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Abstract Characterizations and properties of nIgµ-closed sets and nIgµ-open sets are given.
The main purpose of this paper is to introduce the concepts of µ-nI-locally closed sets, n∧µ-
sets, ζµ-nI-closed sets, nIgµ-continuous, µ-nI-LC-continuous, ζµ-nI-continuous and to obtain
decompositions of n⋆-continuity in nano ideal topological spaces.

1 Introduction and Preliminaries

Let (U, N , I) be an nano ideal topological space with an ideal I on U, where N = τR(X) and
(.)∗n : ℘(U)→℘(U) (℘(U) is the set of all subsets of U) [6, 7]. For a subset A ⊆U, A∗

n(I,N )={x∈U
: Gn∩ A /∈I , for every Gn∈ Gn(x)}, where Gn={Gn | x∈ Gn, Gn ∈N}is called the nano local
function(brielfy n-local function) of A with repect to I and N . We will simply write A∗

n for A∗
n

(I, N )

Theorem 1.1. [6, 7] Let (U, N ) be a nano topological space with ideal I, I ′ on U and A, B be
subsets of U. Then

(1) A ⊆ B ⇒ A∗
n ⊆ B∗

n.
(2) I ⊆ I ′ ⇒ A∗

n (I ′) ⊆ A∗
n (I).

(3) A∗
n=n-cl(A∗

n) ⊆ n-cl(A) (A∗
n is a nano closed subset of n-cl(A)).

(4) (A∗
n)∗n ⊆ A∗

n.
(5) A∗

n∪ B∗
n =(A∪B)∗n.

(6)A∗
n − B∗

n = (A − B)∗n − B∗
n ⊆ (A −B)∗n.

(7) V ∈ N ⇒ V ∩ A∗
n = V ∩ (V ∩A)∗n ⊆ (V ∩A)∗n and

(8) J ∈ I ⇒ (A ∪ J)∗n = A∗
n = (A -J)∗n.

Lemma 1.2. [6, 7] Let (U, N , I) be an nano topological space with an ideal I and A⊆A∗
n, then

A∗
n=n-cl(A∗

n)=n-cl(A).

Definition 1.3. [6, 7] Let (U, N ) be an nano topological space eith an ideal I on U. The set
operator n-cl∗ is called a nano ⋆ -closure and is defined as n-cl∗(A)= A ∪ A∗

n for A ⊆X.

Theorem 1.4. [6, 7] The set operator n-cl∗ satisfies the following conditions:
(1) A ⊆ n-cl∗(A).
(2) n-cl∗(ϕ) = ϕ and n-cl∗(U) = U.
(3) If A ⊆B, then n-cl∗(A) ⊆ n-cl∗(B).
(4) n-cl∗(A) ∪ n-cl∗(B) = n-cl∗(A ∪ B).
(5) n-cl∗(n-cl∗(A)) =n-cl∗(A).

Definition 1.5. [6, 7] An ideal I ina space (U, N , I) is called N -codense ideal if N ∩ I =ϕ.

Definition 1.6. [6, 7] A subset A of a nano ideal topological space (U, N , I) is n⋆-dense in itself
(resp. n⋆-perfect and n⋆-closed) if A ⊆ A∗

n (resp. A= A∗
n, A∗

n ⊆ A).
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Lemma 1.7. [6, 7] Let (U, N , I) be a nano ideal topological space and A ⊆ U. If A is n⋆-dense
in itself A∗

n =n-cl(A∗
n) =n-cl(A∗

n)=n-cl(A)=n-cl∗(A).

Definition 1.8. [6, 7] A subset A of an nano ideal topological space (U, N , I) is said to be
(1) nano-I-generalized closed (briefly, nIg-closed if A∗

n ⊆ V whenever A⊆ V and V is n-
open.

(2) nIg-open if its complement is nIg-closed.

Definition 1.9. [5] A subset M of a space (U, τR(X)) is said to be
(1) Nano α-open set if M ⊆ Nint(Ncl(Nint(M))).
(2) Nano semi-open set if M ⊆ Ncl(Nint(M)).

The complement of the above mentioned Nano open sets are called their respective Nano
closed sets.

