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Abstract. In this paper, we present existence, uniqueness and Ulam-Hyers stability results for
the n—tupled fixed points of a pair of contractive type singlevalued and respectively multivalued
operators on complete metric spaces. The approach is based on Perov type fixed point theorem
for contractions in spaces endowed with vector- valued metrics.

1 Introduction and Preliminaries

Since the year 1922, Banach’s contraction principle, due to its simplicity and applicability, has
became a very popular tool in modern analysis, especially in nonlinear analysis including its
applications to differential and integral equations, variational inequality theory, complementarity
problems, equilibrium problems, minimization problems and many others. Also, many authors
have improved, extended and generalized this contraction principle in several ways. Existence of
fixed points in ordered metric spaces has been initiated in 2004 by Ran and Reurings [34] further
studied by Nieto and Rodriguez -Lopez [33]. Samet and Vetro [43] introduced the notion of fixed
point of NV order in case of single-valued mappings. For some more work cited in [31, 32, 30].
In 1922, Banach [3] gives following definition of fixed point theorem,

Definition 1.1. An element x € X is called a fixed point of the mapping 7" : X — X if Tz = .

In 2006, T.G. Bhaskar and V. Lakshmikantham [4] introduce the following definition of cou-
pled fixed point

Definition 1.2. An element (z,y) € X x X is called a coupled fixed point of the mapping
T:XxX—>XifT(z,y) =zand T(y,x) = y.

In 2011, Berinde and Borcut [5] introduce the concept of tripled fixed fixed point which is as
follows,

Definition 1.3. An element (z,y,z) € X° is called a tripled fixed point of 7' : X* — X if
T(x,y,2) =z, T(y,z,y) =y, and T(z,y,z) = z.
In 2011, Karapinar [40] give the following definition,
Definition 1.4. An element (z,y, z,w) € X*is called a quadruple fixed point of 7 : X* — X if
T(z,y,z,w) = z, T(y,z,w,z) =1y,
T(z,w,z,y) = 2z, T(w,zy,2)=w. (1.1)

Beside this, Ertiirk and Karakaya [10] following concept of n-tupled fixed point in ordered
metric space,
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Definition 1.5. Let X be a nonempty set and 7" : X" — X a given mapping. An element
(z1,22,23,...,7,) € X™ is called a n—tuplet fixed point of 7" if

T(x1, 22,23, .., Tpn) = 1,
T($27l‘3, R ,xn,x]) = X3,
T(xn7x1,$2,1'3,...71'n71) = Tn-

Remark 1.6. We observe following relations in above Definitions 1.1, 1.2, 1.3, 1.4, 1.5,

(i) If we take x = y in Definition 1.2 then Definition 1.2 = Definition 1.1.
(i) If we take x = y = z in Definition 1.3 then Definition 1.3 = Definition 1.1.
(iii) If we take x = y = z = w in Definition 1.4 then Definition 1.4 = Definition 1.1.

(iv) If we take 1 = zp = 23 = --- = x,, in Definition 1.5 then Definition 1.5 — Definition
1.1.

It should be noted that through the Banach fixed point [3] technique we cannot solve a system
with the following form,

2?2 +2y+3=0,
(1.2)

v +224+3=0.

Above system 1.2 can be solve by using coupled fixed point [4] technique but not applicable
to solve following system 1.3,

2+ 2yz — 62 +3 =0,
Y+ 2xz—6y+3=0, (1.3)
224+ 2yr — 62+ 3=0.

System 1.3 can be solve by using tripled fixed point [5] technique but not applicable to solve
following system 1.4,

2t 4+ 6yzw — 9z + 12 = 0,
4
Yy +6xzw—9y+12= 0,
(1.4)
A tbyrw—924+12= 0

w4+ 6yzz — 9w+ 12= 0.

System 1.4 can can be solve by using quadrupled fixed point [40] but not applicable to solve
following system 1.5,
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2} +2n— 1) ][]z —3(n— Dz +4(n—1) =0,
=2

2f +2n—1) J[ @—30n—Daa+4(n—1)
i=1,i#2

0,

x5 4+ 2(n—1) H x;—3(n—Daz+4(n—-1)=0,
i=1,i#3 (1.5)

af +2n—1) J[ @i—30n—Das+4(n—1)=0,
i=1,i#4

m—1
x4+ 2(n—1) H z; —3(n— Dy +4(n—1)=0.

i=1

System 1.5 can be solve by m—tupled fixed point [10] technique.

On the other way we can say that n—tupled fixed point [10] technique is more general than
other fixed point theory like coupled [4], tripled [5] and quadrupled [40] in case that when its
co-ordinates not equal.

Next we state following definitions and results which are used to prove of our main result.

Let X be a nonempty set. A mapping d : X x X — R"™ is called a vector-valued metric on
X if the following properties are satisfied:

(a) d(z,y) >0forall z,y € X,

(b) d(z,y) =d(y,z) forall z,y € X,

(¢) d(z,y) <d(x,2)+d(z,y)forall z,y € X.
If z,y € R x = (x1,...,2m) and y = (y1, ..., Ym), then, by definition: = < y if and only if
x; <y forie{l,2,...,m}.

A set endowed with a vector-valued metric d is called generalized metric space. The notions
of convergent sequence, Cauchy sequence, completeness, open subset and closed subset are sim-
ilar to those for usual metric spaces.

We denote by M, (R;) the set of all m x m matrices with positive elements and by I the
identity m X m matrix.

Notice that we will make an identification between row and column vectors in R™.

For the proof of the main results we need the following theorems. A classical result in matrix
analysis is the following theorem (see [1], [40], [45]).

Theorem 1.7. Let A € M,,.,,(R,). The following assertions are equivalent,
(i) A is convergent towards zero,
(ii) A™ — 0asn — oo,

(iii) The eigenvalues of A are in the open unit disc, i.e |\| < 1, for every A € C with

det(A — \I) =0,

(iv) The matrix (I — A) is nonsingular and

(I-A)'=T4+A+ - +A"+.... (1.6)



352 Mishra, Gupta, and Mishra

(v) The matrix (I — A) is nonsingular and (I — A)~" has nonnegative elements

(vi) A"q — 0 and qA™ — 0 as n — oo, for each ¢ € R™.
We recall now Perov’s fixed point theorem (see [36]).

