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Abstract Characterizations and properties of nZ,,-closed sets and nZ,,-open sets are given.
The main purpose of this paper is to introduce the concepts of u-nZ-locally closed sets, nA -
sets, ¢,-nZ-closed sets, nZ,,,-continuous, p-nZ-LC-continuous, ¢,-nZ-continuous and to obtain
decompositions of nx-continuity in nano ideal topological spaces.

1 Introduction and Preliminaries

Let (U, N, Z) be an nano ideal topological space with an ideal Z on U, where A/ = 7(X) and
()% p(U)—p(U0) (p(U) is the set of all subsets of U) [6, 7]. For a subset A CU, A% (Z,N)={xeU
: G,N A €7, for every G, € G, (x)}, where G,,={G,, | x€ G,, G,, €N }is called the nano local
function(brielfy n-local function) of A with repect to Z and A/. We will simply write A% for A%
(Z,N)

Theorem 1.1. [6, 7] Let (U, N') be a nano topological space with ideal T, T' on U and A, B be
subsets of U. Then

(1)ACB= A’ CB:.

(2)ICT = A, (T) C A (T

(3) A, =n-cl(A}) C n-cl(A) (A}, is a nano closed subset of n-cl(A)).

(4) (A%);, C AL

(5) AU B =(AUB):.

(6)A;, — B, = (A — B);, — B, C (A ~B);.

(7)VeN =VNA:=VN(VNA): C(VNA): and

(8)Jel=(AUJ): =A: =(A-J);.

Lemma 1.2. [6, 7] Let (U, N, Z) be an nano topological space with an ideal T and ACA*, then
Al =n-cl(A})=n-cl(A).

Definition 1.3. [6, 7] Let (U, ') be an nano topological space eith an ideal Z on U. The set
operator n-cl* is called a nano x -closure and is defined as n-cl*(A)= A U A} for A CX.

Theorem 1.4. [6, 7] The set operator n-cl* satisfies the following conditions:
(1) A C n-cl*(A).
(2) n-cl*(¢) = ¢ and n-cl*(U) = U.
(3) If A CB, then n-cl*(A) C n-cl*(B).
(4) n-cl*(A) U n-cl*(B) = n-cI*(A U B).
(5) n-cl*(n-cl*(A)) =n-cl*(A).

Definition 1.5. [6, 7] An ideal Z ina space (U, N, 7) is called A/-codense ideal if N' N Z =¢.

Definition 1.6. [6, 7] A subset A of a nano ideal topological space (U, A/, 7) is nx-dense in itself
(resp. nx-perfect and nx-closed) if A C A} (resp. A=A, Ay, C A).

n’
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Lemma 1.7. [6, 7] Let (U, N, T) be a nano ideal topological space and A C U. If A is nx-dense
in itself A} =n-cl(A},) =n-cl(A})=n-cl(A)=n-cl*(A).

Definition 1.8. [6, 7] A subset A of an nano ideal topological space (U, N, Z) is said to be

(1) nano-Z-generalized closed (briefly, nZg-closed if A’ C V whenever AC V and V is n-
open.

(2) nZg-open if its complement is nZg-closed.

Definition 1.9. [5] A subset M of a space (U, 7z(X)) is said to be
(1) Nano «a-open set if M C Nint(Ncl(Nint(M))).
(2) Nano semi-open set if M C Ncl(Nint(M)).

The complement of the above mentioned Nano open sets are called their respective Nano
closed sets.

The Nano a-closure [2] of a subset M of U, denoted by Nacl(M) is defined to be the inter-
section of all Nano a-closed sets of (U, 7(X)) containing M.

Definition 1.10. [3] A subset M of a space (U, 7r(X)) is called

(1) a Nano ga*-closed set if Nacl(A) C Nano int(U) whenever A C U and U is Nano a-open
in (U, 7r(X)). The complement of Nano ga*-closed set is called Nano ga*-open set.

(2) a Nano p-closed set if Ncl(A) C U whenever A C U and U is Nano ga*-open in (U,
7r(X)). The complement of Nano pu-closed set is called Nano u-open set.

(3) a Nano gu-closed set if Ncl(A) C U whenever A C U and U is Nano p-open in (U,
7r(X)). The complement of Nano gu-closed set is called Nano ggu-open set.