The Nano α-closure [2] of a subset M of U, denoted by Nαcl(M) is defined to be the inter-
section of all Nano α-closed sets of (U, τR(X)) containing M.

Definition 1.10. [3] A subset M of a space (U, τR(X)) is called
(1) a Nano gα*-closed set if Nαcl(A) ⊆ Nano int(U) whenever A ⊆ U and U is Nano α-open

in (U, τR(X)). The complement of Nano gα*-closed set is called Nano gα*-open set.
(2) a Nano µ-closed set if Ncl(A) ⊆ U whenever A ⊆ U and U is Nano gα*-open in (U,

τR(X)). The complement of Nano µ-closed set is called Nano µ-open set.
(3) a Nano gµ-closed set if Ncl(A) ⊆ U whenever A ⊆ U and U is Nano µ-open in (U,

τR(X)). The complement of Nano gµ-closed set is called Nano gµ-open set.

Definition 1.11. [1] A subset a of of an nano ideal topological space (K, N , I) is called an lightly
nano I -locally closed (briefly L-nI-LC) if A = M ∩ N where M is n-open and N is n⋆-closed.

2 nIgµ-closed sets

Definition 2.1. A subset A of an nano ideal topological space (K, N , I) is said to be
(1) nIgµ-closed if A∗

n⊆ U whenever A⊆ U and U is nµ-open,
(2) nIgµ-open if its complement is nIgµ-closed.

Theorem 2.2. If (K, N , I) is any nano ideal topological space, then every nIgµ-closed set is
nIg-closed but not conversely.

Proof. It follows from the fact that every n-open set is nµ-open. 2

Example 2.3. Let K = {4, 5, 6}, with K/ R= {{4}, {5, 6}} and X= {4}. Then the Nano topology
N = {ϕ, {4}, K} and I={∅, {1}}. Then nIgµ-closed sets are ϕ, K, {4}, {5, 6} and nIg-closed
sets are ϕ, K, {4}, {5}, {6}, {4, 5}, {4, 6}, {5, 6}. It is clear that {5} is nIg-closed but it is not
nIgµ-closed.

The following theorem gives characterizations of nIgµ-closed sets.

Theorem 2.4. If (K, N , I) is any nano ideal topological space and A ⊆ K, then the following
are equivalent.

(1) A is nIgµ-closed,
(2) n-cl∗(A)⊆U whenever A ⊆ U and U is nµ-open in K,
(3) For all k∈n-cl∗(A), n-µcl({k})∩A ̸=∅.
(4) n-cl∗(A)−A contains no nonempty nµ-closed set,
(5) A∗

n−A contains no nonempty nµ-closed set.

Proof. (1)⇒(2) If A is nIgµ-closed, then A∗
n⊆U whenever A⊆U and U is nµ-open in K and so

n-cl∗(A)=A∪A∗
n⊆U whenever A⊆U and U is nµ-open in K. This proves (2).

(2)⇒(3) Suppose k∈n-cl∗(A). If n-µcl({k})∩A=∅, then A⊆K−n-µcl({k}). By (2), n-cl∗(A)⊆
K−n-µcl({k}), a contradiction, since k∈n-cl∗(A).
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(3)⇒(4) Suppose F⊆n-cl∗(A)−A, F is nµ-closed and k∈F. Since F⊆K−A and F is nµ-closed,
then A⊆K−F and F is nµ-closed, n-µcl({k})∩A=∅. Since k∈n-cl∗(A) by (3), n-µcl({x})∩A ̸=∅.
Therefore n-cl∗(A)−A contains no nonempty nµ-closed set.

(4)⇒(5) Since n-cl∗(A)−A=(A∪A∗
n)−A=(A∪A∗

n)∩Ac=(A∩Ac)∪ (A∗
n∩Ac)=A∗

n∩Ac= A∗
n−A.

Therefore A∗
n−A contains no nonempty nµ-closed set.

(5)⇒(1) Let A⊆U where U is nµ-open set. Therefore K−U⊆K−A and so A∗
n∩(K−U)

⊆A∗
n∩(K−A)=A∗

n−A. Therefore A∗
n∩(K−U)⊆A∗

n−A. Since A∗
n is always n-closed set, so A∗

n is
nµ-closed set and so A∗

n∩(K−U) is a nµ-closed set contained in A∗
n−A. Therefore A∗

n∩(K−U)=∅
and hence A∗

n⊆U. Therefore A is nIgµ-closed. 2

Theorem 2.5. Every n⋆-closed set is nIgµ-closed but not conversely.

