n $\mathcal{I}_{g\mu}$ -CLOSED SETS IN NANO IDEAL TOPOLOGICAL **SPACES**

Selvaraj Ganesan

Communicated by Thabet Abdeljawad

MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.

Keywords and phrases: $n\mathcal{I}_{g\mu}$ -closed sets, $n\mathcal{I}_{g\mu}$ -continuous, $n\mathcal{I}_g$ -continuous, μ - $n\mathcal{I}$ -LC-continuous and ζ_{μ} - $n\mathcal{I}$ -continuous.

The authors would like to thank the editors and the anonymous reviewers for their valuable comments and suggestions which have helped immensely in improving the quality of the paper.

Abstract Characterizations and properties of $n\mathcal{I}_{q\mu}$ -closed sets and $n\mathcal{I}_{q\mu}$ -open sets are given. The main purpose of this paper is to introduce the concepts of μ -n \mathcal{I} -locally closed sets, $n \wedge_{\mu}$ sets, ζ_{μ} -n \mathcal{I} -closed sets, n $\mathcal{I}_{q\mu}$ -continuous, μ -n \mathcal{I} -LC-continuous, ζ_{μ} -n \mathcal{I} -continuous and to obtain decompositions of n*-continuity in nano ideal topological spaces.

1 Introduction and Preliminaries

Let $(U, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space with an ideal \mathcal{I} on U, where $\mathcal{N} = \tau_R(X)$ and $(.)_n^*: \wp(U) \rightarrow \wp(U)$ ($\wp(U)$ is the set of all subsets of U) [6, 7]. For a subset $A \subseteq U$, $A_n^*(\mathcal{I}, \mathcal{N}) = \{x \in U \in \mathcal{N}\}$: $G_n \cap A \notin \mathcal{I}$, for every $G_n \in G_n(x)$ }, where $G_n = \{G_n \mid x \in G_n, G_n \in \mathcal{N}\}$ is called the nano local function(briefly n-local function) of A with repect to \mathcal{I} and \mathcal{N} . We will simply write A_n^* for A_n^* $(\mathcal{I}, \mathcal{N})$

Theorem 1.1. [6, 7] Let (U, \mathcal{N}) be a nano topological space with ideal $\mathcal{I}, \mathcal{I}'$ on U and A, B be subsets of U. Then

```
(1) A \subseteq B \Rightarrow A_n^* \subseteq B_n^*.
```

- $(2) \mathcal{I} \subseteq \mathcal{I}' \Rightarrow A_n^* (\mathcal{I}') \subseteq A_n^* (\mathcal{I}).$
- (3) $A_n^* = n \cdot cl(A_n^*) \subseteq n \cdot cl(A)$ (A_n^* is a nano closed subset of $n \cdot cl(A)$).
- $(4) (A_n^*)_n^* \subseteq A_n^*.$
- $(5) A_n^* \cup B_n^* = (A \cup B)_n^*.$
- $(6)A_n^* B_n^* = (A B)_n^* B_n^* \subseteq (A B)_n^*.$ $(7) \ V \in \mathcal{N} \Rightarrow V \cap A_n^* = V \cap (V \cap A)_n^* \subseteq (V \cap A)_n^* \ and$
- $(8) J \in \mathcal{I} \Rightarrow (A \cup J)_n^* = A_n^* = (A J)_n^*.$

Lemma 1.2. [6, 7] Let $(U, \mathcal{N}, \mathcal{I})$ be an nano topological space with an ideal \mathcal{I} and $A \subseteq A_n^*$, then $A_n^* = n - cl(A_n^*) = n - cl(A)$.

Definition 1.3. [6, 7] Let (U, \mathcal{N}) be an nano topological space eith an ideal \mathcal{I} on U. The set operator n-cl* is called a nano \star -closure and is defined as n-cl*(A)= A \cup A* for A \subseteq X.

Theorem 1.4. [6, 7] The set operator n- cl^* satisfies the following conditions:

- (1) $A \subseteq n\text{-}cl^*(A)$.
- (2) $n\text{-}cl^*(\phi) = \phi \text{ and } n\text{-}cl^*(U) = U.$
- (3) If $A \subseteq B$, then $n\text{-}cl^*(A) \subseteq n\text{-}cl^*(B)$.
- $(4) n-cl^*(A) \cup n-cl^*(B) = n-cl^*(A \cup B).$
- (5) $n-cl^*(n-cl^*(A)) = n-cl^*(A)$.

Definition 1.5. [6, 7] An ideal \mathcal{I} in space $(U, \mathcal{N}, \mathcal{I})$ is called \mathcal{N} -codense ideal if $\mathcal{N} \cap \mathcal{I} = \phi$.

Definition 1.6. [6, 7] A subset A of a nano ideal topological space $(U, \mathcal{N}, \mathcal{I})$ is n*-dense in itself (resp. n*-perfect and n*-closed) if $A \subseteq A_n^*$ (resp. $A = A_n^*$, $A_n^* \subseteq A$).

Lemma 1.7. [6, 7] Let $(U, \mathcal{N}, \mathcal{I})$ be a nano ideal topological space and $A \subseteq U$. If A is $n \star$ -dense in itself $A_n^* = n \cdot cl(A_n^*) = n \cdot cl(A_n^*) = n \cdot cl(A) = n \cdot cl(A)$.

Definition 1.8. [6, 7] A subset A of an nano ideal topological space $(U, \mathcal{N}, \mathcal{I})$ is said to be

- (1) nano- \mathcal{I} -generalized closed (briefly, n \mathcal{I} g-closed if $A_n^* \subseteq V$ whenever $A \subseteq V$ and V is nopen.
 - (2) $n\mathcal{I}g$ -open if its complement is $n\mathcal{I}g$ -closed.

Definition 1.9. [5] A subset M of a space $(U, \tau_R(X))$ is said to be

- (1) Nano α -open set if $M \subseteq Nint(Ncl(Nint(M)))$.
- (2) Nano semi-open set if $M \subseteq Ncl(Nint(M))$.