Definition 1.11. [1] A subset a of of an nano ideal topological space (K, N, 7) is called an lightly
nano 7 -locally closed (briefly £-nZ-LC) if A =M N N where M is n-open and N is nx-closed.

2 nZ,,-closed sets

Definition 2.1. A subset A of an nano ideal topological space (K, A/, Z) is said to be
(1) nZ,,,-closed if A7 C U whenever AC U and U is nyu-open,
(2) nZ,,-open if its complement is nZ,,-closed.

Theorem 2.2. If (K, N, Z) is any nano ideal topological space, then every nZ,,-closed set is
nZy-closed but not conversely.

Proof. It follows from the fact that every n-open set is np-open. O

Example 2.3. Let K= {4, 5, 6}, with K/ R= {{4}, {5, 6}} and X= {4}. Then the Nano topology
N ={¢, {4}, K} and Z={0, {1}}. Then nZ,,-closed sets are ¢, K, {4}, {5, 6} and nZ,-closed
sets are ¢, K, {4}, {5}, {6}, {4, 5}, {4, 6}, {5, 6}. Itis clear that {5} is nZ,-closed but it is not
nZg,,-closed.

The following theorem gives characterizations of nZ,,,-closed sets.

Theorem 2.4. If (K, N, I) is any nano ideal topological space and A C K, then the following
are equivalent.

(1) Ais nZy,-closed,

(2) n-cl*(A)CU whenever A C U and U is nu-open in K,

(3) For all ken-cl*(A), n-pcl({k})NAH).

(4) n-cl*(A)—A contains no nonempty nu-closed set,

(5) A}, —A contains no nonempty nu-closed set.

Proof. (1)=(2) If A is nZ,,-closed, then A’ CU whenever ACU and U is nyu-open in K and so
n-cl*(A)=AUA} CU whenever ACU and U is nu-open in K. This proves (2).

(2)=(3) Suppose ken-cl*(A). If n-ucl({k})NA=0, then ACK—n-ucl({k}). By (2), n-cI*(A)C
K—n-ucl({k}), a contradiction, since ken-cl*(A).
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(3)=(4) Suppose FCn-cl*(A)—A, F is nu-closed and keF. Since FCK—A and F is nyu-closed,
then ACK—F and F is nu-closed, n-ucl({k})NA=0. Since ken-cl*(A) by (3), n-ucl({x HNAAD.
Therefore n-cl*(A)—A contains no nonempty nu-closed set.

(4)=-(5) Since n-cl*(A)—A=(AUA})—A=(AUA} )NA°=(ANA°)U (ALNA)=ALNA= A} —A.
Therefore A} —A contains no nonempty nu-closed set.

(5)=(1) Let ACU where U is np-open set. Therefore K-UCK—A and so A;N(K—-U)
CA;N(K—A)=A’ —A. Therefore A} N(K—U)CA> —A. Since A} is always n-closed set, so A’ is
nu-closed set and so A N(K—U) is a nu-closed set contained in A¥ —A. Therefore A N(K—U)=0
and hence A}, CU. Therefore A is nZ,,-closed. O

Theorem 2.5. Every nx-closed set is nl,,,-closed but not conversely.

Proof. Let A be a nx-closed, then A’ CA. Let ACU where U is nu-open. Hence A}, CU when-
ever ACU and U is nu-open. Therefore A is nZ,,-closed. O

Example 2.6. Let K = {4, 5, 6} with K/ R= {{6}, {4, 5}, {5, 4}} and X= {4, 5}. Then Nano
topology N = {¢, {4, 5}, K} and Z={0, {4}}. Then nZ,,-closed sets are ¢, K, {4}, {6}, {4, 6},
{5, 6} and n*-closed sets are ¢, K, {4}, {6}, {4, 6}. Itis clear that {5, 6} is nZ,,-closed set but
it is not nx-closed.

Theorem 2.7. Let (K, N, I) be an nano ideal topological space. For every A€Z, A is nZy,-
closed.

Proof. Let ACU where U is nu-open set. Since AX=0 for every A€Z, then n-cl*(A)=AUA}
=ACU. Therefore, by Theorem 2.4, A is nZ,,-closed. O

Theorem 2.8. If (K, N, T) is an nano ideal topological space, then A, is always nZ,,,-closed for
every subset A of K.