Proof. Let A be a n⋆-closed, then A∗
n⊆A. Let A⊂U where U is nµ-open. Hence A∗

n⊆U when-
ever A⊆U and U is nµ-open. Therefore A is nIgµ-closed. 2

Example 2.6. Let K = {4, 5, 6} with K/ R= {{6}, {4, 5}, {5, 4}} and X= {4, 5}. Then Nano
topology N = {ϕ, {4, 5}, K} and I={∅, {4}}. Then nIgµ-closed sets are ϕ, K, {4}, {6}, {4, 6},
{5, 6} and n⋆-closed sets are ϕ, K, {4}, {6}, {4, 6}. It is clear that {5, 6} is nIgµ-closed set but
it is not n⋆-closed.

Theorem 2.7. Let (K, N , I) be an nano ideal topological space. For every A∈I, A is nIgµ-
closed.

Proof. Let A⊆U where U is nµ-open set. Since A∗
n=∅ for every A∈I, then n-cl∗(A)=A∪A∗

n

=A⊆U. Therefore, by Theorem 2.4, A is nIgµ-closed. 2

Theorem 2.8. If (K, N , I) is an nano ideal topological space, then A∗
n is always nIgµ-closed for

every subset A of K.

Proof. Let A∗
n⊆U where U is nµ-open. Since (A∗

n)
∗
n⊆A∗

n Theorem 1.1 (4), we have (A∗
n)

∗
n ⊆U

whenever A∗
n⊆U and U is nµ-open. Hence A∗

n is nIgµ-closed. 2

Theorem 2.9. Let (K, N , I) be an nano ideal topological space. Then every nIgµ-closed, nµ-
open set is n⋆-closed set.

Proof. Since A is nIgµ-closed and nµ-open. Then A∗
n⊆A whenever A⊆A and A is nµ-open.

Hence A is n⋆-closed. 2

Definition 2.10. An nano ideal topological space (K, N , I) is said to be a nTI-space if every
nIg-closed subset of K is a n⋆-closed.

Theorem 2.11. If (K, N , I) is a nTI nano ideal space and A is an nIg-closed set, then A is
n⋆-closed set.

Proof. It is follows from Definition 2.10. 2

Corollary 2.12. If (K, N , I) is a nTI nano ideal space and A is an nIgµ-closed set, then A is
n⋆-closed set.
Proof. By assumption A is nIgµ-closed in (K, N , I) and so by Theorem 2.2, A is nIg-closed.
Since (K, N , I) is an nTI-space by Definition 2.10, A is n⋆-closed. 2

Corollary 2.13. Let (K, N , I) be an nano ideal topological space and A be an nIgµ-closed set.
Then the following are equivalent.

(1) A is a n⋆-closed set,
(2) n-cl∗(A)−A is a nµ-closed set,
(3) A∗

n−A is a nµ-closed set.
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Proof. (1)⇒(2) If A is n⋆-closed, then A∗
n⊆A and so n-cl∗(A)−A=(A∪A∗

n)-A =∅. Hence n-
cl∗(A)−A is nµ-closed set.

(2)⇒(3) Since n-cl∗(A)−A=A∗
n−A and so A∗

n−A is nµ-closed set.
(3)⇒(1) If A∗

n−A is a nµ-closed set, since A is nIgµ-closed set, by Theorem ?? (5), A∗
n−A=∅

and so A is n⋆-closed. 2

Theorem 2.14. Let (K, N , I) be an nano ideal topological space. Then every ngµ-closed set is
an nIgµ-closed set but not conversely.

Proof. Let A be a ngµ-closed set. Then n-cl(A)⊆U whenever A⊆U and U is nµ-open. So by
Theorem 1.1 (3), A∗

n⊆n-cl(A)⊆U whenever A⊆U and U is nµ-open. Hence A is nIgµ-closed. 2

Example 2.15. Let K , N and I be defined as an Example 2.6. Then ngµ-closed sets are ϕ, K,
{6}, {4, 6}, {5, 6} . It is clear that {4} is nIgµ-closed set but it is not ngµ-closed.