Theorem 1.8. Let (X, d) be a complete generalized metric space and the operator f : X — X
with the property that there exists a matrix A € M, (R) such that d(f(x), f(y)) < Ad(z,y)
forall x,y € X. If A is a matrix convergent towards zero, then:

(i) Fiz(f) = {x*} (Here Fiz(f) denotes the set of fixed points of f),

(ii) the sequence of successive approximations (T, )neN, Tn, = f™(x0) is convergent and has
the limit x*, for all xy € X,

(iii) one has the following estimation

d(xy,z*) < A™(I — A)~Yd(z, 1), (1.7

(iv) if g : X — X is an operator such that there exist y* € Fixz(g) and n € (R} )* with
d(f(z),g9(z)) <, foreach z € X, then

d(a*,y") < (I -A)"",

(v) if g : X — X is an operator and there exists n € (R")* such that d(f(x),g(x)) < n, for
all x € X, then for the sequence y,, = g"(x¢) we have the following estimation

d(yn,x*) < (I = A)"'p+ AT — A)~Yd(zo, 21). (1.8)

Let (X, d) be a metric space. We will focus our attention to the following system of operato-
rial equations:

xy =Ti(x1, 22,23, ..., Tn_1,Tp)
Ty = TZ(Ithv'I?H v axn—lvxn)
x3 = T3(x1, 22,23, .., Tp1,Tp)
Ty = Tn(‘rlaxbﬂc% o axn—laxn)
where T;; : X™ — X are given n operators where i = 1,2,3,...,n.
By definition, a solution (z,%2,%3,...,Zpn_1,Tn) € X" of the above system is called a
n—tupled fixed point for the multiple (71,73, T3, ..., T, ). In a similar way, the case of an oper-

atorial inclusion (using the symbol € instead of =) could be considered.

This paper deal with existence and uniqueness of n—tupled fixed point theorem the ap-
proach is based on Perov-type fixed point theorem for contractions in metric spaces endowed
with vector-valued metrics. We are also studying Ulam-Hyers stability results for the n—tupled
fixed points of a n—tupled of contractive type single-valued and respectively multi-valued oper-
ators on complete metric spaces. For related results to Perov’s fixed point theorem and for some
generalizations and applications of it we refer to [7], [11], [39].

2 Existence, uniqueness and stability results for multiple fixed points

Definition 2.1. Let (X, d) be a generalized metric space and f : X — X be an operator. Then,
the fixed point equation

z = f(x) (2.1)
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is said to be generalized Ulam-Hyers stable if there exists an increasing function, ¢ : R* — R,
continuous at 0 with ¢/(0) = 0, such that, for any € = (ey, ..., €y,) withe; > Ofori € {1,...,m}
and any solution y* € X of the in inequality

d(y, f(y)) < e (22)
there exists a solution z* of (2.1) such that
d(@*,y") < ¥(e) (2.3)

In particular, if ¢(t) = Ct, t € R}, (where C € M,y,,»(R;)), then the fixed point equation
(2.1) is called Ulam-Hyers stable.

Our first abstract result is a direct consequence of Perov’s fixed point theorem.

Theorem 2.2. Let (X, d) be a generalized metric space and let f : X — X be an operator with
the property that there exists a matrix A € M, (R) such that A converges to zero and

d(f(z), f(y)) < Ad(z,y), forall z,y € X.

Then the fixed point equation
r=f(z), ze€X

is Ulam-Hyers stable.

Proof. From Perov’s fixed point theorem we get that Fiiz(f) = {2*}. Lete = (€1, ..., €,,) with
€; > 0foreachi € {1,...,m} and let y* be a solution of the in equation

d(y, f(y)) <e
Then we successively have that
d”y") = d(f(z"),y")

< d(f(@), fy™) +d(f(y"),y")
< Ad(z*,y") + e

Thus, using Theorem 1.8, we get that

d(z*,y*) < (I —A) e

O
Definition 2.3. Let (X, d) be a metric space and let 7; : X™ — X be n operators where i =
1,2,3,...,n. Then the system of operatorial equations
1 =1 (37173:27553’ ce- 7xn—17xn)
2y = To(x1,02,23, ..., Tp_1,Tn)
xr3 = T3($1,£E2,$3, . ,mn_l,xn)
2.4)
:C’nfl == Tnfl(x17$27x37 e ,./L'nfl,l'n)
Ty = Tn(x1, 22,23, .., Tp1, Ty
where T; : X™ — X are n given operators where ¢ = 1,2,3,...,n. is said to be Ulam-Hyers

stable if there exist

C11, €12, C13y - - - 5 Cln, €215 €22, C235 - -+, €21y C315,C325,C335 -+ + 5 Cams -+, Cnls Cn2, €y« -+ 5 Cpp > 0

such that for each
€1,€2,€3,...,€p > 0
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and each multiple (uf, uj,u3, ...

there exists a solution

,uk) € X" such that

d(ui, Ti (uf, uz, u3, ... uy)) < €
d(uz, To(uf, uz,uj, . uyp)) < €
d(u§7T3(uTau;’u§v oo 7u:<1)> <€

d(ul, T (uj,us,ui, ... ul)) < e

(@7, 23,23, ..., 2%) € X" of (2.5) such that
d(uj,z}) < crier + ciaer + ci3e3 + -+ + Cinéy
d(uy, z3) < ca1€1 + cner + €363 + -+ + Conép
d(uz,x3) < 3161 + cxner + c33€3 + -+ + €y

d(un,xn) S Cnl1€1 + Cn2€2 + Cn3€3 +---+ Cnn€n

(2.5)

(2.6)

For examples and other considerations regarding Ulam-Hyers stability and generalized Ulam-
Hyers stability of the operatorial equations and inclusions see I.A. Rus [41], Bota-Petrusel [6],
Petru-Petrusel-Yao [37].

Our first main result is the following existence, uniqueness, data dependence and Ulam-Hyers

stability theorem for the n—tupled fixed point of single-valued operators (77,73, 7T3, . ..

s Tn).

The conclusions (i)-(ii) are originally proved by R. Precup [39], but for the sake of completeness
we recall here the whole proof.