The complement of the above mentioned Nano open sets are called their respective Nano closed sets.

The Nano α -closure [2] of a subset M of U, denoted by N α cl(M) is defined to be the intersection of all Nano α -closed sets of (U, $\tau_R(X)$) containing M.

Definition 1.10. [3] A subset M of a space $(U, \tau_R(X))$ is called

- (1) a Nano $g\alpha^*$ -closed set if $N\alpha cl(A) \subseteq N$ ano int(U) whenever $A \subseteq U$ and U is Nano α -open in $(U, \tau_R(X))$. The complement of Nano $g\alpha^*$ -closed set is called Nano $g\alpha^*$ -open set.
- (2) a Nano μ -closed set if Ncl(A) \subseteq U whenever A \subseteq U and U is Nano $g\alpha^*$ -open in (U, $\tau_R(X)$). The complement of Nano μ -closed set is called Nano μ -open set.
- (3) a Nano $g\mu$ -closed set if $Ncl(A) \subseteq U$ whenever $A \subseteq U$ and U is Nano μ -open in $(U, \tau_R(X))$. The complement of Nano $g\mu$ -closed set is called Nano $g\mu$ -open set.

Definition 1.11. [1] A subset a of of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is called an lightly nano \mathcal{I} -locally closed (briefly \mathcal{L} -n \mathcal{I} -LC) if $A = M \cap N$ where M is n-open and N is n*-closed.

2 $n\mathcal{I}_{q\mu}$ -closed sets

Definition 2.1. A subset A of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is said to be

- (1) $n\mathcal{I}_{g\mu}$ -closed if $A_n^*\subseteq U$ whenever $A\subseteq U$ and U is $n\mu$ -open,
- (2) $n\mathcal{I}_{q\mu}$ -open if its complement is $n\mathcal{I}_{q\mu}$ -closed.

Theorem 2.2. If $(K, \mathcal{N}, \mathcal{I})$ is any nano ideal topological space, then every $n\mathcal{I}_{g\mu}$ -closed set is $n\mathcal{I}_g$ -closed but not conversely.

Proof. It follows from the fact that every n-open set is $n\mu$ -open. \Box

Example 2.3. Let $K = \{4, 5, 6\}$, with $K/R = \{\{4\}, \{5, 6\}\}$ and $X = \{4\}$. Then the Nano topology $\mathcal{N} = \{\phi, \{4\}, K\}$ and $\mathcal{I} = \{\emptyset, \{1\}\}$. Then $n\mathcal{I}_{g\mu}$ -closed sets are ϕ , K, $\{4\}$, $\{5, 6\}$ and $n\mathcal{I}_g$ -closed sets are ϕ , K, $\{4\}$, $\{5\}$, $\{6\}$, $\{4, 5\}$, $\{4, 6\}$, $\{5, 6\}$. It is clear that $\{5\}$ is $n\mathcal{I}_g$ -closed but it is not $n\mathcal{I}_{g\mu}$ -closed.

The following theorem gives characterizations of $n\mathcal{I}_{q\mu}$ -closed sets.

Theorem 2.4. If $(K, \mathcal{N}, \mathcal{I})$ is any nano ideal topological space and $A \subseteq K$, then the following are equivalent.

- (1) A is $n\mathcal{I}_{g\mu}$ -closed,
- (2) n- $cl^*(A)\subseteq U$ whenever $A\subseteq U$ and U is $n\mu$ -open in K,
- (3) For all $k \in n-cl^*(A)$, $n-\mu cl(\{k\}) \cap A \neq \emptyset$.
- (4) n- $cl^*(A)$ -A contains no nonempty $n\mu$ -closed set,
- (5) A_n^* A contains no nonempty $n\mu$ -closed set.

Proof. (1) \Rightarrow (2) If A is $n\mathcal{I}_{g\mu}$ -closed, then $A_n^*\subseteq U$ whenever $A\subseteq U$ and U is $n\mu$ -open in K and so $n\text{-cl}^*(A)=A\cup A_n^*\subseteq U$ whenever $A\subseteq U$ and U is $n\mu$ -open in K. This proves (2).

(2) \Rightarrow (3) Suppose k \in n-cl*(A). If n- μ cl({k}) \cap A= \emptyset , then A \subseteq K-n- μ cl({k}). By (2), n-cl*(A) \subseteq K-n- μ cl({k}), a contradiction, since k \in n-cl*(A).

- (3)⇒(4) Suppose F⊆n-cl*(A)−A, F is n μ -closed and k∈F. Since F⊆K−A and F is n μ -closed, then A⊆K−F and F is n μ -closed, n- μ cl({k})∩A= \emptyset . Since k∈n-cl*(A) by (3), n- μ cl({x})∩A \neq \emptyset . Therefore n-cl*(A)−A contains no nonempty n μ -closed set.
- (4) \Rightarrow (5) Since n-cl*(A)-A=(A \cup A*_n)-A=(A \cup A*_n) \cap A^c=(A \cap A^c) \cup (A*_n \cap A^c)=A*_n \cap A^c= A*_n-A. Therefore A*_n-A contains no nonempty n μ -closed set.
- (5)⇒(1) Let A⊆U where U is $n\mu$ -open set. Therefore K−U⊆K−A and so $A_n^*\cap (K-U)$ ⊆ $A_n^*\cap (K-A)=A_n^*-A$. Therefore $A_n^*\cap (K-U)\subseteq A_n^*-A$. Since A_n^* is always n-closed set, so A_n^* is $n\mu$ -closed set and so $A_n^*\cap (K-U)$ is a $n\mu$ -closed set contained in A_n^*-A . Therefore $A_n^*\cap (K-U)=\emptyset$ and hence $A_n^*\subseteq U$. Therefore A is $n\mathcal{I}_{g\mu}$ -closed. \square

Theorem 2.5. Every $n\star$ -closed set is $n\mathcal{I}_{q\mu}$ -closed but not conversely.