Theorem 2.16. If (K, N , I) is an nano ideal topological space and A is a n⋆-dense in itself,
nIgµ-closed subset of K, then A is ngµ-closed.

Proof. Suppose A is a n⋆-dense in itself, nIgµ-closed subset of K. Let A⊆U where U is nµ-open.
Then by Theorem 2.4 (2), n-cl∗(A)⊆U whenever A⊆U and U is nµ-open. Since A is n⋆-dense in
itself, by Lemma 1.7, n-cl(A)=n-cl∗(A). Therefore n-cl(A)⊆U whenever A⊆U and U is nµ-open.
Hence A is ngµ-closed. 2

Corollary 2.17. If (K, N , I) is any nano ideal topological space where I={∅}, then A is nIgµ-
closed if and only if A is ngµ-closed.

Proof. The proof follows from the fact that for I={∅}, A∗
n=n-cl(A)⊇A. Therefore A is n⋆-dense

in itself. Since A is nIgµ-closed, by Theorem 2.16, A is ngµ-closed.
Conversely, by Theorem 2.14, every ngµ-closed set is nIgµ-closed set. 2

Lemma 2.18. If (K, N , I) is any nano ideal topological space, then the following are equivalent

(1) K = K∗
n

(2) N ∩ I =ϕ.
(3) If I ∈ I then n-int∗(I) = ϕ.
(4) for every G ∈ N , G ⊆ G∗

n.

Theorem 2.19. If (K, N , I) is any nano ideal topological space, then the following are equiva-
lent

(1) K = K∗
n.

(2) for every A ∈ Nano open, A ⊆ A∗
n.

(3) for every A ∈ Nano semi open, A ⊆ A∗
n.

Proof. (1) and (2) are equivalent by Lemma 2.18.
(2) ⇒ (3). Suppose A ∈ Nano semi open (K, N ). Then there exists an n-open set M such that M
⊆ A ⊆ n-cl(M). Since M is n-open, M ⊆ M∗

n and so by Lemma 1.2, A ⊆ n-cl(M) ⊆n-cl(M∗
n) =

M∗
n ⊆ A∗

n. Hence A⊆ A∗
n.

(3) ⇒ (1). It is clear. 2

Corollary 2.20. If (K, N , I) is any nano ideal topological space where I is N -codense and A is
a Nano semi-open, nIgµ-closed subset of K, then A is ngµ-closed.

Proof. The proof follows Theorem 2.19, A is n⋆-dense in itself. By Theorem 2.16, A is ngµ-
closed. 2



344 Selvaraj Ganesan

Theorem 2.21. Every n-closed set is nIgµ-closed but not conversely.

Proof. Let A be a n-closed, then A∗
n⊆A. Let A⊂U where U is nµ-open. Hence A∗

n⊆U whenever
A⊆U and U is nµ-open. Therefore A is nIgµ-closed. 2

Example 2.22. Let K , N and I be defined as an Example 2.3. Then n-closed sets are ϕ, K, {5,
6}. It is clear that {4} is nIgµ-closed set but it is not n-closed.

Remark 2.23. remark 2.23 ng-closed sets and nIgµ-closed sets are independent.

Example 2.24. Let K , N and I be defined as an Example 2.3. Then ng-closed sets are ϕ, K,
{5}, {6}, {4, 5}, {4, 6}, {5, 6}. It is clear that {5} is ng-closed set but it is not nIgµ-closed. Also
it is clear that {4} is nIgµ-closed set but it is not ng-closed.

Remark 2.25. (1) Every n-closed is n⋆-closed set but not conversely. [1]
(2) Every n-closed set is ngµ-closed but not conversely. [3]
(3) Every ngµ-closed set is ng-closed but not conversely. [3]
(4) Every ng-closed set is nIg-closed but not conversely. [7]

Remark 2.26. We have the following implications for the subsets stated above.

n− closed@ >>> ngµ− closed@ >>> ng − closed
@V V V @V V V @V V V
n ⋆−closed@ >>> nIgµ − closed@ >>> nIg − closed

Theorem 2.27. Let (K, N , I) be an nano ideal topological space and A⊆K. Then A is nIgµ-
closed if and only if A=F−M where F is n⋆-closed and M contains no nonempty nµ-closed set.

