_1$ and for $n \ge 2$, we set $S_n = W_{n+1} \setminus \gamma(W_{n-1}^{\Lambda})$.

Then since $\gamma(W_{n-1}^{\Lambda}) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of γ -closed sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Finally, consider the following sets:

These sets are γ -closed sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is a γ -closed set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}, j = 1, \dots, i+1\}$ refines $\{H_n : n \in \mathbb{N}\}$ such that its elements are γ -closed sets, and for every point in X we can find a γ -closed set containing the point that intersects only finitely many elements of that refinement.

Corollary 3.5. If every two disjoint semi—open and preopen subsets of X can be separated by γ —closed subsets of X, and in addition, every countable covering of semi—closed (resp. preclosed) subsets of X has a refinement that consists of preclosed (resp. semi—closed) subsets of X such that for every point of X we can find a γ —closed subset containing that point such that it intersects only a finite number of refining members then X has the weakly $c\gamma$ —insertion property for (cpc, csc) (resp. (csc, cpc)).

Proof. Since every two disjoint semi—open and preopen sets can be separated by γ —closed subsets of X, therefore by Corollary 3.4, X has the weak $c\gamma$ —insertion property for (cpc, csc) and (csc, cpc). Now suppose that f and g are real-valued functions on X with g < f, such that g is cpc (resp. csc), f is csc (resp. cpc) and f - g is csc (resp. cpc). For every $n \in \mathbb{N}$, set

$$A(f-g,3^{-n+1}) = \{x \in X : (f-g)(x) \le 3^{-n+1}\}.$$

Since f-g is csc (resp. cpc), hence $A(f-g,3^{-n+1})$ is a semi—open (resp. preopen) subset of X. Consequently, $\{A(f-g,3^{-n+1})\}$ is a decreasing sequence of semi—open (resp. preopen) subsets of X and furthermore since 0 < f-g, it follows that $\bigcap_{n=1}^{\infty} A(f-g,3^{-n+1}) = \varnothing$. Now by Lemma 3.3, there exists a decreasing sequence $\{D_n\}$ of preclosed (resp. semi—closed) subsets of X such that $A(f-g,3^{-n+1}) \subseteq D_n$ and $\bigcap_{n=1}^{\infty} D_n = \varnothing$. But by Lemma 3.2, the pair $A(f-g,3^{-n+1})$ and $X\setminus D_n$ of semi—open (resp. preopen) and preopen (resp. semi—open) subsets of X can be completely separated by contra- γ —continuous functions. Hence by Theorem 2.2, there exists a contra- γ —continuous function h defined on X such that g < h < f, i.e., X has the weakly $c\gamma$ —insertion property for (cpc,csc) (resp. (csc,cpc)).

References

- [1] A. Al-Omari and M.S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, *European J. Pure. Appl. Math.* **2(2)**, 213–230 (2009).
- [2] D. Andrijevic and M. Ganster, On PO-equivalent topologies, *IV International Meeting on Topology in Italy (Sorrento, 1988), Rend. Circ. Mat. Palermo* (2) Suppl. **24**, 251–256 (1990).
- [3] F. Brooks, Indefinite cut sets for real functions, Amer. Math. Monthly 78, 1007–1010 (1971).
- [4] M. Caldas and S. Jafari, Some properties of contra-β—continuous functions, *Mem. Fac. Sci. Kochi. Univ.* **22**, 19–28 (2001).
- [5] H.H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8, 351–360 (1964).
- [6] J. Dontchev, The characterization of some peculiar topological space via α and β -sets, *Acta Math. Hungar.* **69(1-2)**, 67–71 (1995).
- [7] J. Dontchev, Contra-continuous functions and strongly S-closed space, *Intrnat. J. Math. Math. Sci.* 19(2), 303–310 (1996).
- [8] J. Dontchev, and H. Maki, On sg-closed sets and semi $-\lambda$ -closed sets, *Questions Answers Gen. Topology* **15(2)**, 259–266 (1997).
- [9] E. Ekici, On contra-continuity, Annales Univ. Sci. Bodapest 47, 127-137 (2004).
- [10] E. Ekici, New forms of contra-continuity, /em Carpathian J. Math. 24(1), 37–45 (2008).
- [11] A.I. El-Magbrabi, Some properties of contra-continuous mappings, *Int. J. General Topol.* **3(1-2)**, 55–64 (2010).
- [12] M. Ganster and I. Reilly, A decomposition of continuity, Acta Math. Hungar. 56(3-4), 299–301 (1990).
- [13] S. Jafari and T. Noiri, Contra-continuous function between topological spaces, *Iranian Int. J. Sci.* 2, 153–167 (2001).
- [14] S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malaysian Math. Sc. Soc.* **25**, 115–128 (2002).

- [15] M. Katětov, On real-valued functions in topological spaces, Fund. Math. 38, 85–91 (1951).
- [16] M. Katětov, Correction to, "On real-valued functions in topological spaces", Fund. Math. 40, 203–205 (1953).
- [17] E. Lane, Insertion of a continuous function, Pacific J. Math. 66, 181–190 (1976).
- [18] N. Levine, Semi-open sets and semi-continuity in topological space, *Amer. Math. Monthly* **70**, 36–41 (1963).
- [19] S. N. Maheshwari and R. Prasad, On R_{Os}—spaces, Portugal. Math. **34**, 213–217 (1975).
- [20] H. Maki, Generalized Λ-sets and the associated closure operator, The special Issue in commemoration of Prof. Kazuada IKEDA's Retirement, 139–146 (1986).
- [21] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On pre-continuous and weak pre-continuous mappings, *Proc. Math. Phys. Soc. Egypt* 53, 47–53 (1982).
- [22] M. Mrsevic, On pairwise R and pairwise R_1 bitopological spaces, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* 30, 141–145 (1986).
- [23] A.A. Nasef, Some properties of contra-continuous functions, Chaos Solitons Fractals 24, 471–477 (2005).
- [24] M. Przemski, A decomposition of continuity and α -continuity, *Acta Math. Hungar.* **61(1-2)**, 93–98 (1993).

Author information

Majid Mirmiran, Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran. E-mail: mirmir@sci.ui.ac.ir

Received: April 2, 2019. Accepted: August 9, 2019.