Proof. Let A be a n*-closed, then $A_n^* \subseteq A$. Let $A \subset U$ where U is $n\mu$ -open. Hence $A_n^* \subseteq U$ whenever $A \subseteq U$ and U is $n\mu$ -open. Therefore A is $n\mathcal{I}_{q\mu}$ -closed. \square

Example 2.6. Let $K = \{4, 5, 6\}$ with $K/R = \{\{6\}, \{4, 5\}, \{5, 4\}\}$ and $X = \{4, 5\}$. Then Nano topology $\mathcal{N} = \{\phi, \{4, 5\}, K\}$ and $\mathcal{I} = \{\emptyset, \{4\}\}$. Then $n\mathcal{I}_{g\mu}$ -closed sets are ϕ , K, $\{4\}$, $\{6\}$, $\{4, 6\}$. It is clear that $\{5, 6\}$ is $n\mathcal{I}_{g\mu}$ -closed set but it is not $n\star$ -closed.

Theorem 2.7. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. For every $A \in \mathcal{I}$, A is $n\mathcal{I}_{g\mu}$ -closed.

Proof. Let $A \subseteq U$ where U is $n\mu$ -open set. Since $A_n^* = \emptyset$ for every $A \in \mathcal{I}$, then $n\text{-cl}^*(A) = A \cup A_n^* = A \subseteq U$. Therefore, by Theorem 2.4, A is $n\mathcal{I}_{g\mu}$ -closed. \square

Theorem 2.8. If $(K, \mathcal{N}, \mathcal{I})$ is an nano ideal topological space, then A_n^* is always $n\mathcal{I}_{g\mu}$ -closed for every subset A of K.

Proof. Let $A_n^*\subseteq U$ where U is $n\mu$ -open. Since $(A_n^*)_n^*\subseteq A_n^*$ Theorem 1.1 (4), we have $(A_n^*)_n^*\subseteq U$ whenever $A_n^*\subseteq U$ and U is $n\mu$ -open. Hence A_n^* is $n\mathcal{I}_{q\mu}$ -closed. \square

Theorem 2.9. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. Then every $n\mathcal{I}_{g\mu}$ -closed, $n\mu$ -open set is $n\star$ -closed set.

Proof. Since A is $n\mathcal{I}_{g\mu}$ -closed and $n\mu$ -open. Then $A_n^*\subseteq A$ whenever $A\subseteq A$ and A is $n\mu$ -open. Hence A is $n\star$ -closed. \square

Definition 2.10. An nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is said to be a $nT_{\mathcal{I}}$ -space if every $n\mathcal{I}_g$ -closed subset of K is a $n\star$ -closed.

Theorem 2.11. If $(K, \mathcal{N}, \mathcal{I})$ is a $nT_{\mathcal{I}}$ nano ideal space and A is an $n\mathcal{I}_g$ -closed set, then A is $n \star$ -closed set.

Proof. It is follows from Definition 2.10. \Box

Corollary 2.12. If $(K, \mathcal{N}, \mathcal{I})$ is a $nT_{\mathcal{I}}$ nano ideal space and A is an $nI_{g\mu}$ -closed set, then A is n*-closed set.

Proof. By assumption A is $n\mathcal{I}_{g\mu}$ -closed in $(K, \mathcal{N}, \mathcal{I})$ and so by Theorem 2.2, A is $n\mathcal{I}_g$ -closed. Since $(K, \mathcal{N}, \mathcal{I})$ is an $nT_{\mathcal{I}}$ -space by Definition 2.10, A is $n\star$ -closed. \square

Corollary 2.13. *Let* $(K, \mathcal{N}, \mathcal{I})$ *be an nano ideal topological space and* A *be an* $n\mathcal{I}_{g\mu}$ -closed set. *Then the following are equivalent.*

- (1) A is a n*-closed set,
- (2) n- $cl^*(A)$ -A is a $n\mu$ -closed set,
- (3) A_n^* A is a $n\mu$ -closed set.

Proof. (1) \Rightarrow (2) If A is $n\star$ -closed, then $A_n^*\subseteq A$ and so $n\text{-}cl^*(A)-A=(A\cup A_n^*)-A=\emptyset$. Hence $n\text{-}cl^*(A)-A$ is $n\mu$ -closed set.

(2) \Rightarrow (3) Since n- $cl^*(A)$ -A= A_n^* -A and so A_n^* -A is $n\mu$ -closed set.

(3)⇒(1) If A_n^* −A is a $n\mu$ -closed set, since A is $n\mathcal{I}_{g\mu}$ -closed set, by Theorem ?? (5), A_n^* −A= \emptyset and so A is $n\star$ -closed. \square

Theorem 2.14. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. Then every $ng\mu$ -closed set is an $n\mathcal{I}_{g\mu}$ -closed set but not conversely.

Proof. Let A be a $ng\mu$ -closed set. Then n- $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $n\mu$ -open. So by Theorem 1.1 (3), $A_n^* \subseteq n$ - $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $n\mu$ -open. Hence A is $n\mathcal{I}_{q\mu}$ -closed. \square

Example 2.15. Let K, \mathcal{N} and \mathcal{I} be defined as an Example 2.6. Then $ng\mu$ -closed sets are ϕ , K, $\{6\}$, $\{4,6\}$, $\{5,6\}$. It is clear that $\{4\}$ is $n\mathcal{I}_{g\mu}$ -closed set but it is not $ng\mu$ -closed.

Theorem 2.16. If $(K, \mathcal{N}, \mathcal{I})$ is an nano ideal topological space and A is a $n\star$ -dense in itself, $n\mathcal{I}_{g\mu}$ -closed subset of K, then A is $ng\mu$ -closed.