Proof. If A is nIgµ-closed, then by Theorem 2.4 (5), M=A∗
n−A contains no nonempty nµ-closed

set. If F=ncl∗(A), then F is n⋆-closed such that F−M=(A∪A∗
n)−(A∗

n−A)
=(A∪ A∗

n)∩ (A∗
n∩Ac)c=(A∪A∗

n)∩ ((A∗
n)c∪A)=(A∪A∗

n)∩(A∪(A∗
n)c)=

A∪(A∗
n∩(A∗

n)c)=A.
Conversely, suppose A=F−M where F is n⋆-closed and M contains no nonempty nµ-closed

set. Let U be an nµ-open set such that A⊆U. Then F−M⊆U which implies that F∩(K−U)⊆M.
Now A⊆F and F∗

n⊆F then A∗
n⊆F∗

n and so
A∗
n∩(K−U)⊆F∗

n∩(K−U)⊆F∩ (K−U)⊆M. By hypothesis, since A∗
n∩(K−U) is nµ-closed, A∗

n∩(K−U)=∅
and so A∗

n⊆U. Hence A is nIgµ-closed. 2

Theorem 2.28. Let (K, N , I) be an nano ideal topological space and A⊆K. If A⊆B⊆A∗
n, then

A∗
n=B∗

n and B is n⋆-dense in itself.

Proof. Since A⊆B, then A∗
n⊆B∗

n and since B⊆A∗
n, then B∗

n⊆(A∗
n)∗n⊆A∗

n Theorem 1.1 (4). There-
fore A∗

n=B∗
n and B⊆A∗

n⊆B∗
n. Hence proved. 2

Theorem 2.29. Let (K, N , I) be an nano ideal topological space. If A and B are subsets of K
such that A⊆B⊆n-cl∗n(A) and A is nIgµ-closed, then B is nIgµ-closed.

Proof. Since A is nIgµ-closed, then by Theorem 2.4 (1), n-cl∗n(A)−A contains no nonempty nµ-
closed set. Since n-cl∗(B)−B⊆n-cl∗(A)−A and so n-cl∗(B)−B contains no nonempty nµ-closed
set and so by Theorem 2.4 (4), B is nIgµ-closed. 2

Corollary 2.30. Let (K, N , I) be an nano ideal topological space. If A and B are subsets of K
such that A⊆ B⊆A∗

n and A is nIgµ-closed, then A and B are ngµ-closed sets.
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Proof. Let A and B be subsets of K such that A⊆B⊆A∗
n which implies that A⊆B ⊆A∗

n⊆n-cl∗(A)
and A is nIgµ-closed. By Theorem 2.29, B is nIgµ-closed. Since A⊆B⊆A∗

n, then A∗
n=B∗

n and so
A and B are n⋆-dense in itself. By Theorem 2.16, A and B are ngµ-closed. 2

The following theorem gives a characterization of nIgµ-open sets.

Theorem 2.31. Let (K, N , I)be an nano ideal topological space and A⊆K. Then A is nIgµ-open
if and only if F⊆n-int∗(A) whenever F is nµ-closed and F⊆A.

Proof. Suppose A is nIgµ-open. If F is nµ-closed and F⊆A, then K−A⊆K−F and so n-
cl∗(K−A)⊆K−F by Theorem 2.4 (2). Therefore F⊆K−n-cl∗(K−A)=n-int∗(A). Hence F⊆n-
int∗(A).

Conversely, suppose the condition holds. Let U be a nµ-open set such that K−A⊆U. Then
K−U⊆A and so K−U⊆n-int∗(A). Therefore n-cl∗(K−A)⊆U. By Theorem 2.4 (2), K−A is nIgµ-
closed. Hence A is nIgµ-open. 2

Corollary 2.32. Let (K, N , I) be an nano ideal topological space and A⊆K. If A is nIgµ-open,
then F⊆n-int∗(A) whenever F is n-closed and F⊆A.

The following theorem gives a property of nIgµ-closed.

Theorem 2.33. Let (K, N , I) be an nano ideal topological space and A⊆K. If A is nIgµ-open
and n-int∗(A)⊆B⊆A, then B is nIgµ-open.