Proof. Let A*,,CU where U is nu-open. Since (A% ) CAZ Theorem 1.1 (4), we have (A%)* CU
whenever Ay CU and U is nu-open. Hence A}, is nZ,,,-closed. O

Theorem 2.9. Let (K, N, I) be an nano ideal topological space. Then every nZ,-closed, nj-
open set is nx-closed set.

Proof. Since A is nZ,,-closed and nyu-open. Then A; CA whenever ACA and A is nu-open.
Hence A is nx-closed. O

Definition 2.10. An nano ideal topological space (K, N, T) is said to be a nTz-space if every
nZ,-closed subset of K is a nx-closed.

Theorem 2.11. If (K, N, I) is a nTt nano ideal space and A is an nZy-closed set, then A is
nx-closed set.

Proof. It is follows from Definition 2.10. O

Corollary 2.12. If (K, N, T) is a nT1 nano ideal space and A is an nZy,-closed set, then A is
nx-closed set.

Proof. By assumption A is nZgy,-closed in (K, N, I) and so by Theorem 2.2, A is nZy-closed.
Since (K, N, I) is an nTz-space by Definition 2.10, A is nx-closed. O

Corollary 2.13. Let (K, N, I) be an nano ideal topological space and A be an nZy,-closed set.
Then the following are equivalent.

(1) A is a nx-closed set,

(2) n-cl*(A)—A is a nu-closed set,

(3) A}, —A is a np-closed set.
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Proof. (1)=(2) If A is nx-closed, then A} CA and so n-cl*(A)—A=(AUA*,)-A =(. Hence n-
cl*(A)—A is nu-closed set.

(2)=(3) Since n-cl*(A)—A=A} —A and so A}, —A is nu-closed set.

(3)=(1) If A}, —A is a np-closed set, since A is nZy,-closed set, by Theorem ?? (5), A} —A=(
and so A is nx-closed. O

Theorem 2.14. Let (K, N, I) be an nano ideal topological space. Then every ngu-closed set is
an nZg,-closed set but not conversely.

Proof. Let A be a ngu-closed set. Then n-cl(A)CU whenever ACU and U is nu-open. So by
Theorem 1.1 (3), A}, Cn-cl(A)CU whenever ACU and U is nu-open. Hence A is nZ,,-closed. O

Example 2.15. Let K, A and Z be defined as an Example 2.6. Then ngu-closed sets are ¢, K,
{6}, {4, 6}, {5, 6} . Itis clear that {4} is nZ,,-closed set but it is not ngy-closed.

Theorem 2.16. If (K, N, ) is an nano ideal topological space and A is a nx-dense in itself,
nZy,-closed subset of K, then A is ngpu-closed.

Proof. Suppose A is a nx-dense in itself, n1,,-closed subset of K. Let ACU where U is nu-open.
Then by Theorem 2.4 (2), n-cl*(A)CU whenever ACU and U is nu-open. Since A is nx-dense in
itself, by Lemma 1.7, n-cl(A)=n-cl*(A). Therefore n-cl(A)CU whenever ACU and U is nj-open.
Hence A is ngu-closed. O

Corollary 2.17. If (K, N, I) is any nano ideal topological space where Z={(}, then A is nZ,-
closed if and only if A is ngu-closed.

Proof. The proof follows from the fact that for T={0}, A* =n-cl(A)DA. Therefore A is nx-dense
in itself. Since A is nl,,-closed, by Theorem 2.16, A is ngpu-closed.
Conversely, by Theorem 2.14, every ngi-closed set is nZ,,-closed set. O

Lemma 2.18. If (K, N, ) is any nano ideal topological space, then the following are equivalent

(K=K,

(2)NNT =¢.

(3) If I € 1 then n-int*(I) = ¢.
(4) for every G e N, G C G.

Theorem 2.19. If (K, N, I) is any nano ideal topological space, then the following are equiva-
lent

(I)K=K:.

(2) for every A € Nano open, A C A}

(3) for every A € Nano semi open, A C A,

Proof. (1) and (2) are equivalent by Lemma 2.18.