Theorem 2.4. Let (X, d) be a complete metric space, T; : X™ — X are n given operators where

i=1,2,3,...,n such that
d(Ti(z1, 2,23, ..., xp), Ti(ur, uz, u3, . .., up)) < knd(zy, wr) + kind(xa, up) + -+
d(Tg(xl,.Ig,l'g,, - ,l’n),Tz(U],uZ,u?,, .. .,un)) < kzld(l’l,ul) + kzzd(.%z ’u,z) =+ ..
d(T3(z1, 2,3, .., 20), T3(ur, uz, u3, . .., up)) < kaid(zy, ur) + kaad(xa, up) + -

d(Tn(xl,:cg,x3, .

forall (z1,22,3,. ..

7xn>7Tn(ul7u27u3a ey

"TTL

J(ur, up,us, .. uy) € X™. We suppose that
pp
ki ki ki3 kin
kot ko ko3 kan
. k31 k32 k33 k3n
T ks ke ks kan
knl an an knn

converges to zero. Then,

(i) there exists a unique element (7, x5, 25, . ..

, o) € X™ such that

* * * *

Ea :T1($171'2,$3,...,$n)
_ * _x _k *
x5 =Tz}, x5, 25,...,2})
* * k% *
3 = Ts(z], 25,25, ...,2))

* * _x _k *
xpy = Tp(x], x5, 23,...,2})

Up)) < kpid(zi,ur) + kppd(z2,u2) + -+ -

+ klnd(mnaun)
+ and(xna un)
+ kSnd(ajna un)

2.8)

2.7)
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. » »
(ii) the sequence (T} (x1,x2,23,...,2,), T (1,22, 23, ...
N converges to (z}, 25,23, ...,x}) as p — oo, where

P+l % % % *\ __ P * %k
TV (af, 25,23, ..., xp) = TV (Th (2], 23, 23, . ...
p+1 * * * *\ __ P * * *
77 (z),25,23,...,xy,) =Ty (Th (af, x5, 23, . ...

p+1 * * * *x\ __ P * * *
T3 ($1,$2,x3,...7$ )—T3(T1(J}1,.T)2,$3,...

+1 _
TP (2}, 25, 25, ..., x)) = TP (T (27, x5, 25, . ..
forallp e N

(iii) we have the following estimation:

d(T! (1), (22)o, (#3)0; - - -5 (20 )0), 27)
d(T7 (1), (22)0, (x3)0; - - -5 (20 )0), 23)
d(T3 ((x1)o, (£2)0, (%3)0; - - 5 (2 )o), 23

d(TF((x1)o, (2)0, (x3)0, - - -

T T

d((zn)o, T ((z1)0, (22)0, (23)0, - - -

* * * *
sk ), (x5, 25, 2%, ...

* * k%
sop), Doz, 25,25, ...

* * * *
,xn),Tz(x1,$2,l‘3,...

* * k%
sxor), (x5, 25, . ..

,Tﬁ(zl,xz,xy,,...,zn)),p €
* kL k

T2y, 25, 2%, -
Kk

..7Tn(1'17l'27$3,...

k k%
..7Tn(l‘17l‘2,x37...

* _x_k
..7Tn($17x2,$3’...

(iv) let F; : X™ — X be n operators and there exist n; > 0 such thati =1,2,3,... n with

d(T1($1,$2,$3, .
d(Tz(xl,xz,lL'3, N

d(T3($1,x2,x3, .

d(Tn($17$2,$3, .

7.’1','”)7F1(.’1717$U2,$3,. ..
,$n),F2(x1,.’£2,1'3, N

), F3(x1, 20, 73, . ..

,xn)7Fn(x1,x2,x3, e

forall (x1,22,23,...,2,) € X" If (a},0a5,a},. ..

aj = Fi(af,a3,a3, ..., ay)
ay = Fz(a’f,aﬁ,ag,. 70’2)
a’; —F3(GT,CL3,G,§7 7a;k7,)
a, :Fn(afﬂaé’a% 70’2)
then

d(af, z})

d(az,x3)

d(a§7x§) < (I, A)fln

n’r'n

ININ A

IN

m
m
m

M

,ar) € X™ is such that

@2.11)

(2.12)
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where

m
2
3

Tin

(v) let F; : X™ — X be n operators and there exist n; > 0 such that i = 1,2,3, ... ,n with

d(T] ((El,l’z,x3, ..
d(Ta(z1, 72, 73, . ..

d(T3(Q?17.'L‘2,.T3, ce

d(Tn(CC],LEQ,l‘g,, ce

Sorall (z1,22,23,. ..
(Flp(xlaxZa Z3,...
given by

p+1 * * * *
Fl (37],.132,%3,...,% )
e W %
F2 (371,5[;2,.’1}3,...,33 )

p+1 * * * *
Fy (2, 05,05, ... 2y,)

+1/ % % _x *
Fs ($17x27x37'~~ z )

forallp € N and

d(FE((z1)o, (x2)o, (x3)o, - - -

7:677«)’F2p(m17x27x37 cee

. 7xn)7Fl(x171'27x3, .
xn), Fa(zy, 22, 23, . . -

7xn)7F3(3717.'172,LE3, ..

7xn)aFn($lvx2’x3, ce

axn»

,Tn) € X™. If we consider the sequence

1@n)),

m
m
’[’I = 173 s

M

P
F3 ($1,$27.'173,...

< m
< m
< m;m
< M

d((xn)Oan((l’l)O, (1’2)0, (173)0, ..

%)),

2.13)

pEN,

* k%
-~,Fn(1'],.’132,333,...

* k%
-~,Fn($1,1’27$3,,,_

* k%
'-7Fn(x],$2,$3,...

* ok k
~~,Fn(xl,$2,x3,...

s (Tn
oy (T

(@

) (zn
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(vi) the system of operatorial equations

zy = Ti(x1,22,23,...,2,)
Ty = T2($1,$2,$3,...,(En)
x3 = Ts3(x1,22,23,...,%,) (2.15)
Tn = Tn($1,$2,$3,...,$n)

is Ulam-Hyers stable.