Proof. Since A is nIgµ-open, then K−A is nIgµ-closed. By Theorem 2.4 (4), n-cl∗(K−A)−
(K−A) contains no nonempty nµ-closed set. Since n-int∗(A)⊆n-int∗(B) which implies that n-
cl∗(K−B)⊆n-cl∗(K−A) and so n-cl∗(K−B)−(K−B)⊆
n-cl∗(K−A)−(K−A). Hence B is nIgµ-open. 2

The following theorem gives a characterization of nIgµ-closed sets in terms of nIgµ-open
sets.

Theorem 2.34. Let (K, N , I) be an nano ideal topological space and A⊆K. Then the following
are equivalent.

(1) A is nIgµ-closed,
(2) A∪(K−A∗

n) is nIgµ-closed,
(3) A∗

n−A is nIgµ-open.

Proof. (1)⇒(2) Suppose A is nIgµ-closed. If U is any nµ-open set such that A∪(K−A∗
n)⊆U,

then K−U⊆ K−(A∪(K−A∗
n))=K∩(A∪(A∗

n)c)c = A∗
n∩Ac=A∗

n−A. Since A is nIgµ-closed, by The-
orem 2.4 (5), it follows that K−U=∅ and so K=U. Therefore A∪(K−A∗

n)⊆U which implies that
A∪(K−A∗

n)⊆K and so (A∪(K−A∗
n))∗n⊆K∗

n⊆K=U. Hence A∪(K−A∗
n) is nIgµ-closed.

(2)⇒(1) Suppose A∪(K−A∗
n) is nIgµ-closed. If F is any nµ-closed set such that F⊆A∗

n−A,
then F⊆A∗

n and F*A which implies that K−A∗
n⊆K−F and A⊆K−F. Therefore A∪(K−A∗

n)⊆A∪(K−F)=K−F
and K−F is nµ-open. Since (A∪(K−A∗

n))∗n ⊆K−F which implies that A∗
n∪(K−A∗

n)∗n⊆K−F and
so A∗

n⊆K−F which implies that F⊆K−A∗
n. Since F⊆A∗

n, it follows that F=∅. Hence A is nIgµ-
closed.

(2)⇔(3) Since K−(A∗
n−A)=K∩(A∗

n∩Ac)c=K∩((A∗
n)c∪A)=(K∩ (A∗

n)c)∪(K∩A)=A∪ (K−A∗
n) is

nIgµ-closed. Hence A∗
n−A is nIgµ-open. 2

Theorem 2.35. Let (K, N , I) be an nano ideal topological space. Then every subset of K is
nIgµ-closed if and only if every nµ-open set is n⋆-closed.

Proof. Suppose every subset of K is nIgµ-closed. If U⊆K is nµ-open, then U is nIgµ-closed and
so U∗

n⊆U. Hence U is n⋆-closed.
Conversely, suppose that every nµ-open set is n⋆-closed. If U is nµ-open set such that

A⊆U⊆K, then A∗
n⊆U∗

n⊆U and so A is nIgµ-closed. 2
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3 µ-nI-locally closed sets

We introduce the following definition

Definition 3.1. A subset a of of an nano ideal topological space (K, N , I) is called an µ -nI-
locally closed set(briefly µ-nI-LC) if A = M ∩ N where M is nµ-open and N is n⋆-closed.

Proposition 3.2. Let (K, N , I) be an nano ideal topological space and A a subset of K. Then the
following hold.

(1) If A is nµ-open , then A is µ-nI-LC set.
(2) A is n⋆-closed, then A is µ-nI-LC set.
(3) If A is a L-nI-LC-set, then A is an µ-nI-LC set.

Proof. It is obvious from Definitions 1.11 and 3.1. 2

The converse of the above Proposition 3.2 need not be true as shown in the following exam-
ples.

Example 3.3. Let K , N and I be defined as an Example 2.3. Then nµ-open sets are ϕ, K, {4},
{5}, {6}, {4, 5}, {4, 6}, µ-nI-LC sets are power set of K and n⋆-closed sets are ϕ, K, {4}, {5,
6}. It is clear that {5} is µ-nI-LC set but it is not n⋆-closed. Also it is clear that {5, 6} is an
µ-nI-LC set but it is not nµ-open.