(2) = (3). Suppose A € Nano semi open (K, N'). Then there exists an n-open set M such that M
C A C n-cl(M). Since M is n-open, M C M, and so by Lemma 1.2, A C n-cl(M) Cn-cl(M})) =
My CAy. Hence AC Ay,

(3)=(1). It is clear. O

Corollary 2.20. If (K, N, Z) is any nano ideal topological space where T is N -codense and A is
a Nano semi-open, nl,,-closed subset of K, then A is ngu-closed.

Proof. The proof follows Theorem 2.19, A is nx-dense in itself. By Theorem 2.16, A is ngu-
closed. O
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Theorem 2.21. Every n-closed set is nZg,,-closed but not conversely.

Proof. Let A be a n-closed, then A7, CA. Let ACU where U is nu-open. Hence A}, CU whenever
ACU and U is nu-open. Therefore A is nl,,-closed. O

Example 2.22. Let K, A and 7 be defined as an Example 2.3. Then n-closed sets are ¢, K, {3,
6}. Itis clear that {4} is nZ,,-closed set but it is not n-closed.

Remark 2.23. remark 2.23 ng-closed sets and nZ,,-closed sets are independent.

Example 2.24. Let K , A and 7 be defined as an Example 2.3. Then ng-closed sets are ¢, K,
{5}, {6}, {4,5}, {4, 6}, {5, 6}. Itis clear that {5} is ng-closed set but it is not nZ,,,-closed. Also
it is clear that {4} is nZ,,-closed set but it is not ng-closed.

Remark 2.25. (1) Every n-closed is nx-closed set but not conversely. [1]
(2) Every n-closed set is ngu-closed but not conversely. [3]
(3) Every ngu-closed set is ng-closed but not conversely. [3]
(4) Every ng-closed set is nZ,-closed but not conversely. [7]

Remark 2.26. We have the following implications for the subsets stated above.

n — closed@ >>> ngu — closed@ >>> ng — closed
@VVVevvvevvv
nx —closed@ >>> nl,, — closed@ >>> nZ, — closed

Theorem 2.27. Let (K, N, Z) be an nano ideal topological space and ACK. Then A is nZ,,-
closed if and only if A=F—M where F is nx-closed and M contains no nonempty nu-closed set.

Proof. If A is nZg,,-closed, then by Theorem 2.4 (5), M=A},—A contains no nonempty np-closed
set. If F=ncl*(A), then F is nx-closed such that F—M=(AUA} )—(A} —A)
=(AU AZ)N (A5NA)°=(AUAZ )N (A% )°UA)=(AUAL IN(AU(AS, )=
AU(AZN(AS)€)=A.
Conversely, suppose A=F—M where F is nx-closed and M contains no nonempty nu-closed
set. Let U be an nu-open set such that ACU. Then F—MCU which implies that F0(K—U)CM.
Now ACF and F} CF then A} CF}, and so
AXN(K-U)CF:N(K—U)CFN (K—U)CM. By hypothesis, since A N\(K—U) is nu-closed, Ax\(K—U)=0
and so A}, CU. Hence A is nl,,-closed. O

Theorem 2.28. Let (K, N, Z) be an nano ideal topological space and ACK. If ACBCA}, then
A} =B} and B is nx-dense in itself.

Proof. Since ACB, then A},CB;, and since BCA?,, then B}, C(A): CAY Theorem 1.1 (4). There-
fore A} =B’ and BCA? CB}.. Hence proved. O

Theorem 2.29. Let (K, N, I) be an nano ideal topological space. If A and B are subsets of K
such that ACBCn-cl}(A) and A is n’,,-closed, then B is n’Z,,-closed.

1

Proof. Since A is nZy,-closed, then by Theorem 2.4 (1), n-cl},(A)—A contains no nonempty ny-
closed set. Since n-cl*(B)—BCn-cl*(A)—A and so n-cl*(B)—B contains no nonempty nu-closed
set and so by Theorem 2.4 (4), B is nZy,-closed. O

Corollary 2.30. Let (K, N, Z) be an nano ideal topological space. If A and B are subsets of K
such that AC BCA}, and A is n1g,-closed, then A and B are ngp-closed sets.
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Proof. Let A and B be subsets of K such that ACBCA?, which implies that ACB CA’ Cn-cl*(A)
and A is nZy,-closed. By Theorem 2.29, B is nl,,-closed. Since ACBCA;},, then A}, =B}, and so
A and B are nx-dense in itself. By Theorem 2.16, A and B are ngu-closed. O

The following theorem gives a characterization of nZg,-open sets.