Proof. For (1)-(ii) let us define T; : X — X" wherei =1,2,3,...,n by

Tl(xlaxZax:’n' o axn)
Ty(w1, 22,73, - .., Tp)
T(.I],,T27l'3,...7l'n> — T3("E17$27x37""‘rn)
Tn(x17x23'r37 .. '7xn)
- (T]($1,$2,x3, .. .,xn),T2($1,$27$3, cee 7xn)a e 7Tn($17$2,$3, e 7.’17»,1))

Denote Z = X™ and considerd : Z x Z — R",

d(.%] y ul)
d(.rz, UQ)

J((I],$2,l’3, cee 7xn>; (u17u27u37 e aun)) - d($37U3)

d(xp, un)

Then we have
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d(T(Ithax:iv .. ;xn)vT(ulau27u37 v ,Un))

Ti(x1, 22,23, ..., %p) Ty (ur,uz, u3, ..., Up)
Th(x1, 22,23, ..., Tp) To(ur,up, u3, ..., up)

— J T3(IE],IL‘2,I’3,...,SC7L) , T3<U1,U2,U3,...7un) (216)
Tn(x17$27x37"'7xn) T’I’L(ul7u27u37"'7un)

d(Tl (I],Z'z,l’?,, cee ,SCn),T] (U],’LQ,U}, e 7un))
d(TZ(.’E],J)Z,.’L‘:&, ce 7xn)7T2(ulau27u37 AR 7un))

— d(T3(£U1,{E271'3, cee 7xn)7T3(ul7u27u37 e 7un))

d(Tn(xl,x2,$3, A ,l‘n),Tn(Ul,uz,U:%, A 7'“/71))

klld(;vl,ul) + klzd(xg,uZ) + -+ klnd(l'n, un)
kord(zy,ur) + kapd(z2,u2) + -+ - + kopd(xp, uy)

<
knld(fﬂh U]) + and(x27 u2) +---+ knnd(xna un)
ki k2 ki ... kin d(zy,u)
kot ko ko ... kg d(2,uz)
k k k . kap,

_ 31 32 33 3 d(.’l?3,u3) (2 17)
kat ks ks ... kap ’
knl an an cee knn d(z"’un)

= AJ((I],$2,$3,...,IEn),(U],UZ,U3,...7U7L))~

If we denote (z1, 22,23, ..., on) = a, (U1, uz, us, ..., uy) = B8, we get that

d(T (), T(8)) < Ad(a, B).

Applying Perov’s fixed point theorem 1.7 (i), we get that there exists a unique element (27}, 23,23, ..., 2}) €
X" such that

(2], 25,25, ..., 20) =T(ay, 25,25, ...,2})

and is equivalent with

xp =Ty (x],25,25,...,2),)
Moreover, for each a € X™, we have that T'(a)) — o* as p — oo, where
To(a) = q,
1
T (o) = T(af,25,2%5,...,2%)

= (Ty(z},25,25,...,2)), Ta(z), 25, 25, ..., xh)y o T2}, 25, 25, ..., 2)))
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Tz(oz) =

and generally

T(Ty (x5, 25,25, . ..

= (le(wf,xz,x’g, .

TII)Jrl(a) - Tlp<Tl(Ilax2ﬂz37 71':,)7T2(‘TTVT;7
T2p+l(a) - T;(Tl(xl’xsax% ,J):l),TQ(.’ET,J);,
T3p+1(a) - Tf(TI(fvhx;ﬂxSv ,xfl)7T2(x’f,x§‘7
TP o) = TP(Ty(x}, 23, 2%,...,2%), Ta (], o5,

We obtain that

T(a) = (T (), Ta(a), T3(a), ..., Th(a)) = o = (xf, 25,25, . ..

* * k%
vy ), Do), x5, 25, . ..

* 2 * * *
,xn)7T2(.'II1,$2,.’B3,...

*

) n

* *
L3, 7xn)a

* *
T3y ,T))

* *

x5, ...,

* *

5y, 1k,

I O

xp), ...

forall o = (z1, 12,73, ...,%,) € X" So, for all (z1, 27,3, ..

Ti(z1, 22,23, ...,@Tp) = T} 88 P — 00
To(x1,22,%3,...,%p) —> T3 88 P — 00
T3(x1, 22,23, ..., Ty) — X3 a8 P — 00
T (21, 2,23, .., Tp) — Th S p — 00

(iii) By Perov’s theorem (iii) we successively have

IN

d(TT ((x1)0, (z2)0, (3)05 - - -

d(T?((z1)o, (22)0, (23)05 - - -
J((Tp((l"l)oa (132)0, (xs)o, ..

AP(I— A)™!

d((xn)o, Tn((z1)0, (22)0, (23)0, - - -

*

2
(] a2, .-

* x _k
..,Tn<xl,xz,x3,...

k% *
..,Tn(l‘l,xz,x:;,...

* * *
o T2, 25, 2%, - -

* * *
o T2y, 25, 2%, - -

- (@n)o)), (@1, 23, 23, .., 27,))

 (@n)o))

* k%
,Tn(l'l7$2’x3,...

(2.18)

,xr) as p — 0o,

., ZTy) € X", we have that

(2.19)



360 Mishra, Gupta, and Mishra

(iv) If we consider F' : X™ — X™ such that

Fl(x17x27x37"'7xn)
Fz(z17x2ax3a A axn)

F(z1, 22,23, ..., &) = Fy(z1, 22,23, ..., 2n)

Fn(ml,l‘z,xg),,...,;tn)

and

d(T(l’],sz,xfﬁ, ct 7x7L)7F(I]ax27x37 tet 7xn))

T1(x1, 22,23, ..., Tn) Fi(xy,22,23,...,2,)
Tz(xl,xz,l'g,,...,l’n) Fz(xl,x2,1'3,...,$n)

= d| | Banz,as,.w) || Fs@,2,33,..020)
xlaxbm?n"'axn) Fn(xlaxZ,m3v"'>$n)

T 1’1,.@2,%3,...,1',” 7F2<x17x27x37'”71.n))

T3 L1,T2,L3y.-.,Ln ,F3(x],x2,:z:3,...,xn))

w(zn, @, 23, .. ), Fp(@, 22,23, ..., 2y))

Tl xlax2)l‘37"'7'%‘71)?F1(x17x27$37'"7:1;77,))
)
)
n

<
then, applying Perov‘s fixed point theorem 1.8 (iv) we get

d((z}, 5,23, ...,28), (a7, a3, a3, ... ,a%)) < (I —A)~'n.
(v) By (2.21) we get that

d(T(x1, 22,23, .-, Tn), F(T1,22,23,. .., Tpn)) < 7.