Example 3.4. Let K = {4, 5, 6} with K/ R= {{6}, {4, 5}, {5, 4}} and X= {4, 5}. Then Nano
topology N = {ϕ, {4, 5}, K} and I={∅}. Then µ-nI-LC sets are ϕ, K, {4}, {5}, {6}, {4, 5} and
L-nI-LC-set are ϕ, K, {6}, {4, 5}. It is clear that {4} is µ-nI-LC set but it is not L-nI-LC-set.

Theorem 3.5. Let (K, N , I) be an nano ideal topological space. If A is an µ -nI-LC-set and B
is a n⋆-closed set, then A ∩ B is an µ-nI-LC-set.

Proof. Let B be n⋆-closed , then A ∩ B = (O ∩ P ) ∩ B = O ∩ (P ∩ B), where P ∩ B is n⋆-closed.
Hence A ∩ B is an µ -nI-LC-set.2

Theorem 3.6. A subset of an nano ideal topological space (K, N , I) is n⋆-closed if and only if
it is

(1) L-nI-LC-set and nIg-closed [1].
(2) µ-nI-LC-set and nIgµ-closed.

Proof. (2) Necessity is trivial. We prove only sufficiency. Let A be µ -nI-LC-set and nIgµ-closed
set. Since A is µ -nI-LC set, A = O ∩ P , where O is nµ -open and P is n⋆-closed. So we have A
= O ∩ P ⊆ O. Since A is nIgµ-closed, A∗

n⊆ O. Also since A = O ∩ P ⊆ P and P is n⋆-closed, we
have A∗

n⊆ P. Consequently, A∗
n⊆ O ∩ P = A and hence A is n⋆-closed. 2

Remark 3.7. (1) The notions of L-nI-LC set and nIg-closed set are independent[1].
(2) The notions of µ-nI-LC-set and nIgµ-closed set are independent.

Example 3.8. Let K , N and I be defined as an Example 2.6. Then µ-nI-LC-sets are ϕ, K, {4},
{5}, {6}, {4, 5}, {4, 6}. It is clear that {5} is µ-nI-LC- set but it is not nIgµ-closed. Also it is
clear that {5, 6} is an nIgµ-closed but it is not µ-nI-LC set.

Definition 3.9. [3] Let A be a subset of a nano topological space (K, N ). Then the Nano µ-kernel
of the set A, denoted by nµ-ker(A), is the intersection of all nµ-open supersets of A.

Definition 3.10. A subset A of an nano ideal topological space (K, N , I) is called n∧µ-set if A
= nµ-ker(A).

Definition 3.11. A subset A of an nano ideal topological space (K, N , I) is called ζµ-nI-closed
if A = R ∩ S where R is a n∧µ-set and S is a n⋆-closed.
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Lemma 3.12. (1) Every n⋆-closed set is ζµ-nI-closed but not conversely.
(2) Every n∧µ-set is ζµ-nI-closed but not conversely.

Proof. (1) Follows from Definitions 1.6 and 3.11.
(2) Follows from Definitions 3.10 and 3.11. 2

Example 3.13. Let K , N and I be as in the Example 2.3, n⋆-closed sets are ϕ, K, {4}, {5, 6},
ζµ-nI-closed sets are power set of K and n∧µ-sets are ϕ, K, {4}, {5}, {6}, {4, 5}, {4, 6}. It is
clear that {5} is ζµ-nI-closed but it is not n⋆-closed. Also it is clear that {5, 6} is ζµ-nI-closed
but it is not n∧µ-set.

Remark 3.14. The concepts of n⋆-closed and n∧µ-set are independent.

Example 3.15. Let K , N and I be as in the Example 3.4, n∧µ-set are ϕ, K, {4}, {5}, {4, 5} and
n⋆-closed sets are ϕ, K, {6}. It is clear that {4} is n∧µ-set but it is not n⋆-closed. Also it is clear
that {6} is n⋆-closed set but it is not n∧µ-set.

Lemma 3.16. For a subset A of an nano ideal topological space (K, N , I) the following are
equivalent.