Theorem 2.31. Let (K, N, Z)be an nano ideal topological space and ACK. Then A is nZ,,,-open
if and only if FCn-int*(A) whenever F is nu-closed and FCA.

Proof. Suppose A is nZy,-open. If F is nu-closed and FCA, then K—ACK—F and so n-
cl*(K—A)CK—F by Theorem 2.4 (2). Therefore FCK—n-cl*(K—A)=n-int*(A). Hence FCn-
int*(A).

Conversely, suppose the condition holds. Let U be a nu-open set such that K—ACU. Then
K—UCA and so K—UCn-int*(A). Therefore n-cl*(K—A)CU. By Theorem 2.4 (2), K—A is nZ,,-
closed. Hence A is nZg,,-open. O

Corollary 2.32. Let (K, N, T) be an nano ideal topological space and ACK. If A is nZ,,-open,
then FCn-int*(A) whenever F is n-closed and FCA.

The following theorem gives a property of nZg,,-closed.

Theorem 2.33. Let (K, N, I) be an nano ideal topological space and ACK. If A is nZ,,-open
and n-int*(A)CBCA, then B is n1,,-open.

Proof. Since A is n1,,-open, then K—A is nlg,-closed. By Theorem 2.4 (4), n-cI"(K—A)—
(K—A) contains no nonempty nu-closed set. Since n-int*(A)Cn-int*(B) which implies that n-
cl*(K—B)Cn-cl*(K—A) and so n-cl*(K—B)—(K—B)C

n-cl*(K—A)—(K—A). Hence B is n1g,,-open. O

The following theorem gives a characterization of nIg,-closed sets in terms of nlg,-open
sets.

Theorem 2.34. Let (K, N, I) be an nano ideal topological space and ACK. Then the following
are equivalent.

(1) Ais nZy,-closed,

(2) AU(K—A},) is n1g,-closed,

(3) A} —A is nlg,-open.

Proof. (1)=(2) Suppose A is nZy,-closed. If U is any nu-open set such that AU(K—A})CU,
then K—UC K—(AU(K—A},))=KN(AU(A} )°)¢ = A} NA°=A; —A. Since A is nLgy,,-closed, by The-
orem 2.4 (5), it follows that K—U=0 and so K=U. Therefore AU(K—A?*)CU which implies that
AU(K—A})CK and so (AU(K—A},)); CK; CK=U. Hence AU(K—A},) is nl,,-closed.

(2)=(1) Suppose AJ(K—A},) is nly,-closed. If F is any nu-closed set such that FCA},—A,
then FCA}, and FSZA which implies that K—A}, CK—F and ACK—F. Therefore AUJ(K—A} ) CAU(K—F)=K—F
and K—F is ny-open. Since (AU(K—A}));, CK—F which implies that A} U(K—A} )y CK—F and
so AX CK—F which implies that FCK—A*. Since FCA%, it follows that F=(. Hence A is nZg,-
closed.

(2)<(3) Since K—(A}—A)=KN(ANA°)*=KN((A})°UA)=(KN (A} ) )J(KNA)=AU (K—A?) is
nZg,-closed. Hence A}, —A is nlgy,-open. O

Theorem 2.35. Let (K, N, I) be an nano ideal topological space. Then every subset of K is
nZy,-closed if and only if every np-open set is nx-closed.

Proof. Suppose every subset of K is nZ,,-closed. If UCK is ny-open, then U is nZg,,-closed and
so Uy CU. Hence U is nx-closed.

Conversely, suppose that every nu-open set is nx-closed. If U is nu-open set such that
ACUCK, then A;,CU;,CU and so A is nZy,-closed. O
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3 u-nZ-locally closed sets

We introduce the following definition

Definition 3.1. A subset a of of an nano ideal topological space (K, N, Z) is called an p -nZ-
locally closed set(briefly -nZ-LC) if A =M N N where M is np-open and N is nx-closed.

Proposition 3.2. Ler (K, N, T) be an nano ideal topological space and A a subset of K. Then the
following hold.