Notice that
FP(xy, 20,23, ...,2,) = F(FP~ a1, 20, 23,. .., 2,)),
forall (xy,22,%3,...,2,) € X™.

Using the assertion (iii) of this theorem, we can successively write:

d(FP((21)0, (22)0, (x3)0, - - -, (2n)o)), (2], 23,23, ..., 2},))

< d(FP((21)0, (22)0, (3)0; - -+ (20 )0), TP ((21)0, (22)0, (23)0; - - -, (#n)0))
+d(TP (0, Yo, 20), (x], 25, 2%, ..., xF))

< d(FP((z1)0, (£2)0, (23)0s - - -5 (@ )0), TP ((x1)0, (22)0, (3)0s - - -, (€0)0))

+AP(I = A)7 (T ((x1)0, (x2)0, (23)0, - -, (xn)0), ((21)0, (z2)0, (23)0, - - -

(2.20)

221

(2.22)

) (l‘n)o)).
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On the other hand, we have

d(FP((21)0, (22)0, (23)0, -+ (x0)0), TP ((1)0s (€2)0, (23)0, - - (0 )o))
= d(F(F"~"((x1)0, (x2)0, (3)0; - - -, (Tn)0), T(TP~  ((x1)o, (22)0, (€3)0, - - - » (¥n)o0))
< d(F(FP~N((21)0, (22)0, (23)0, - -5 (@n)0), T(FP~ (210, (22)0, (€3)0, - -+ (€0)o0))
+d(T(FP~" ((21)0, (€2)0, (23)0, - - - (20 )0), T(TP~ ((1)o, (22)0, (23)0; - - -, (¥n)0))
<+ Ad((FP7 ((21)0s (22)0, (23)0s - - (0)0), TP~ (1), (22)0; (23)0; - - - (20)o0))
<+ A+ Ad((FP2((x1)o, (£2)0, (3)0, -5 (@)0), TP~ ((x1)o, (£2)0, (£3)0, - -, (€0)0))]
< <+ A+ AP+ AP+
< n(I-A)~" (2.23)

Thus, we finally get the conclusion

J<Fp(($l)0ﬂ (962)0, (.%'3)0, s (l'n)O), (leﬂv x;’x; s ,:L‘:l))

< g = A)T AP = AT A(T((21)o, (22)0, (23)0, - - -, (@n)0); ((21)0, (22)0, (23)0s - -+ (20 )0))-

(vi) By (i) and (ii) there exists a unique element (7, 25, 25, ...,z}) € X" suchthat (7, x5, 2%,...,27)
is a solution for (2.15) and the sequence

(TP (z1, 22, 3, .. ), T (X1, 22,23, - . X))y -, TR (21, 20, @3, ... 2y)) — (2], 25,25, ...,2)) as n— .

Lete; > 0whered =1,2,3,...nand (u},u},u},...,u}) € X" such that

T 377-’;7 vu;) <€l
d(u27T2(uTau;7u§7 7u:1)) S €2
d(uz, T3 (ui, uz,u3, ..., up)) < e\ (2.24)
d(u27Tn(uT7u;vu§v s ’utb)) <eén

Then we have
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d((uf,u3,u3, . uy), (25, 23,23, ., @)
< d((uf, gz, ), (T ey ug,us, o), To(ug,us,ug,
+d(Ty (uf, ub, b, . ul), T (uf,us, uf, .. ul), ...
= d((ul,us,ul, .. oul), (T (uf,ud,ul, . ul), To(ul, uy,ul, ..
Ty (ul, uy, uy, ..., ur), Ty (z7, 235,25, . .., 2}),
) T (ul,uy,uj, . ,ufl),] To(x}, x5, 05, ..., ),
+d ,
T (uf,uy,u3, ... u)) To(xy, 25,25, ...,27,)
d(ui, Ty (uj, u3, u3, . .. uy,)) d(Ty (uf, u3, u3, ..
d(u3, To(uj, u3, u3, ... uy,)) d(Ta(ui, w3, us, . .,
| dd g ) | | A,
d(up, T (uf, uz, ui, . .., uy)) (T (uf, vz, u3,
m
yp
< | B +HdT(ul v, uy), T (e, 25,25, 2y)
Tn
< e+ Ad((up,us,ul, . ul), (af, @h, 2y, xh).

* ok ok
T3(U1,U27U3,...

7u'>:l)7"'7
yun))s (

*

JUE), e

*

Since (I — A) is invertible and (I — A)~! has positive elements, we immediately obtain

d((uf,uz, 43, uy), (27, 203,03, 2y

or equivalently

If we denote

cir c2 c3
1 2 3
P 31 C2 €33
(r—4)"" = c41 o a3
Cnl Cp2 Cp3

) <

Cln
Con
C3n

C4n

Cnn

(1—A4)"

* * ok
T (uj,uy,ui, ...
* * *
xl,m2,$37..., n

T (uf,uy, ul, ...,
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then we obtain
d(uT,xT) < cii1€1 +cpey +ci3e3 4+ -+ cinen
d(uz,x3) < ca1€1 + cn€r + 2363 + -+ + Conéy

d(u§, CL';) < c31€1 +cppep 3363+ - - -+ c3nen (2.25)

d(uy,, @) < cp1€l + Cn2€2 + Cu3es + -+ + Cunén
proving that the operatorial system (2.15) is Ulam-Hyers stable. O

Definition 2.5. Let X be a nonempty set. An element z = (z1,2,...,2,) € X", n > 0, is said
to be a fixed point of m-order of a mapping F': X — X if

T(CC],IQ,JI3,{E4 cee sy Tn—2, zn—]a£n) =T

T(22, 23, 04,85 ..., Tp_1,Tn,T1) = T2
T(23,24,%5,%6 - . ., Tn, T1,T2) = T3 (2.26)

T(xn,$1,$27$37 st 71"7’7,727377’7,71) = :Cn

Observe that 2.26 can be written as
T(ti(z)) =z, for all i€{1,2,3,...,n}, 2.27)

where t; is the 1—th line of the circular matrix of x,

| T2 I3 ... Tpn—1 ITn
Ty I3 T4 ... Tp |
r3 T4 X5 ... | %)
G R (2.28)
Tn 1 X2 ... Tp-2 Tp-1

Remark 2.6. Notice that, if (X, d) is a metric space and 7' : X™ — X is an operator and we
define

(21,22, 23, T4 - .., Ty—2, Tn—1,Tn) = T(t1(z

~—
~—

Tr(x1, 22,23, T4 ..., Tn—2,Tn_1,Tn) = T(t2(z

~
~—

T3(x1, @2, 3, T4 . .., Tn—2, Tn—1,%n) = T(t3(z

~
~—

and so on,
T (1,22, 03,24 s Tn—2, Tn—1,Tn) = T(tn(x)),
then the above approach leads to some well-known n-tupled fixed point theorems.