(1) A is ζµ-nI-closed.
(2) A = O ∩ n-cl∗(A) where O is a n∧µ-set.
(3) A= nµ-ker(A) ∩ n-cl∗(A).

Proof. (1) ⇒ (2). Let A be a ζµ-nI-closed set. Then A = O ∩ P where O is a ζµ-nI-closed set
and P is a n⋆-closed. Clearly A ⊆ O ∩ n-cl∗(A). Since P is a n⋆-closed, n-cl∗(A) ⊆ n-cl∗(P) = P
and so O ∩ n-cl∗(A) ⊆ O ∩ P = A. Therefore, A = O ∩ n-cl∗(A).
(2) ⇒ (3). Let A = O ∩ n-cl∗(A), where O is a n∧µ-set. Since O is a n∧µ-set, we have A=
nµ-ker(A) ∩ n-cl∗(A).
(3) ⇒ (1). Let A= nµ-ker(A) ∩ n-cl∗(A). By Definitions 3.10, 3.11 and the notion of n⋆-closed
set, we get A is ζµ-nI-closed. 2

Lemma 3.17. A subset A ⊆ (K, N , I) is nIgµ-closed if and only if n-cl∗(A) ⊆ nµ-ker(A).

Proof. Suppose that A ⊆ K is an nIgµ-closed set. Suppose k /∈ nµ-ker(A). Then there exists an
nµ-open set U containing A such that k /∈ U. Since A is an nIgµ-closed set, A ⊆ U and U is
nµ-open implies that n-cl∗(A) ⊆ U and so k /∈ n-cl∗(A). Therefore n-cl∗(A) ⊆ nµ-ker(A).
Conversely, suppose n-cl∗(A) ⊆ nµ-ker(A). If A ⊆ U and U is nµ-open, then n-cl∗(A) ⊆ nµ-ker(A)
⊆ U . Therefore, A is nIgµ-closed. 2

Theorem 3.18. For a subset A of an nano ideal topological space (K, N , I) the following are
equivalent.

(1) A is n⋆-closed.
(2) A is nIgµ-closed and µ-nI-LC.
(3) A is nIgµ-closed and ζµ-nI-closed.

Proof. (1) ⇒ (2) ⇒ (3) Obvious.
(3) ⇒ (1). Since a is nIgµ-closed, by (2), Lemma 3.17, n-cl∗(A) ⊆ nµ-ker(A). Since A is ζµ-nI-
closed, by Lemma 3.16, A = nµ-ker(A) ∩ n-cl∗(A)= n-cl∗(A). Hence A is n⋆-closed. 2

Remark 3.19. The concepts of nIgµ-closedness and ζµ-nI-closedness are independent.

Example 3.20. Let K , N and I be as in the Example 3.4, ζµ-nI-closed sets are ϕ, K, {4}, {5},
{6}, {4, 5} and nIgµ-closed sets are ϕ, K, {6}, {4, 6}, {5, 6}. It is clear that {4} is ζµ-nI-closed
but it is not nIgµ-closed. Also it is clear that {4, 6} is nIgµ-closed set but it is not ζµ-nI-closed.
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4 Decompositions of Nano ⋆-continuity

Definition 4.1. A function f: (K, N , I) → (L, N ′) is said to be n⋆-continuous [4] (resp. nIg-
continuous, nIgµ-continuous, L-nI-LC-continuous, µ-nI-LC-continuous, ζµ-nI-continuous) if
f−1(A) is n⋆-closed (resp. nIg-closed, nIgµ-closed, L-nI-LC-set, µ-nI-LC-set, ζµ-nI-closed)
in (K, N , I) for every n-closed set A of (L, N ′).

Theorem 4.2. A function f: (K, N , I) → (L, N ′) is n⋆-continuous if and only if it is
(1) L-nI-LC-continuous and nIg-continuous.
(2) µ-nI-LC-continuous and nIgµ-continuous.

Proof. It is an immediate consequence of Theorem 3.6. 2

Theorem 4.3. A function f: (K, N , I) → (L, N ′) the following are equivalent.
(1) f is n⋆-continuous.
(2)f is nIgµ–continuous and µ-nI-LC-continuous.
(3) f is nIgµ-continuous and ζµ-nI-continuous.

Proof. It is an immediate consequence of Theorem 3.18. 2
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