(1) If A is nu-open , then A is u-nZ-LC set.

(2) A is nx-closed, then A is u-nZ-LC set.

(3) If Ais a L-nZ-LC-set, then A is an p-nZ-LC set.

Proof. It is obvious from Definitions 1.11 and 3.1. O

The converse of the above Proposition 3.2 need not be true as shown in the following exam-
ples.

Example 3.3. Let K, A/ and Z be defined as an Example 2.3. Then nu-open sets are ¢, K, {4},
{5}, {6}, {4, 5}, {4, 6}, u-nZ-LC sets are power set of K and nx-closed sets are ¢, K, {4}, {5,
6}. It is clear that {5} is pu-nZ-LC set but it is not nx-closed. Also it is clear that {5, 6} is an
u-nZ-LC set but it is not nu-open.

Example 3.4. Let K = {4, 5, 6} with K/ R= {{6}, {4, 5}, {5, 4}} and X= {4, 5}. Then Nano
topology N = {¢, {4, 5}, K} and Z={0}. Then u-nZ-LC sets are ¢, K, {4}, {5}, {6}, {4, 5} and
L-nZ-LC-set are ¢, K, {6}, {4, 5}. Itis clear that {4} is u-nZ-LC set but it is not £-nZ-LC-set.

Theorem 3.5. Let (K, N, Z) be an nano ideal topological space. If A is an yu -nZ-LC-set and B
is a nx-closed set, then A N B is an u-nZ-LC-set.

Proof. Let B be nx-closed, then ANB=(0ONP)NB=0N(PN B), where PN B is nx-closed.
Hence AN Bis an p -nZ-LC-set.0

Theorem 3.6. A subset of an nano ideal topological space (K, N, I) is nx-closed if and only if
it is

(1) L-nZ-LC-set and nZ,-closed [1].

(2) p-nZ-LC-set and nZg,,-closed.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be i -nZ-LC-set and nZg,,-closed
set. Since A is p -nZ-LC set, A = O N P, where O is nu -open and P is nx-closed. So we have A
=0NPCO. Since A is nZy,-closed, A}, C O. Also since A= 0 NP C P and P is nx-closed, we
have A;,C P. Consequently, A}, C O N P = A and hence A is nx-closed. O

Remark 3.7. (1) The notions of £-nZ-LC set and nZ,-closed set are independent[1].
(2) The notions of u-nZ-LC-set and nZ,,,-closed set are independent.

Example 3.8. Let K, NV and 7 be defined as an Example 2.6. Then u-nZ-LC-sets are ¢, K, {4},
{5}, {6}, {4, 5}, {4, 6}. Itis clear that {5} is u-nZ-LC- set but it is not nZ,,-closed. Also it is
clear that {5, 6} is an nZ,,,-closed but it is not p-nZ-LC set.

Definition 3.9. [3] Let A be a subset of a nano topological space (K, ). Then the Nano p-kernel
of the set A, denoted by nu-ker(A), is the intersection of all nu-open supersets of A.

Definition 3.10. A subset A of an nano ideal topological space (K, NV, 7) is called nA ,-set if A
= nu-ker(A).

Definition 3.11. A subset A of an nano ideal topological space (K, NV, 7) is called ¢,-nZ-closed
if A=R NS where RisanA,-set and S is a nx-closed.
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Lemma 3.12. (1) Every nx-closed set is (,,-nZ-closed but not conversely.
(2) Every n/\,-set is C,,-nZ-closed but not conversely.

Proof. (1) Follows from Definitions 1.6 and 3.11.
(2) Follows from Definitions 3.10 and 3.11. O

Example 3.13. Let K, A/ and Z be as in the Example 2.3, nx-closed sets are ¢, K, {4}, {5, 6},
(u-nZ-closed sets are power set of K and nA,-sets are ¢, K, {4}, {5}, {6}, {4, 5}, {4, 6}. Itis
clear that {5} is ¢,,-nZ-closed but it is not nx-closed. Also it is clear that {5, 6} is {,-nZ-closed
but it is not nA ,-set.

Remark 3.14. The concepts of nx-closed and nA,-set are independent.