We will consider now the case of multi-valued operators. We need first some notations. Let
(X, d) be a generalized metric space with d : X x X — R given by

di(z,y)
d(z,y) =
dm(z,y)
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Then, for x € X and A C X we denote:

Dy (o, 4) [ o dile,e)

Dd(x,A) = =

m

Dy, (z,A) auel[f4 dm(z,a)

P(X) ={Y C X|Yis nonempty}
P, (X) ={Y C P(X)|Yclosed}.
We also denote
Dy(z1, Ar)
Da(w2, A2)

D((ml,l‘z,x3,1‘4 A ,J}n),A] X A2 X oo X An) = Dd(m37A3>

Dd(xn; An)

Our second main result is an existence, uniqueness, data dependence and Ulam-Hyers sta-
bility theorem for the n—tupled fixed point of a triple of multi-valued operators (77, 7%, T3). For
the proof of our main result, we give the following theorem.

Theorem 2.7. Let (X, d) be a complete generalized metric space and let T : X — Py(X)
be a multi-valued A—contraction, i.e. there exists A € My, (Ry) which converges towards
zero as p — oo and for each x,y € X and each v € T(x) there exists v € T(y) such that
d(u,v) < Ad(z,y). Then T is a MW P—operator, i.e. Fix(T) # ¢, and for each (x,y) €
Graph(T) there exists a sequence (x,)nen Of succesive approximations for T starting from
(x,y) which converges to a fixed point x* of T. Moreover d(z,z*) < (I — A)~'d(z,y), for all
(z,y) € Graph(T).

Proof. Let g € X and z; € T(zp). Then by the A—contraction condition, there exists z, €
T(xy) such that d(z1, 22) < Ad(zo,z1). Now, for 2, € T'(z) there exists z3 € T'(x2) such that

d(xy,23) < Ad(zy,20) < A%d(z0, x1).
In this way, by an iterative construction, we get a sequence (x,,),en such that

zg € X
Tn+1 € T(‘Tn)
d(mnaxn-‘rl) S And(x(),l'l)

forallm € N.

Thus, by the above relation, we get

d(.]?n, xn-&-p) < d(l‘n, xn-&-l) + d(xn-&-lvxn-ﬂ) + -+ d(-rp—hxn-‘rp)
< Ad(l’o,l‘])+A2d($0,1’1)+-~~+Ap71d(1'0,x1)
= AT+ A+ + AP Nd(x,21)

Letting n — oo we get that the sequence (z,)nen is Cauchy. Hence there exists z* € X such
that z* = limy,— o0 T

We prove that 2* € T'(z*). Indeed, for ;,, € T'(x,,—) there exists u,, € T'(z*) such that

d(l‘", un) S Ad(xn—l ) I*),
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forallmn € N.

On the other side
d(xz*, uy) < d(z*,zn) + d(zp, uy) < d(x*,20) + Ad(zp_1,2*) — 0, as n — oco.

Hence lim,, o0 uy, = z*. But u,, € T'(z*), for n € N and because T'(z*) is closed, we have
that z* € T'(x*).

Moreover we can write

Ad(p, Tpap) S AT+ A+ -+ AP ) d(2o,21) = A™(I — A)—1d(z0, 21).
Letting p — oo we get that
d(y,2*) < A™(I — A)~'d(x, 21).
forall n > 1. Thus

d(l’(), LE*)

IN

d(x(),il'l) + d(ml,x*) < d(x(),il'l) + A(I - A)fld(xg,xl)
(I—}-A(I—A)il)d(l‘o,x]) = (I+A+A2 +...)d($o,x])
= (I—A)_ld(l‘o,l‘l)

O

Definition 2.8. Let (X, d) generalized metric space and F : X — P(X). The fixed point inclu-
sion

T € F(z),reX (2.29)
is called generalized Ulam-Hyers stable if and only if there exists 1 : R7* — R'" increasing,
continuous at 0 with ¢/(0) = 0 such that for each € = (ey, ..., €, ) > 0 and for each e—solution
y* of 2.29, i.e.

Da(y*, F(y")) < e
there exists a solution z* of the fixed point inclusion (2.29) such that
d(y*, ") < ¥(e).

In particular, if ¢ (t) = Ct, for each t € R* (where C' € M,,,,,(R)), then 2.29 is said to be
Ulam-Hyers stable.

Definition 2.9. A subset U of a generalized metric space (X, d) is called proximinal if for each
x € X there exists v € U such that d(x,u) = Dg(z,U).

Theorem 2.10. Let (X, d) be a complete generalized metric space and let T : X — P, (X) be
a multi-valued A—contraction with proximinal values. Then, the fixed point inclusion (2.29) is
Ulam-Hyers stable.

Proof. Lete = (ey,...,€en) withe > 0, foreachi € (1,2,...,m) and let y* € X an e—solution
of (2.29), i.e.,
Da(y", F(y)) < e.

By the second conclusion of Theorem 2.7 we have that for any (x,y) € Graph(T)
d(z,a" (z,9)) < (I = A)"d(x,y), (2.30)

where z*(x,y) denotes the fixed point of F' which is obtained by Theorem 2.7 by successive
approximations starting from (z, y).
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Since T'(y*) is proximinal there exists u € T'(y*) such that

Hence, by 2.30
d(y*, «* (y*,u*)) < (I —A)Hd(y*u™) < (I - A)7'e.

O

Theorem 2.11. Let (X, d) be a complete generalized metric space and let T : X — P, (X) be
a multi-valued A—contraction such that there exists v* € X with T'(x*) = {«*}. Then the fixed
point inclusion (2.29) is Ulam-Hyers stable.