Proof. Suppose A is a $n\star$ -dense in itself, $n\mathcal{I}_{g\mu}$ -closed subset of K. Let $A\subseteq U$ where U is $n\mu$ -open. Then by Theorem 2.4 (2), $n\text{-}cl^*(A)\subseteq U$ whenever $A\subseteq U$ and U is $n\mu$ -open. Since A is $n\star$ -dense in itself, by Lemma 1.7, $n\text{-}cl(A)=n\text{-}cl^*(A)$. Therefore $n\text{-}cl(A)\subseteq U$ whenever $A\subseteq U$ and U is $n\mu$ -open. Hence A is $ng\mu$ -closed. \square

Corollary 2.17. If $(K, \mathcal{N}, \mathcal{I})$ is any nano ideal topological space where $\mathcal{I}=\{\emptyset\}$, then A is $n\mathcal{I}_{g\mu}$ -closed if and only if A is $ng\mu$ -closed.

Proof. The proof follows from the fact that for $\mathcal{I}=\{\emptyset\}$, $A_n^*=n\text{-}cl(A)\supseteq A$. Therefore A is $n\star\text{-}dense$ in itself. Since A is $n\mathcal{I}_{g\mu}\text{-}closed$, by Theorem 2.16, A is $ng\mu\text{-}closed$.

Conversely, by Theorem 2.14, every $ng\mu$ -closed set is $n\mathcal{I}_{g\mu}$ -closed set. \square

Lemma 2.18. If $(K, \mathcal{N}, \mathcal{I})$ is any nano ideal topological space, then the following are equivalent

- $(1) K = K_n^*$
- (2) $\mathcal{N} \cap \mathcal{I} = \phi$.
- (3) If $I \in \mathcal{I}$ then $n\text{-int}^*(I) = \phi$.
- (4) for every $G \in \mathcal{N}$, $G \subseteq G_n^*$.

Theorem 2.19. If $(K, \mathcal{N}, \mathcal{I})$ is any nano ideal topological space, then the following are equivalent

- (1) $K = K_n^*$.
- (2) for every $A \in N$ ano open, $A \subseteq A_n^*$.
- (3) for every $A \in N$ ano semi open, $A \subseteq A_n^*$.

Proof. (1) and (2) are equivalent by Lemma 2.18.

 $(2)\Rightarrow (3)$. Suppose $A\in N$ ano semi open (K,\mathcal{N}) . Then there exists an n-open set M such that $M\subseteq A\subseteq n$ -cl(M). Since M is n-open, $M\subseteq M_n^*$ and so by Lemma 1.2, $A\subseteq n$ -cl $(M)\subseteq n$ -cl $(M_n^*)=M_n^*\subseteq A_n^*$. Hence $A\subseteq A_n^*$.

 $(3) \Rightarrow (1)$. It is clear. \square

Corollary 2.20. If $(K, \mathcal{N}, \mathcal{I})$ is any nano ideal topological space where \mathcal{I} is \mathcal{N} -codense and A is a Nano semi-open, $n\mathcal{I}_{q\mu}$ -closed subset of K, then A is $ng\mu$ -closed.

Proof. The proof follows Theorem 2.19, A is $n\star$ -dense in itself. By Theorem 2.16, A is $ng\mu$ -closed. \Box

Theorem 2.21. Every n-closed set is $n\mathcal{I}_{q\mu}$ -closed but not conversely.

Proof. Let A be a n-closed, then $A_n^* \subseteq A$. Let $A \subseteq U$ where U is $n\mu$ -open. Hence $A_n^* \subseteq U$ whenever $A \subseteq U$ and U is $n\mu$ -open. Therefore A is $n\mathcal{I}_{g\mu}$ -closed. \square

Example 2.22. Let K , \mathcal{N} and \mathcal{I} be defined as an Example 2.3. Then n-closed sets are ϕ , K, $\{5, 6\}$. It is clear that $\{4\}$ is $n\mathcal{I}_{qu}$ -closed set but it is not n-closed.

Remark 2.23. remark 2.23 ng-closed sets and $n\mathcal{I}_{g\mu}$ -closed sets are independent.

Example 2.24. Let K, \mathcal{N} and \mathcal{I} be defined as an Example 2.3. Then ng-closed sets are ϕ , K, $\{5\}$, $\{6\}$, $\{4, 5\}$, $\{4, 6\}$, $\{5, 6\}$. It is clear that $\{5\}$ is ng-closed set but it is not $n\mathcal{I}_{g\mu}$ -closed. Also it is clear that $\{4\}$ is $n\mathcal{I}_{g\mu}$ -closed set but it is not ng-closed.

Remark 2.25. (1) Every n-closed is n*-closed set but not conversely. [1]

- (2) Every n-closed set is $ng\mu$ -closed but not conversely. [3]
- (3) Every $ng\mu$ -closed set is ng-closed but not conversely. [3]
- (4) Every ng-closed set is $n\mathcal{I}_q$ -closed but not conversely. [7]

Remark 2.26. We have the following implications for the subsets stated above.

```
n-closed @>>> ng\mu-closed @>>> ng-closed @VVV @VVV @VVV \\ n \star -closed @>>> n\mathcal{I}_{q\mu}-closed @>>> n\mathcal{I}_q-closed \\
```

Theorem 2.27. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space and $A \subseteq K$. Then A is $n\mathcal{I}_{g\mu}$ -closed if and only if A=F-M where F is $n\star$ -closed and M contains no nonempty $n\mu$ -closed set.

Proof. If A is $n\mathcal{I}_{g\mu}$ -closed, then by Theorem 2.4 (5), $M=A_n^*-A$ contains no nonempty $n\mu$ -closed set. If $F=ncl^*(A)$, then F is $n\star$ -closed such that $F-M=(A\cup A_n^*)-(A_n^*-A)$ $=(A\cup A_n^*)\cap (A_n^*\cap A^c)^c=(A\cup A_n^*)\cap ((A_n^*)^c\cup A)=(A\cup A_n^*)\cap (A\cup (A_n^*)^c)=A\cup (A_n^*\cap (A_n^*)^c)=A$.