Example 3.15. Let K , A/ and Z be as in the Example 3.4, nA ,-set are ¢, K, {4}, {5}, {4, 5} and
nx-closed sets are ¢, K, {6}. It is clear that {4} is n/A,-set but it is not nx-closed. Also it is clear
that {6} is nx-closed set but it is not nA ,-set.

Lemma 3.16. For a subset A of an nano ideal topological space (K, N, I) the following are
equivalent.

(1) Ais ,-nZ-closed.

(2)A = O Nn-cl*(A) where O is a n/\-set.

(3) A= nu-ker(A) N n-cl*(A).

Proof. (1) = (2). Let A be a (,,-nZ-closed set. Then A = O N P where O is a (,,-nZ-closed set
and P is a nx-closed. Clearly A C O N n-cl*(A). Since P is a nx-closed, n-cl*(A) C n-clI*(P) = P
and so O N n-cl*(A) C ON P = A. Therefore, A = O N n-cl*(A).

(2) = (3). Let A = O N n-cl*(A), where O is a n/\,-set. Since O is a n/\,-set, we have A=
np-ker(A) N n-cl*(A).

(3) = (1). Let A= nu-ker(A) N n-cl*(A). By Definitions 3.10, 3.11 and the notion of nx-closed
set, we get A is (,-nZ-closed. O

Lemma 3.17. A subset A C (K, N, I) is nZ,,-closed if and only if n-cl*(A) C npu-ker(A).

Proof. Suppose that A C K is an nZg,-closed set. Suppose k ¢ nyu-ker(A). Then there exists an
nu-open set U containing A such that k ¢ U. Since A is an nZg,,-closed set, A C U and U is
np-open implies that n-cl*(A) C U and so k & n-cl*(A). Therefore n-cl*(A) C nu-ker(A).
Conversely, suppose n-cl*(A) C nu-ker(A). IfA C U and U is nu-open, then n-cl*(A) C nu-ker(A)
C U. Therefore, A is nlg,-closed. O

Theorem 3.18. For a subset A of an nano ideal topological space (K, N, I) the following are
equivalent.

(1) A is nx-closed.

(2) Ais nZgy,-closed and y-nZ-LC.

(3) Ais nZgy,-closed and (,,-nZ-closed.

Proof. (1) = (2) = (3) Obvious.
(3) = (1). Since a is ny,-closed, by (2), Lemma 3.17, n-cl*(A) C nu-ker(A). Since A is ¢,,-nZ-
closed, by Lemma 3.16, A = nu-ker(A) N n-cl*(A)= n-cl*(A). Hence A is nx-closed. O

Remark 3.19. The concepts of nZ,,,-closedness and (,,-nZ-closedness are independent.

Example 3.20. Let K, A/ and 7 be as in the Example 3.4, {,,-nZ-closed sets are ¢, K, {4}, {5},
{6}, {4, 5} and nZ,,-closed sets are ¢, K, {6}, {4, 6}, {5, 6}. Itis clear that {4} is (,,-nZ-closed
but it is not nZ,,,-closed. Also it is clear that {4, 6} is nZ,,-closed set but it is not ¢,,-nZ-closed.
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4 Decompositions of Nano x-continuity

Definition 4.1. A function f: (K, NV, Z) — (L, A”) is said to be nx-continuous [4] (resp. nZ,-
continuous, nZ,,,-continuous, £-nZ-LC-continuous, p-nZ-LC-continuous, (,-nZ-continuous) if
f=1(A) is nx-closed (resp. nZ,-closed, nZ,,-closed, £-nZ-LC-set, u-nZ-LC-set, ¢,-nZ-closed)
in (K, \V, Z) for every n-closed set A of (L, N).

Theorem 4.2. A function f: (K, N, I) — (L, N) is nx-continuous if and only if it is
(1) L-nZ-LC-continuous and n’,-continuous.
(2) p-nZ-LC-continuous and nZg,,-continuous.

Proof. It is an immediate consequence of Theorem 3.6. O

Theorem 4.3. A function f: (K, N, ) — (L, N') the following are equivalent.
(1) f is nx-continuous.
(2)f is nZy,—continuous and p-nI-LC-continuous.
(3) fis nly,-continuous and (,-nZ-continuous.

Proof. It is an immediate consequence of Theorem 3.18. O
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