Proof. Lete = (e1,...,€en) withe; > 0, foreach: € (1,2,...,m) and let y* € X an e—solution
of (2.29), i.e.,

Da(y*,T(y")) < e
By the A—contraction condition, for z = y*,y = * and u € T'(y*) we get that
d(u,z*) < Ad(y*, z*).
Then, for any u € T'(y*) we have
d(y*,z*) < d(y*,u) + d(u, z*) < d(y*,u) + A.d(y*, z*).
Hence
d(y*,2") < (I = A)~ld(y",u),
for any u € T'(y*). Thus
d(y*,2") < (I = A)7'Da(y*, T(y")) < (I - A)"'e.
o

Let (X, d) be a metric space. We will focus our attention to the following system of operato-
rial inclusions:

1 € TV(Z1,22, 23, -, Tp)
x2 € Ta(x1, 22,23, - ., Tp)
x3 € T5(T1, %2, %3, - -, Tp) 2.31)
Tn, € To(z1, T2, 23, ..., Tp)
where T; : X™ — P(X) where i = 1,2,3,...,n are n given multi-valued operators. By
definition, a solution (x1, %2, 3, . ..,2,) € X™ of the above system is called a n fixed point for

(T17T27T37 o aTn)-

Definition 2.12. Let (X, d) be a metric space and let T; : X™ — P(X) where i = 1,2,3,...,n
are n multi-valued operators. Then the operatorial inclusions system (2.31) is said to be Ulam-
Hyers stable if there exist

C11,€12,C135 - - -, Cln, €21, €22, €23, - - -, C2n;, €31, €32, €33, - - - , 3y« - -, Cnl, Cn2, Cp3y o - -5 Crip > 0

such that for each

€1,€2,€3,...,65 >0
and each triple (u},u3,u5, ..., u),) € X" which satisfies the relations
d(uj,ar) < e forall e Ti(uf,us,u3,...,u)
d(us,an) < e forall € Tr(uj,us,ui,...,u)
d(u3, a3) < e3 forall a € T3(uj,us,us,...,u) (2.32)

d(ul,an) <e, forall a € T, (uj,u’,uj,...,u})
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there exists a solution (z*,y*,2*) € X x X x X of (2.31) such that

d(uy,z}) < crier + ciner + c1363 + -+ + Cinéy
d(uy,x3) < ca1€1 + cner + e3e3 + -+ + ey

d(u} x;) < c31€] + cppep + 3363 + - - -+ c3n€n (2.33)

d(ub,zy) < cpr€r + cno€r + Cp3€s + - + Canép

Definition 2.13. Let (X, d) be a metric space, we say that S : X" — P(X) has proximinal
values with respect to the first variable if for any =, x;,x3,...,2, € X there exists u; €
S(z1, 22,23, ..., oy) such that

d(l‘],ul) - Dd(Il,S(Il,I2,$3,...,:L'n)).

Definition 2.14. Let (X, d) be a metric space, we say that S : X" — P(X) has proximinal
values with respect to the second variable if for any z,x,x3,...,2, € X there exists uy €
S(z1, 22,23, ... ,Ty) such that

d((EQ,Uz) = Dd((L'Q, S(Z’l,xz, T3yenny (En))

Definition 2.15. Let (X, d) be a metric space, we say that S : X" — P(X) has proximinal
values with respect to the third variable if for any xy, 22, 23,...,2, € X there exists uz €
S(zy,x3,x3,...,x,) such that

d(x3,u3) = Dg(z3, S(21, 22,23, ..., Ty)).
Similarly we can say that

Definition 2.16. Let (X,d) be a metric space, we say that S : X™ — P(X) has proximi-
nal values with respect to the n'" variable if for any z, x5, 23,...,2, € X there exists u, €
S(z1, 22,23, ..., Ty) such that

d(ﬂi‘n, un) = Dd(ﬂl‘n, S(J?], T2, T3,y .. axn))
Now we are in the position to give our next main results.

Theorem 2.17. Let (X, d) be a complete metric space and let T; : X™ — P, (X) where i =

1,2,3,...,n be n multi-valued operators. Suppose that T} has proximinal values with respect
to the first variable, T, with respect to the second variable and similarly T,, with respect to the n
variable. For each (x1, 72,73, ...,%y,), (U1, u2,u3,...,un) € X™ and each
a1 € Ty (w1, 22,73, .., %), a2 € Ta(21,22,23, ..., Tn),
s € T3(x1, 22,23, .., ), - an € Ty(mr, 22,23, .., %)
there exist
/81 S Tl (U],UZ,U{;, ey un)7 52 S TZ(UMU'Za uz, ... 7u7l)?
B3 € T3(ur,ug, usy - un), oo Bn € Tn(ur,uz,us, .o un),

satisfying
d(on, Br) < knd(zy,ur) + kind(aa, u2) + kizd(xs, uz) + - - + kind(2n, up)
d(az, B2) < kard(z1,wr) + knd(z2, u2) + kosd(z3, uz) + - - - + kond(zp, uy)
d(es, 3) < ksid(xy,ur) + kand(xa, uz) + kszd(xs3, uz) + - - + ksnd(2r, up)

d(any 57)) S knld(xl 5 U]) + and(IL UZ) + kn3d(5€3, U3) + -+ knnd(xna un)
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We suppose that

kit ki kiz ... kin
kot ko ks ... kop
N k31 k3 kaz ... kag
T kst ki kaz ... Kan
knl an kn3 cee knn
converges to zero. Then,
(i) there exists (z7,23,25,...,x},) € X™ a solution for (2.31).