Conversely, suppose A=F-M where F is $n\star$ -closed and M contains no nonempty $n\mu$ -closed set. Let U be an $n\mu$ -open set such that $A\subseteq U$. Then $F-M\subseteq U$ which implies that $F\cap (K-U)\subseteq M$. Now $A\subseteq F$ and $F_n^*\subseteq F$ then $A_n^*\subseteq F_n^*$ and so $A_n^*\cap (K-U)\subseteq F_n^*\cap (K-U)\subseteq F\cap (K-U)\subseteq M$. By hypothesis, since $A_n^*\cap (K-U)$ is $n\mu$ -closed, $A_n^*\cap (K-U)=\emptyset$ and so $A_n^*\subseteq U$. Hence A is $n\mathcal{I}_{q\mu}$ -closed. \square

Theorem 2.28. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space and $A \subseteq K$. If $A \subseteq B \subseteq A_n^*$, then $A_n^* = B_n^*$ and B is $n \star$ -dense in itself.

Proof. Since $A \subseteq B$, then $A_n^* \subseteq B_n^*$ and since $B \subseteq A_n^*$, then $B_n^* \subseteq (A_n^*)_n^* \subseteq A_n^*$ Theorem 1.1 (4). Therefore $A_n^* = B_n^*$ and $B \subseteq A_n^* \subseteq B_n^*$. Hence proved. \square

Theorem 2.29. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. If A and B are subsets of K such that $A \subseteq B \subseteq n\text{-}cl_n^*(A)$ and A is $n\mathcal{I}_{g\mu}\text{-}closed$, then B is $n\mathcal{I}_{g\mu}\text{-}closed$.

Proof. Since A is $n\mathcal{I}_{g\mu}$ -closed, then by Theorem 2.4 (1), $n\text{-}cl_n^*(A)-A$ contains no nonempty $n\mu$ -closed set. Since $n\text{-}cl^*(B)-B\subseteq n\text{-}cl^*(A)-A$ and so $n\text{-}cl^*(B)-B$ contains no nonempty $n\mu$ -closed set and so by Theorem 2.4 (4), B is $n\mathcal{I}_{g\mu}$ -closed. \square

Corollary 2.30. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. If A and B are subsets of K such that $A \subseteq B \subseteq A_n^*$ and A is $n\mathcal{I}_{g\mu}$ -closed, then A and B are $ng\mu$ -closed sets.

Proof. Let A and B be subsets of K such that $A \subseteq B \subseteq A_n^*$ which implies that $A \subseteq B \subseteq A_n^* \subseteq n\text{-}cl^*(A)$ and A is $n\mathcal{I}_{g\mu}\text{-}closed$. By Theorem 2.29, B is $n\mathcal{I}_{g\mu}\text{-}closed$. Since $A \subseteq B \subseteq A_n^*$, then $A_n^* = B_n^*$ and so A and B are n*-dense in itself. By Theorem 2.16, A and B are $ng\mu\text{-}closed$. \square

The following theorem gives a characterization of $n\mathcal{I}_{q\mu}$ -open sets.

Theorem 2.31. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space and $A \subseteq K$. Then A is $n\mathcal{I}_{g\mu}$ -open if and only if $F \subseteq n$ -int*(A) whenever F is $n\mu$ -closed and $F \subseteq A$.

Proof. Suppose A is $n\mathcal{I}_{g\mu}$ -open. If F is $n\mu$ -closed and $F\subseteq A$, then $K-A\subseteq K-F$ and so $n\text{-}cl^*(K-A)\subseteq K-F$ by Theorem 2.4 (2). Therefore $F\subseteq K-n\text{-}cl^*(K-A)=n\text{-}int^*(A)$. Hence $F\subseteq n\text{-}int^*(A)$.

Conversely, suppose the condition holds. Let U be a $n\mu$ -open set such that $K-A\subseteq U$. Then $K-U\subseteq A$ and so $K-U\subseteq n$ -int*(A). Therefore n- $cl^*(K-A)\subseteq U$. By Theorem 2.4 (2), K-A is $n\mathcal{I}_{g\mu}$ -closed. Hence A is $n\mathcal{I}_{g\mu}$ -open. \square

Corollary 2.32. *Let* $(K, \mathcal{N}, \mathcal{I})$ *be an nano ideal topological space and* $A \subseteq K$. *If* A *is* $n\mathcal{I}_{g\mu}$ -open, then $F \subseteq n$ -int*(A) whenever F is n-closed and $F \subseteq A$.

The following theorem gives a property of $n\mathcal{I}_{g\mu}$ -closed.

Theorem 2.33. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space and $A \subseteq K$. If A is $n\mathcal{I}_{g\mu}$ -open and n-int* $(A) \subseteq B \subseteq A$, then B is $n\mathcal{I}_{g\mu}$ -open.

Proof. Since A is $n\mathcal{I}_{g\mu}$ -open, then K-A is $n\mathcal{I}_{g\mu}$ -closed. By Theorem 2.4 (4), $n\text{-}cl^*(K-A)-(K-A)$ contains no nonempty $n\mu\text{-}closed$ set. Since $n\text{-}int^*(A)\subseteq n\text{-}int^*(B)$ which implies that $n\text{-}cl^*(K-B)\subseteq n\text{-}cl^*(K-A)$ and so $n\text{-}cl^*(K-B)\subseteq (K-B)\subseteq n\text{-}cl^*(K-A)$. Hence B is $n\mathcal{I}_{g\mu}$ -open. \square

The following theorem gives a characterization of $nI_{g\mu}$ -closed sets in terms of $nI_{g\mu}$ -open sets.

Theorem 2.34. *Let* $(K, \mathcal{N}, \mathcal{I})$ *be an nano ideal topological space and* $A \subseteq K$. *Then the following are equivalent.*

- (1) A is $n\mathcal{I}_{g\mu}$ -closed,
- (2) $A \cup (K-A_n^*)$ is $n\mathcal{I}_{g\mu}$ -closed,
- (3) A_n^* A is $n\mathcal{I}_{q\mu}$ -open.
- **Proof.** (1) \Rightarrow (2) Suppose A is $n\mathcal{I}_{g\mu}$ -closed. If U is any $n\mu$ -open set such that $A\cup (K-A_n^*)\subseteq U$, then $K-U\subseteq K-(A\cup (K-A_n^*))=K\cap (A\cup (A_n^*)^c)^c=A_n^*\cap A^c=A_n^*-A$. Since A is $n\mathcal{I}_{g\mu}$ -closed, by Theorem 2.4 (5), it follows that $K-U=\emptyset$ and so K=U. Therefore $A\cup (K-A_n^*)\subseteq U$ which implies that $A\cup (K-A_n^*)\subseteq K$ and so $(A\cup (K-A_n^*))_n^*\subseteq K_n^*\subseteq K=U$. Hence $A\cup (K-A_n^*)$ is $n\mathcal{I}_{g\mu}$ -closed.
- $(2)\Rightarrow (1)$ Suppose $A\cup (K-A_n^*)$ is $n\mathcal{I}_{g\mu}$ -closed. If F is any $n\mu$ -closed set such that $F\subseteq A_n^*-A$, then $F\subseteq A_n^*$ and $F\nsubseteq A$ which implies that $K-A_n^*\subseteq K-F$ and $A\subseteq K-F$. Therefore $A\cup (K-A_n^*)\subseteq A\cup (K-F)=K-F$ and K-F is $n\mu$ -open. Since $(A\cup (K-A_n^*))_n^*\subseteq K-F$ which implies that $A_n^*\cup (K-A_n^*)_n^*\subseteq K-F$ and so $A_n^*\subseteq K-F$ which implies that $F\subseteq K-A_n^*$. Since $F\subseteq A_n^*$, it follows that $F=\emptyset$. Hence A is $n\mathcal{I}_{g\mu}$ -closed.
- (2)⇔(3) Since K-(A_n^* -A)=K∩(A_n^* ∩ A^c) c =K∩((A_n^*) c ∪A)=(K∩(A_n^*) c)∪(K∩A)=A∪(K- A_n^*) is $n\mathcal{I}_{g\mu}$ -closed. Hence A_n^* -A is $n\mathcal{I}_{g\mu}$ -open. \square

Theorem 2.35. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. Then every subset of K is $n\mathcal{I}_{g\mu}$ -closed if and only if every $n\mu$ -open set is $n\star$ -closed.

Proof. Suppose every subset of K is $n\mathcal{I}_{g\mu}$ -closed. If $U\subseteq K$ is $n\mu$ -open, then U is $n\mathcal{I}_{g\mu}$ -closed and so $U_n^*\subseteq U$. Hence U is $n\star$ -closed.

Conversely, suppose that every $n\mu$ -open set is $n\star$ -closed. If U is $n\mu$ -open set such that $A\subseteq U\subseteq K$, then $A_n^*\subseteq U_n^*\subseteq U$ and so A is $n\mathcal{I}_{g\mu}$ -closed. \square

3 μ -n \mathcal{I} -locally closed sets

We introduce the following definition

Definition 3.1. A subset a of of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is called an μ -n \mathcal{I} -locally closed set(briefly μ -n \mathcal{I} -LC) if $A = M \cap N$ where M is n μ -open and N is n \star -closed.

Proposition 3.2. *Let* $(K, \mathcal{N}, \mathcal{I})$ *be an nano ideal topological space and* A *a subset of* K. *Then the following hold.*

- (1) If A is $n\mu$ -open, then A is μ - $n\mathcal{I}$ -LC set.
- (2) A is $n \star$ -closed, then A is μ - $n\mathcal{I}$ -LC set.
- (3) If A is a \mathcal{L} -n \mathcal{I} -LC-set, then A is an μ -n \mathcal{I} -LC set.

Proof. *It is obvious from Definitions* 1.11 and 3.1. \square

The converse of the above Proposition 3.2 need not be true as shown in the following examples.

Example 3.3. Let K , \mathcal{N} and \mathcal{I} be defined as an Example 2.3. Then $n\mu$ -open sets are ϕ , K, {4}, {5}, {6}, {4, 5}, {4, 6}, μ -n \mathcal{I} -LC sets are power set of K and $n\star$ -closed sets are ϕ , K, {4}, {5, 6}. It is clear that {5} is μ -n \mathcal{I} -LC set but it is not $n\star$ -closed. Also it is clear that {5, 6} is an μ -n \mathcal{I} -LC set but it is not $n\mu$ -open.

Example 3.4. Let $K = \{4, 5, 6\}$ with $K/R = \{\{6\}, \{4, 5\}, \{5, 4\}\}$ and $X = \{4, 5\}$. Then Nano topology $\mathcal{N} = \{\phi, \{4, 5\}, K\}$ and $\mathcal{I} = \{\emptyset\}$. Then μ -n \mathcal{I} -LC sets are ϕ , K, $\{4\}$, $\{5\}$, $\{6\}$, $\{4, 5\}$ and \mathcal{L} -n \mathcal{I} -LC-set are ϕ , K, $\{6\}$, $\{4, 5\}$. It is clear that $\{4\}$ is μ -n \mathcal{I} -LC set but it is not \mathcal{L} -n \mathcal{I} -LC-set.

Theorem 3.5. Let $(K, \mathcal{N}, \mathcal{I})$ be an nano ideal topological space. If A is an μ - $n\mathcal{I}$ -LC-set and B is a $n\star$ -closed set, then $A \cap B$ is an μ - $n\mathcal{I}$ -LC-set.