(ii) the operatorial system (2.31) is Ulam-Hyers stable.
Proof. (i)-(ii) Let us define T : X" — (P, (X))" by
T(x1,22,%3, .., Tn) = T1(21,22,23, -« s T ) X To (21,22, %3, . ., X)X+ X T (1,22, T3, - - -, T )-

Denote I' = X™ and consider d : I’ x " — R?,

d(ml,ul)

d(l‘z,uz)

d((z1, 22,73, ), (ur, ug, uz, . . Uy )) = d(ws3, u3)

d(xnyun)
Then, from the hypotheses of the theorem, we get that for each s = (21,22, 23,...,2,),t =
(ur,uz,u3,...,up) € X" and each a = (a1, 02,0a3,...,a,) € T(z1,22,23,...,T,), there

exists 8 = (81,62, 53, - - -, Bn) € T(u1,uz,u3,...,uy,) satisfying the relation
d(a, B) < Ad(s,t),

which proves that T is a multi-valued A—contraction. Since T} (x1, %2, x3,. .., Tyn) < X is prox-
iminal with respect to the first variable we have that, for any (z, x5, 23, ..., x,) € X there exists
w € Ty (x1, 2,23, . .., Tpn) such that

d(.’l’;],U]) - Dd(thl(xthawfi) .. 7mn))

Since T5(x1, 2, %3, - .., T,) C X is proximinal with respect to the second variable we get that,
for any (1,22, 23,...,2,) € X there exists up € Tr(z1, 22,23, ...,T,) such that

d(x2,u2) = Dg(x2, Tr(x1, 22,23, ..., Tp)).
Since T3 (1, x2, 3, . .., x,) C X is proximinal with respect to the third variable we get that, for
any (zy, 72,3, ...,%,) € X there exists uz € T3(x1, 72,73, ..., x,) such that

d(l’3,U3) = Dd(l'3,T3((E1,£L'2,(E3, N ,.’En))
Similarly, T}, (z1, z2, 23, . . ., ) C X is proximinal with respect to the nt" variable we get that,
for any (1,22, 23,...,%,) € X there exists u,, € T, (x1, 2,3, .., T,) such that

d(xn7u’n) - Dd(xn,Tn($1,$2,$37 s ?‘/En))

Then the set
T(x1,%2,%3, .., Tn) = T1(x1,22, 23, - - s T ) X To (21,22, @3, . . ., T ) X - - X T (1, T2, T3, - - -, Tpy)
is proximinal, since for any (x1, 2,3, ..., %,) € X there exists (uy, uz, u3, ..., u,) € T(x1, 22,73, ...
such that
d((x]a'r27x37 st 7x7L)a ('U,],u27u3, ce 7“%)) - DJ((x]axZ) 3337 AR ,Z‘»,J,T(J;],.Z'Q,lﬁ, ce 7xn))~

The conclusions follow now from Theorem 2.7 and Theorem 2.10. O
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Theorem 2.18. Let (X, d) be a complete metric space and let T; : X" — P (X) where i =

1,2,3,...,n be n multi-valued operators. Suppose there exist x\,x,,x3,...,x, € X such that
T (‘TTagj;vl;a cee ,.T:) = {:L'T}7
Tz, 5,25, ..., 25) = {3},
T5(xy, 25,25, ..., xy) = {x3} (2.34)
To(xy, x5, 25, ...,2)) = {z}}.
For each (z1,22,%3, ..., Tn), (u1,u2,u3, ..., u,) € X" and each
ay € Ti(x1, 22,03, ., 2n), 0 € Ta(1, 22,73, ..., Tn),
a3 € Ts(x1, 22,23, .« -, Tn), coe o € Th(w1, 02,73, .., Ty)
there exist
/81 S Tl<u17 U, U3, . .. 7un); 62 S TZ(U/],UZ,’U,?,, e aun)a
536T3(’U,1,U2,U3,.~.,un), ,ﬁneTn(U1,U2,U3,...,Un)
satisfying
d(ay, Br) d(xy,ur) + kd(x, u) + kizd(23,u3) + - - - + kipd(2n, un)

<kn
d(az, ﬁz) < kzld(l‘l, ul) + kgzd(xz, uz) + kzgd($3, U3) + -+ kznd(xn, un)
d(os, B3) < kaid(xy,ur) + kad(xa, up) + kszd(x3,uz) + - - + kaznd(2r,, up)

d(a'rm Bn) S knld(xh Ul) + and(x27 ’UQ) + kn3d($3, US) + -+ knnd(xny un)
We suppose that

ki ki kiz ... ki
ki ko ks ... kop
Ao k31 k3 kaz ... kan
kst ks kaz ... kan
ko1 kna kns oo knn
converges to zero. Then:
(i) there exists (z7,23,25,...,x},) € X™ a solution for (2.31).

(ii) the operatorial system (2.31) is Ulam-Hyers stable.
Proof. For the prove of (i)-(ii) let us define 7 : X™ — (Py(X))" by

T(x1,22,%3, .., Tn) = T1(21,22,23, .« s T ) X To (21,22, %3, . ., X)X+ X T (1,22, T3, - - -, Tp)-

Then from the hypotheses of the theorem we get that

* %k * _ * k% * * %k * * %k
T(xy,25,23,...,2)) = Ti(a,25,2%,...,20) X Doz, 25,25, ..., 2)) X -+ X T (2], 25,25, ...

= (27,23,23,...,2}).
So, T has at least one strict fixed point. We denote I' = X" and consider d:TxI — R?
d(:L'l, ul)
d(l‘z, 'LL2)

d((z1, 22,23, ..., T0), (w1, u2, U3, ..., up)) = d(x3, u3)

d(ﬂ:n, Un)
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Then from the hypotheses of the theorem, we have that for each s = (z1,22,23,...,2p),t =
(ur,uz,u3,...,uy) € X" and each a = (a1, 00,03,...,0,) € T(z1,22,23,...,T,), there
exists 8 = (81,52, 53, - - -, Bn) € T(u1,uz,u3,...,uy,) satisfying the relation

J(a, B) < AJ(S, t),

which proves that 7" is a multi-valued A—contraction. The conclusions follow now from Theo-
rem 2.7 and Theorem 2.10. O

Remark 2.19. Notice again that, if (X, d) is a metric space and T’ : X" — P(X) is a multi-
valued operator and we define

T1($17.'L'2,.T3,-..,xn) :T($1,$2,$3,...,$n),
Tz(l’l,$2,$3,...,l’n) :T(x27x37"‘,$n7x1)
T (w1, 22,23, s ) = T(Tn, 1,22, ., Tn1)

then the above approach leads to some n—tupled fixed point theorems in the classical sense.

Remark 2.20. (i) When we take n = 2 in Theorem 2.7 then we get following result of Urs
[44].

(ii)) When we take n = 3 in Theorem 2.7 then we get following result of Gupta [15].
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