Proof. Let B be $n\star$ -closed, then $A\cap B=(O\cap P)\cap B=O\cap (P\cap B)$, where $P\cap B$ is $n\star$ -closed. Hence $A\cap B$ is an μ - $n\mathcal{I}$ -LC-set. \square

Theorem 3.6. A subset of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is $n\star$ -closed if and only if it is

- (1) \mathcal{L} - $n\mathcal{I}$ -LC-set and $n\mathcal{I}_g$ -closed [1].
- (2) μ -n \mathcal{I} -LC-set and n $\mathcal{I}_{q\mu}$ -closed.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be μ - $n\mathcal{I}$ -LC-set and $n\mathcal{I}_{g\mu}$ -closed set. Since A is μ - $n\mathcal{I}$ -LC set, $A = O \cap P$, where O is $n\mu$ -open and P is $n\star$ -closed. So we have $A = O \cap P \subseteq O$. Since A is $n\mathcal{I}_{g\mu}$ -closed, $A_n^* \subseteq O$. Also since $A = O \cap P \subseteq P$ and P is $n\star$ -closed, we have $A_n^* \subseteq P$. Consequently, $A_n^* \subseteq O \cap P = A$ and hence A is $n\star$ -closed. \square

Remark 3.7. (1) The notions of \mathcal{L} -n \mathcal{I} -LC set and n \mathcal{I}_g -closed set are independent[1]. (2) The notions of μ -n \mathcal{I} -LC-set and n $\mathcal{I}_{g\mu}$ -closed set are independent.

Example 3.8. Let K , \mathcal{N} and \mathcal{I} be defined as an Example 2.6. Then μ -n \mathcal{I} -LC-sets are ϕ , K, {4}, {5}, {6}, {4, 5}, {4, 6}. It is clear that {5} is μ -n \mathcal{I} -LC- set but it is not n $\mathcal{I}_{g\mu}$ -closed. Also it is clear that {5, 6} is an n $\mathcal{I}_{g\mu}$ -closed but it is not μ -n \mathcal{I} -LC set.

Definition 3.9. [3] Let A be a subset of a nano topological space (K, \mathcal{N}) . Then the Nano μ -kernel of the set A, denoted by $n\mu$ -ker(A), is the intersection of all $n\mu$ -open supersets of A.

Definition 3.10. A subset A of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is called $n \wedge_{\mu}$ -set if A = $n\mu$ -ker(A).

Definition 3.11. A subset A of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ is called ζ_{μ} -n \mathcal{I} -closed if $A = R \cap S$ where R is a $n \wedge_{\mu}$ -set and S is a $n \star$ -closed.

- **Lemma 3.12.** (1) Every $n\star$ -closed set is ζ_{μ} - $n\mathcal{I}$ -closed but not conversely.
 - (2) Every $n \wedge_{\mu}$ -set is ζ_{μ} -n \mathcal{I} -closed but not conversely.

Proof. (1) Follows from Definitions 1.6 and 3.11.

(2) Follows from Definitions 3.10 and 3.11. \square

Example 3.13. Let K , \mathcal{N} and \mathcal{I} be as in the Example 2.3, $n\star$ -closed sets are ϕ , K, $\{4\}$, $\{5, 6\}$, ζ_{μ} -n \mathcal{I} -closed sets are power set of K and $n\wedge_{\mu}$ -sets are ϕ , K, $\{4\}$, $\{5\}$, $\{6\}$, $\{4, 5\}$, $\{4, 6\}$. It is clear that $\{5\}$ is ζ_{μ} -n \mathcal{I} -closed but it is not $n\star$ -closed. Also it is clear that $\{5, 6\}$ is ζ_{μ} -n \mathcal{I} -closed but it is not $n\wedge_{\mu}$ -set.

Remark 3.14. The concepts of n \star -closed and n \wedge_{μ} -set are independent.

Example 3.15. Let K , $\mathcal N$ and $\mathcal I$ be as in the Example 3.4, $n \wedge_{\mu}$ -set are ϕ , K, $\{4\}$, $\{5\}$, $\{4,5\}$ and $n\star$ -closed sets are ϕ , K, $\{6\}$. It is clear that $\{4\}$ is $n \wedge_{\mu}$ -set but it is not $n\star$ -closed. Also it is clear that $\{6\}$ is $n\star$ -closed set but it is not $n \wedge_{\mu}$ -set.

Lemma 3.16. For a subset A of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ the following are equivalent.

- (1) A is ζ_{μ} -n \mathcal{I} -closed.
- (2) $A = O \cap n\text{-}cl^*(A)$ where O is a $n \wedge_{\mu}$ -set.
- (3) $A = n\mu$ - $ker(A) \cap n$ - $cl^*(A)$.

Proof. (1) \Rightarrow (2). Let A be a ζ_{μ} -n \mathcal{I} -closed set. Then $A = O \cap P$ where O is a ζ_{μ} -n \mathcal{I} -closed set and P is a $n\star$ -closed. Clearly $A \subseteq O \cap n$ -cl*(A). Since P is a $n\star$ -closed, n-cl*(A) $\subseteq n$ -cl*(P) = P and so $O \cap n$ -cl*(A) $\subseteq O \cap P = A$. Therefore, $A = O \cap n$ -cl*(A).

(2) \Rightarrow (3). Let $A = O \cap n\text{-}cl^*(A)$, where O is a $n \land_{\mu}$ -set. Since O is a $n \land_{\mu}$ -set, we have $A = n\mu\text{-}ker(A) \cap n\text{-}cl^*(A)$.

(3) \Rightarrow (1). Let $A = n\mu$ -ker(A) \cap n-cl*(A). By Definitions 3.10, 3.11 and the notion of n*-closed set, we get A is ζ_{μ} - $n\mathcal{I}$ -closed. \square

Lemma 3.17. A subset $A \subseteq (K, \mathcal{N}, \mathcal{I})$ is $n\mathcal{I}_{g\mu}$ -closed if and only if $n\text{-}cl^*(A) \subseteq n\mu$ -ker(A).

Proof. Suppose that $A \subseteq K$ is an $n\mathcal{I}_{g\mu}$ -closed set. Suppose $k \notin n\mu$ -ker(A). Then there exists an $n\mu$ -open set U containing A such that $k \notin U$. Since A is an $n\mathcal{I}_{g\mu}$ -closed set, $A \subseteq U$ and U is $n\mu$ -open implies that $n\text{-}cl^*(A) \subseteq U$ and so $k \notin n\text{-}cl^*(A)$. Therefore $n\text{-}cl^*(A) \subseteq n\mu$ -ker(A). Conversely, suppose $n\text{-}cl^*(A) \subseteq n\mu$ -ker(A). If $A \subseteq U$ and U is $n\mu$ -open, then $n\text{-}cl^*(A) \subseteq n\mu$ -ker(A) $\subseteq U$. Therefore, A is $n\mathcal{I}_{g\mu}$ -closed. \square

Theorem 3.18. For a subset A of an nano ideal topological space $(K, \mathcal{N}, \mathcal{I})$ the following are equivalent.

- (1) A is $n \star$ -closed.
- (2) A is $n\mathcal{I}_{q\mu}$ -closed and μ - $n\mathcal{I}$ -LC.
- (3) A is $n\mathcal{I}_{q\mu}$ -closed and ζ_{μ} - $n\mathcal{I}$ -closed.

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ *Obvious*.

(3) \Rightarrow (1). Since a is $n\mathcal{I}_{g\mu}$ -closed, by (2), Lemma 3.17, $n\text{-}cl^*(A) \subseteq n\mu\text{-}ker(A)$. Since A is ζ_{μ} - $n\mathcal{I}$ -closed, by Lemma 3.16, $A = n\mu\text{-}ker(A) \cap n\text{-}cl^*(A) = n\text{-}cl^*(A)$. Hence A is $n\star\text{-}closed$. \square

Remark 3.19. The concepts of $n\mathcal{I}_{g\mu}$ -closedness and ζ_{μ} - $n\mathcal{I}$ -closedness are independent.

Example 3.20. Let K , \mathcal{N} and \mathcal{I} be as in the Example 3.4, ζ_{μ} -n \mathcal{I} -closed sets are ϕ , K, {4}, {5}, {6}, {4, 5} and n $\mathcal{I}_{g\mu}$ -closed sets are ϕ , K, {6}, {4, 6}, {5, 6}. It is clear that {4} is ζ_{μ} -n \mathcal{I} -closed but it is not n $\mathcal{I}_{g\mu}$ -closed. Also it is clear that {4, 6} is n $\mathcal{I}_{g\mu}$ -closed set but it is not ζ_{μ} -n \mathcal{I} -closed.

4 Decompositions of Nano ★-continuity

Definition 4.1. A function f: $(K, \mathcal{N}, \mathcal{I}) \to (L, \mathcal{N}')$ is said to be n*-continuous [4] (resp. $n\mathcal{I}_g$ -continuous, $n\mathcal{I}_{g\mu}$ -continuous, \mathcal{L} -n \mathcal{I} -LC-continuous, μ -n \mathcal{I} -LC-continuous, ζ_{μ} -n \mathcal{I} -continuous) if $f^{-1}(A)$ is n*-closed (resp. $n\mathcal{I}_g$ -closed, $n\mathcal{I}_{g\mu}$ -closed, \mathcal{L} -n \mathcal{I} -LC-set, μ -n \mathcal{I} -LC-set, ζ_{μ} -n \mathcal{I} -closed) in $(K, \mathcal{N}, \mathcal{I})$ for every n-closed set A of (L, \mathcal{N}') .

Theorem 4.2. A function $f: (K, \mathcal{N}, \mathcal{I}) \to (L, \mathcal{N}')$ is $n \star$ -continuous if and only if it is

- (1) \mathcal{L} - $n\mathcal{I}$ -LC-continuous and $n\mathcal{I}_q$ -continuous.
- (2) μ -n \mathcal{I} -LC-continuous and n $\mathcal{I}_{q\mu}$ -continuous.

Proof. It is an immediate consequence of Theorem 3.6. \square

Theorem 4.3. A function $f: (K, \mathcal{N}, \mathcal{I}) \to (L, \mathcal{N}')$ the following are equivalent.

- (1) f is $n \star$ -continuous.
- (2) f is $n\mathcal{I}_{q\mu}$ —continuous and μ - $n\mathcal{I}$ -LC-continuous.
- (3) f is $n\mathcal{I}_{q\mu}$ -continuous and ζ_{μ} - $n\mathcal{I}$ -continuous.

Proof. *It is an immediate consequence of Theorem 3.18.* \square

References

- [1] R. Asokan, O. Nethaji and I. Rajasekaran, On nano generalized *-closed sets in an ideal nano topological space, Asia Mathematika, 2(3), (2018), 50-58.
- [2] S. Ganesan, C. Alexander, B. Sarathkumar and K. Anusuya, N*g-closed sets in nano topological spaces, Journal of Applied Science and Computations, 6(4) (2019), 1243-1252.
- [3] S. Ganesan and C. Alexander, A. Aishwarya and M. Sugapriya, ngμ-closed sets in nano topological spaces, MathLab Journal (Accepted).
- [4] J. Jayasudha and T. Rekhapriyadharsini, On some decompositions of nano ⋆-continuity, International Journal of Mathematics and Statistics Invention, 7(1), (2019), 01-06.
- [5] M. LellisThivagar and Carmel Richard, On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1)(2013), 31-37.
- [6] M. Parimala, T. Noiri and S. Jafari, New types of nano topological spaces via nano ideals (communicated).
- [7] M. Parimala, S. Jafari and S. Murali, Nano ideal generalized closed sets in nano ideal topological spaces, Annales Univ. Sci. Budapest, 60(2017), 3-11.

Author information

Selvaraj Ganesan, Assistant Professor, PG & Research Department of Mathematics, Raja Doraisingam Government Arts College, Sivagangai-630561, Tamil Nadu. (Affiliated to Alagappa University, Karaikudi, Tamil Nadu.), India.

E-mail: sgsgsgsgsg770gmail.com

Received: October 22, 2019. Accepted: December 27, 2019